Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftr6 Structured version   Visualization version   GIF version

Theorem dftr6 33436
Description: A potential definition of transitivity for sets. (Contributed by Scott Fenton, 18-Mar-2012.)
Hypothesis
Ref Expression
dftr6.1 𝐴 ∈ V
Assertion
Ref Expression
dftr6 (Tr 𝐴𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))

Proof of Theorem dftr6
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr6.1 . . . . 5 𝐴 ∈ V
21elrn 5762 . . . 4 (𝐴 ∈ ran (( E ∘ E ) ∖ E ) ↔ ∃𝑥 𝑥(( E ∘ E ) ∖ E )𝐴)
3 brdif 5106 . . . . . 6 (𝑥(( E ∘ E ) ∖ E )𝐴 ↔ (𝑥( E ∘ E )𝐴 ∧ ¬ 𝑥 E 𝐴))
4 vex 3412 . . . . . . . . 9 𝑥 ∈ V
54, 1brco 5739 . . . . . . . 8 (𝑥( E ∘ E )𝐴 ↔ ∃𝑦(𝑥 E 𝑦𝑦 E 𝐴))
6 epel 5463 . . . . . . . . . 10 (𝑥 E 𝑦𝑥𝑦)
71epeli 5462 . . . . . . . . . 10 (𝑦 E 𝐴𝑦𝐴)
86, 7anbi12i 630 . . . . . . . . 9 ((𝑥 E 𝑦𝑦 E 𝐴) ↔ (𝑥𝑦𝑦𝐴))
98exbii 1855 . . . . . . . 8 (∃𝑦(𝑥 E 𝑦𝑦 E 𝐴) ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
105, 9bitri 278 . . . . . . 7 (𝑥( E ∘ E )𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
111epeli 5462 . . . . . . . 8 (𝑥 E 𝐴𝑥𝐴)
1211notbii 323 . . . . . . 7 𝑥 E 𝐴 ↔ ¬ 𝑥𝐴)
1310, 12anbi12i 630 . . . . . 6 ((𝑥( E ∘ E )𝐴 ∧ ¬ 𝑥 E 𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴))
14 19.41v 1958 . . . . . . 7 (∃𝑦((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴))
15 exanali 1867 . . . . . . 7 (∃𝑦((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴) ↔ ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
1614, 15bitr3i 280 . . . . . 6 ((∃𝑦(𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴) ↔ ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
173, 13, 163bitri 300 . . . . 5 (𝑥(( E ∘ E ) ∖ E )𝐴 ↔ ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
1817exbii 1855 . . . 4 (∃𝑥 𝑥(( E ∘ E ) ∖ E )𝐴 ↔ ∃𝑥 ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
19 exnal 1834 . . . 4 (∃𝑥 ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ ¬ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
202, 18, 193bitri 300 . . 3 (𝐴 ∈ ran (( E ∘ E ) ∖ E ) ↔ ¬ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
2120con2bii 361 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ ¬ 𝐴 ∈ ran (( E ∘ E ) ∖ E ))
22 dftr2 5163 . 2 (Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
23 eldif 3876 . . 3 (𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )) ↔ (𝐴 ∈ V ∧ ¬ 𝐴 ∈ ran (( E ∘ E ) ∖ E )))
241, 23mpbiran 709 . 2 (𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )) ↔ ¬ 𝐴 ∈ ran (( E ∘ E ) ∖ E ))
2521, 22, 243bitr4i 306 1 (Tr 𝐴𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1541  wex 1787  wcel 2110  Vcvv 3408  cdif 3863   class class class wbr 5053  Tr wtr 5161   E cep 5459  ran crn 5552  ccom 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-tr 5162  df-eprel 5460  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562
This theorem is referenced by:  eltrans  33930
  Copyright terms: Public domain W3C validator