| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oiiso | Structured version Visualization version GIF version | ||
| Description: The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
| Ref | Expression |
|---|---|
| oicl.1 | ⊢ 𝐹 = OrdIso(𝑅, 𝐴) |
| Ref | Expression |
|---|---|
| oiiso | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exse 5614 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) | |
| 2 | oicl.1 | . . . 4 ⊢ 𝐹 = OrdIso(𝑅, 𝐴) | |
| 3 | 2 | ordtype 9546 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
| 4 | 3 | ancoms 458 | . 2 ⊢ ((𝑅 Se 𝐴 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 E cep 5552 Se wse 5604 We wwe 5605 dom cdm 5654 Isom wiso 6532 OrdIsocoi 9523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-oi 9524 |
| This theorem is referenced by: oien 9552 wofib 9559 cantnfle 9685 cantnflt 9686 cantnflt2 9687 cantnfp1lem3 9694 cantnflem1b 9700 cantnflem1d 9702 cantnflem1 9703 wemapwe 9711 cnfcomlem 9713 cnfcom 9714 cnfcom3lem 9717 infxpenlem 10027 finnisoeu 10127 dfac12lem2 10159 cofsmo 10283 fpwwe2lem5 10649 fpwwe2lem6 10650 fpwwe2lem8 10652 pwfseqlem5 10677 fz1isolem 14479 |
| Copyright terms: Public domain | W3C validator |