![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wemoiso2 | Structured version Visualization version GIF version |
Description: Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
wemoiso2 | ⊢ (𝑆 We 𝐵 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . 6 ⊢ ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑆 We 𝐵) | |
2 | isof1o 7343 | . . . . . . . . . 10 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴–1-1-onto→𝐵) | |
3 | f1ofo 6856 | . . . . . . . . . 10 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
4 | forn 6824 | . . . . . . . . . 10 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
5 | 2, 3, 4 | 3syl 18 | . . . . . . . . 9 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ran 𝑓 = 𝐵) |
6 | vex 3482 | . . . . . . . . . 10 ⊢ 𝑓 ∈ V | |
7 | 6 | rnex 7933 | . . . . . . . . 9 ⊢ ran 𝑓 ∈ V |
8 | 5, 7 | eqeltrrdi 2848 | . . . . . . . 8 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐵 ∈ V) |
9 | 8 | ad2antrl 728 | . . . . . . 7 ⊢ ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐵 ∈ V) |
10 | exse 5649 | . . . . . . 7 ⊢ (𝐵 ∈ V → 𝑆 Se 𝐵) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑆 Se 𝐵) |
12 | 1, 11 | jca 511 | . . . . 5 ⊢ ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝑆 We 𝐵 ∧ 𝑆 Se 𝐵)) |
13 | weisoeq2 7376 | . . . . 5 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔) | |
14 | 12, 13 | sylancom 588 | . . . 4 ⊢ ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔) |
15 | 14 | ex 412 | . . 3 ⊢ (𝑆 We 𝐵 → ((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
16 | 15 | alrimivv 1926 | . 2 ⊢ (𝑆 We 𝐵 → ∀𝑓∀𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
17 | isoeq1 7337 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) | |
18 | 17 | mo4 2564 | . 2 ⊢ (∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ ∀𝑓∀𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
19 | 16, 18 | sylibr 234 | 1 ⊢ (𝑆 We 𝐵 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ∃*wmo 2536 Vcvv 3478 Se wse 5639 We wwe 5640 ran crn 5690 –onto→wfo 6561 –1-1-onto→wf1o 6562 Isom wiso 6564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 |
This theorem is referenced by: finnisoeu 10151 |
Copyright terms: Public domain | W3C validator |