Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftr6 Structured version   Visualization version   GIF version

Theorem dftr6 35730
Description: A potential definition of transitivity for sets. (Contributed by Scott Fenton, 18-Mar-2012.)
Hypothesis
Ref Expression
dftr6.1 𝐴 ∈ V
Assertion
Ref Expression
dftr6 (Tr 𝐴𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))

Proof of Theorem dftr6
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr6.1 . . . . 5 𝐴 ∈ V
21elrn 5906 . . . 4 (𝐴 ∈ ran (( E ∘ E ) ∖ E ) ↔ ∃𝑥 𝑥(( E ∘ E ) ∖ E )𝐴)
3 brdif 5200 . . . . . 6 (𝑥(( E ∘ E ) ∖ E )𝐴 ↔ (𝑥( E ∘ E )𝐴 ∧ ¬ 𝑥 E 𝐴))
4 vex 3481 . . . . . . . . 9 𝑥 ∈ V
54, 1brco 5883 . . . . . . . 8 (𝑥( E ∘ E )𝐴 ↔ ∃𝑦(𝑥 E 𝑦𝑦 E 𝐴))
6 epel 5591 . . . . . . . . . 10 (𝑥 E 𝑦𝑥𝑦)
71epeli 5590 . . . . . . . . . 10 (𝑦 E 𝐴𝑦𝐴)
86, 7anbi12i 628 . . . . . . . . 9 ((𝑥 E 𝑦𝑦 E 𝐴) ↔ (𝑥𝑦𝑦𝐴))
98exbii 1844 . . . . . . . 8 (∃𝑦(𝑥 E 𝑦𝑦 E 𝐴) ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
105, 9bitri 275 . . . . . . 7 (𝑥( E ∘ E )𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
111epeli 5590 . . . . . . . 8 (𝑥 E 𝐴𝑥𝐴)
1211notbii 320 . . . . . . 7 𝑥 E 𝐴 ↔ ¬ 𝑥𝐴)
1310, 12anbi12i 628 . . . . . 6 ((𝑥( E ∘ E )𝐴 ∧ ¬ 𝑥 E 𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴))
14 19.41v 1946 . . . . . . 7 (∃𝑦((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴))
15 exanali 1856 . . . . . . 7 (∃𝑦((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴) ↔ ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
1614, 15bitr3i 277 . . . . . 6 ((∃𝑦(𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴) ↔ ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
173, 13, 163bitri 297 . . . . 5 (𝑥(( E ∘ E ) ∖ E )𝐴 ↔ ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
1817exbii 1844 . . . 4 (∃𝑥 𝑥(( E ∘ E ) ∖ E )𝐴 ↔ ∃𝑥 ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
19 exnal 1823 . . . 4 (∃𝑥 ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ ¬ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
202, 18, 193bitri 297 . . 3 (𝐴 ∈ ran (( E ∘ E ) ∖ E ) ↔ ¬ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
2120con2bii 357 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ ¬ 𝐴 ∈ ran (( E ∘ E ) ∖ E ))
22 dftr2 5266 . 2 (Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
23 eldif 3972 . . 3 (𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )) ↔ (𝐴 ∈ V ∧ ¬ 𝐴 ∈ ran (( E ∘ E ) ∖ E )))
241, 23mpbiran 709 . 2 (𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )) ↔ ¬ 𝐴 ∈ ran (( E ∘ E ) ∖ E ))
2521, 22, 243bitr4i 303 1 (Tr 𝐴𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1534  wex 1775  wcel 2105  Vcvv 3477  cdif 3959   class class class wbr 5147  Tr wtr 5264   E cep 5587  ran crn 5689  ccom 5692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5588  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699
This theorem is referenced by:  eltrans  35872
  Copyright terms: Public domain W3C validator