Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffun10 Structured version   Visualization version   GIF version

Theorem dffun10 33370
Description: Another potential definition of functionhood. Based on statements in http://people.math.gatech.edu/~belinfan/research/autoreas/otter/sum/fs/. (Contributed by Scott Fenton, 30-Aug-2017.)
Assertion
Ref Expression
dffun10 (Fun 𝐹𝐹 ⊆ ( I ∘ (V ∖ ((V ∖ I ) ∘ 𝐹))))

Proof of Theorem dffun10
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrel 5652 . . . 4 (Rel 𝐹 → (𝐹 ⊆ (V ∖ ((V ∖ I ) ∘ 𝐹)) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ (V ∖ ((V ∖ I ) ∘ 𝐹)))))
2 impexp 453 . . . . . . 7 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (⟨𝑥, 𝑧⟩ ∈ 𝐹𝑦 = 𝑧)))
32albii 1816 . . . . . 6 (∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∀𝑧(⟨𝑥, 𝑦⟩ ∈ 𝐹 → (⟨𝑥, 𝑧⟩ ∈ 𝐹𝑦 = 𝑧)))
4 19.21v 1936 . . . . . 6 (∀𝑧(⟨𝑥, 𝑦⟩ ∈ 𝐹 → (⟨𝑥, 𝑧⟩ ∈ 𝐹𝑦 = 𝑧)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ∀𝑧(⟨𝑥, 𝑧⟩ ∈ 𝐹𝑦 = 𝑧)))
5 vex 3498 . . . . . . . . . . 11 𝑥 ∈ V
6 vex 3498 . . . . . . . . . . 11 𝑦 ∈ V
75, 6opelco 5737 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ ((V ∖ I ) ∘ 𝐹) ↔ ∃𝑧(𝑥𝐹𝑧𝑧(V ∖ I )𝑦))
8 df-br 5060 . . . . . . . . . . . 12 (𝑥𝐹𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐹)
9 brv 5357 . . . . . . . . . . . . . 14 𝑧V𝑦
10 brdif 5112 . . . . . . . . . . . . . 14 (𝑧(V ∖ I )𝑦 ↔ (𝑧V𝑦 ∧ ¬ 𝑧 I 𝑦))
119, 10mpbiran 707 . . . . . . . . . . . . 13 (𝑧(V ∖ I )𝑦 ↔ ¬ 𝑧 I 𝑦)
126ideq 5718 . . . . . . . . . . . . . 14 (𝑧 I 𝑦𝑧 = 𝑦)
13 equcom 2021 . . . . . . . . . . . . . 14 (𝑧 = 𝑦𝑦 = 𝑧)
1412, 13bitri 277 . . . . . . . . . . . . 13 (𝑧 I 𝑦𝑦 = 𝑧)
1511, 14xchbinx 336 . . . . . . . . . . . 12 (𝑧(V ∖ I )𝑦 ↔ ¬ 𝑦 = 𝑧)
168, 15anbi12i 628 . . . . . . . . . . 11 ((𝑥𝐹𝑧𝑧(V ∖ I )𝑦) ↔ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∧ ¬ 𝑦 = 𝑧))
1716exbii 1844 . . . . . . . . . 10 (∃𝑧(𝑥𝐹𝑧𝑧(V ∖ I )𝑦) ↔ ∃𝑧(⟨𝑥, 𝑧⟩ ∈ 𝐹 ∧ ¬ 𝑦 = 𝑧))
18 exanali 1855 . . . . . . . . . 10 (∃𝑧(⟨𝑥, 𝑧⟩ ∈ 𝐹 ∧ ¬ 𝑦 = 𝑧) ↔ ¬ ∀𝑧(⟨𝑥, 𝑧⟩ ∈ 𝐹𝑦 = 𝑧))
197, 17, 183bitri 299 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ ((V ∖ I ) ∘ 𝐹) ↔ ¬ ∀𝑧(⟨𝑥, 𝑧⟩ ∈ 𝐹𝑦 = 𝑧))
2019con2bii 360 . . . . . . . 8 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ 𝐹𝑦 = 𝑧) ↔ ¬ ⟨𝑥, 𝑦⟩ ∈ ((V ∖ I ) ∘ 𝐹))
21 opex 5349 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
22 eldif 3946 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (V ∖ ((V ∖ I ) ∘ 𝐹)) ↔ (⟨𝑥, 𝑦⟩ ∈ V ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ ((V ∖ I ) ∘ 𝐹)))
2321, 22mpbiran 707 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (V ∖ ((V ∖ I ) ∘ 𝐹)) ↔ ¬ ⟨𝑥, 𝑦⟩ ∈ ((V ∖ I ) ∘ 𝐹))
2420, 23bitr4i 280 . . . . . . 7 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ 𝐹𝑦 = 𝑧) ↔ ⟨𝑥, 𝑦⟩ ∈ (V ∖ ((V ∖ I ) ∘ 𝐹)))
2524imbi2i 338 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 → ∀𝑧(⟨𝑥, 𝑧⟩ ∈ 𝐹𝑦 = 𝑧)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ (V ∖ ((V ∖ I ) ∘ 𝐹))))
263, 4, 253bitri 299 . . . . 5 (∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ (V ∖ ((V ∖ I ) ∘ 𝐹))))
27262albii 1817 . . . 4 (∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ (V ∖ ((V ∖ I ) ∘ 𝐹))))
281, 27syl6rbbr 292 . . 3 (Rel 𝐹 → (∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ 𝐹 ⊆ (V ∖ ((V ∖ I ) ∘ 𝐹))))
2928pm5.32i 577 . 2 ((Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)) ↔ (Rel 𝐹𝐹 ⊆ (V ∖ ((V ∖ I ) ∘ 𝐹))))
30 dffun4 6362 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
31 sscoid 33369 . 2 (𝐹 ⊆ ( I ∘ (V ∖ ((V ∖ I ) ∘ 𝐹))) ↔ (Rel 𝐹𝐹 ⊆ (V ∖ ((V ∖ I ) ∘ 𝐹))))
3229, 30, 313bitr4i 305 1 (Fun 𝐹𝐹 ⊆ ( I ∘ (V ∖ ((V ∖ I ) ∘ 𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wal 1531  wex 1776  wcel 2110  Vcvv 3495  cdif 3933  wss 3936  cop 4567   class class class wbr 5059   I cid 5454  ccom 5554  Rel wrel 5555  Fun wfun 6344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-br 5060  df-opab 5122  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-fun 6352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator