|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > om2noseqoi | Structured version Visualization version GIF version | ||
| Description: An alternative definition of 𝐺 in terms of df-oi 9551. (Contributed by Scott Fenton, 18-Apr-2025.) | 
| Ref | Expression | 
|---|---|
| om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) | 
| om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | 
| om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | 
| Ref | Expression | 
|---|---|
| om2noseqoi | ⊢ (𝜑 → 𝐺 = OrdIso( <s , 𝑍)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | om2noseq.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 2 | om2noseq.2 | . . . . 5 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
| 3 | om2noseq.3 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
| 4 | 1, 2, 3 | om2noseqiso 28309 | . . . 4 ⊢ (𝜑 → 𝐺 Isom E , <s (ω, 𝑍)) | 
| 5 | ordom 7898 | . . . 4 ⊢ Ord ω | |
| 6 | 4, 5 | jctil 519 | . . 3 ⊢ (𝜑 → (Ord ω ∧ 𝐺 Isom E , <s (ω, 𝑍))) | 
| 7 | ordwe 6396 | . . . . . 6 ⊢ (Ord ω → E We ω) | |
| 8 | 5, 7 | ax-mp 5 | . . . . 5 ⊢ E We ω | 
| 9 | isowe 7370 | . . . . . 6 ⊢ (𝐺 Isom E , <s (ω, 𝑍) → ( E We ω ↔ <s We 𝑍)) | |
| 10 | 4, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ( E We ω ↔ <s We 𝑍)) | 
| 11 | 8, 10 | mpbii 233 | . . . 4 ⊢ (𝜑 → <s We 𝑍) | 
| 12 | 3 | noseqex 28296 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ V) | 
| 13 | exse 5644 | . . . . 5 ⊢ (𝑍 ∈ V → <s Se 𝑍) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → <s Se 𝑍) | 
| 15 | eqid 2736 | . . . . 5 ⊢ OrdIso( <s , 𝑍) = OrdIso( <s , 𝑍) | |
| 16 | 15 | oieu 9580 | . . . 4 ⊢ (( <s We 𝑍 ∧ <s Se 𝑍) → ((Ord ω ∧ 𝐺 Isom E , <s (ω, 𝑍)) ↔ (ω = dom OrdIso( <s , 𝑍) ∧ 𝐺 = OrdIso( <s , 𝑍)))) | 
| 17 | 11, 14, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((Ord ω ∧ 𝐺 Isom E , <s (ω, 𝑍)) ↔ (ω = dom OrdIso( <s , 𝑍) ∧ 𝐺 = OrdIso( <s , 𝑍)))) | 
| 18 | 6, 17 | mpbid 232 | . 2 ⊢ (𝜑 → (ω = dom OrdIso( <s , 𝑍) ∧ 𝐺 = OrdIso( <s , 𝑍))) | 
| 19 | 18 | simprd 495 | 1 ⊢ (𝜑 → 𝐺 = OrdIso( <s , 𝑍)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ↦ cmpt 5224 E cep 5582 Se wse 5634 We wwe 5635 dom cdm 5684 ↾ cres 5686 “ cima 5687 Ord word 6382 Isom wiso 6561 (class class class)co 7432 ωcom 7888 reccrdg 8450 OrdIsocoi 9550 No csur 27685 <s cslt 27686 1s c1s 27869 +s cadds 27993 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-dc 10487 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-ot 4634 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-nadd 8705 df-oi 9551 df-no 27688 df-slt 27689 df-bday 27690 df-sle 27791 df-sslt 27827 df-scut 27829 df-0s 27870 df-1s 27871 df-made 27887 df-old 27888 df-left 27890 df-right 27891 df-norec2 27983 df-adds 27994 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |