MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oiiso Structured version   Visualization version   GIF version

Theorem oiiso 9035
Description: The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oiiso ((𝐴𝑉𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))

Proof of Theorem oiiso
StepHypRef Expression
1 exse 5489 . 2 (𝐴𝑉𝑅 Se 𝐴)
2 oicl.1 . . . 4 𝐹 = OrdIso(𝑅, 𝐴)
32ordtype 9030 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
43ancoms 463 . 2 ((𝑅 Se 𝐴𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
51, 4sylan 584 1 ((𝐴𝑉𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112   E cep 5435   Se wse 5482   We wwe 5483  dom cdm 5525   Isom wiso 6337  OrdIsocoi 9007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-wrecs 7958  df-recs 8019  df-oi 9008
This theorem is referenced by:  oien  9036  wofib  9043  cantnfle  9168  cantnflt  9169  cantnflt2  9170  cantnfp1lem3  9177  cantnflem1b  9183  cantnflem1d  9185  cantnflem1  9186  wemapwe  9194  cnfcomlem  9196  cnfcom  9197  cnfcom3lem  9200  infxpenlem  9474  finnisoeu  9574  dfac12lem2  9605  cofsmo  9730  fpwwe2lem5  10096  fpwwe2lem6  10097  fpwwe2lem8  10099  pwfseqlem5  10124  fz1isolem  13872
  Copyright terms: Public domain W3C validator