MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oiiso Structured version   Visualization version   GIF version

Theorem oiiso 9429
Description: The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oiiso ((𝐴𝑉𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))

Proof of Theorem oiiso
StepHypRef Expression
1 exse 5579 . 2 (𝐴𝑉𝑅 Se 𝐴)
2 oicl.1 . . . 4 𝐹 = OrdIso(𝑅, 𝐴)
32ordtype 9424 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
43ancoms 458 . 2 ((𝑅 Se 𝐴𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
51, 4sylan 580 1 ((𝐴𝑉𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   E cep 5518   Se wse 5570   We wwe 5571  dom cdm 5619   Isom wiso 6483  OrdIsocoi 9401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-oi 9402
This theorem is referenced by:  oien  9430  wofib  9437  cantnfle  9567  cantnflt  9568  cantnflt2  9569  cantnfp1lem3  9576  cantnflem1b  9582  cantnflem1d  9584  cantnflem1  9585  wemapwe  9593  cnfcomlem  9595  cnfcom  9596  cnfcom3lem  9599  infxpenlem  9907  finnisoeu  10007  dfac12lem2  10039  cofsmo  10163  fpwwe2lem5  10529  fpwwe2lem6  10530  fpwwe2lem8  10532  pwfseqlem5  10557  fz1isolem  14368
  Copyright terms: Public domain W3C validator