MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemoiso2 Structured version   Visualization version   GIF version

Theorem wemoiso2 7817
Description: Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
wemoiso2 (𝑆 We 𝐵 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑅,𝑓   𝐴,𝑓   𝑆,𝑓   𝐵,𝑓

Proof of Theorem wemoiso2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . 6 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑆 We 𝐵)
2 isof1o 7194 . . . . . . . . . 10 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴1-1-onto𝐵)
3 f1ofo 6723 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
4 forn 6691 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
52, 3, 43syl 18 . . . . . . . . 9 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ran 𝑓 = 𝐵)
6 vex 3436 . . . . . . . . . 10 𝑓 ∈ V
76rnex 7759 . . . . . . . . 9 ran 𝑓 ∈ V
85, 7eqeltrrdi 2848 . . . . . . . 8 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐵 ∈ V)
98ad2antrl 725 . . . . . . 7 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐵 ∈ V)
10 exse 5552 . . . . . . 7 (𝐵 ∈ V → 𝑆 Se 𝐵)
119, 10syl 17 . . . . . 6 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑆 Se 𝐵)
121, 11jca 512 . . . . 5 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝑆 We 𝐵𝑆 Se 𝐵))
13 weisoeq2 7227 . . . . 5 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔)
1412, 13sylancom 588 . . . 4 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔)
1514ex 413 . . 3 (𝑆 We 𝐵 → ((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
1615alrimivv 1931 . 2 (𝑆 We 𝐵 → ∀𝑓𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
17 isoeq1 7188 . . 3 (𝑓 = 𝑔 → (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
1817mo4 2566 . 2 (∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ ∀𝑓𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
1916, 18sylibr 233 1 (𝑆 We 𝐵 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wcel 2106  ∃*wmo 2538  Vcvv 3432   Se wse 5542   We wwe 5543  ran crn 5590  ontowfo 6431  1-1-ontowf1o 6432   Isom wiso 6434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442
This theorem is referenced by:  finnisoeu  9869
  Copyright terms: Public domain W3C validator