MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemoiso2 Structured version   Visualization version   GIF version

Theorem wemoiso2 7790
Description: Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
wemoiso2 (𝑆 We 𝐵 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑅,𝑓   𝐴,𝑓   𝑆,𝑓   𝐵,𝑓

Proof of Theorem wemoiso2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑆 We 𝐵)
2 isof1o 7174 . . . . . . . . . 10 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴1-1-onto𝐵)
3 f1ofo 6707 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
4 forn 6675 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
52, 3, 43syl 18 . . . . . . . . 9 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ran 𝑓 = 𝐵)
6 vex 3426 . . . . . . . . . 10 𝑓 ∈ V
76rnex 7733 . . . . . . . . 9 ran 𝑓 ∈ V
85, 7eqeltrrdi 2848 . . . . . . . 8 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐵 ∈ V)
98ad2antrl 724 . . . . . . 7 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐵 ∈ V)
10 exse 5543 . . . . . . 7 (𝐵 ∈ V → 𝑆 Se 𝐵)
119, 10syl 17 . . . . . 6 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑆 Se 𝐵)
121, 11jca 511 . . . . 5 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝑆 We 𝐵𝑆 Se 𝐵))
13 weisoeq2 7207 . . . . 5 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔)
1412, 13sylancom 587 . . . 4 ((𝑆 We 𝐵 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔)
1514ex 412 . . 3 (𝑆 We 𝐵 → ((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
1615alrimivv 1932 . 2 (𝑆 We 𝐵 → ∀𝑓𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
17 isoeq1 7168 . . 3 (𝑓 = 𝑔 → (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
1817mo4 2566 . 2 (∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ ∀𝑓𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
1916, 18sylibr 233 1 (𝑆 We 𝐵 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2108  ∃*wmo 2538  Vcvv 3422   Se wse 5533   We wwe 5534  ran crn 5581  ontowfo 6416  1-1-ontowf1o 6417   Isom wiso 6419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427
This theorem is referenced by:  finnisoeu  9800
  Copyright terms: Public domain W3C validator