| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2noseqoi | Structured version Visualization version GIF version | ||
| Description: An alternative definition of 𝐺 in terms of df-oi 9396. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
| om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
| Ref | Expression |
|---|---|
| om2noseqoi | ⊢ (𝜑 → 𝐺 = OrdIso( <s , 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2noseq.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 2 | om2noseq.2 | . . . . 5 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
| 3 | om2noseq.3 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
| 4 | 1, 2, 3 | om2noseqiso 28233 | . . . 4 ⊢ (𝜑 → 𝐺 Isom E , <s (ω, 𝑍)) |
| 5 | ordom 7806 | . . . 4 ⊢ Ord ω | |
| 6 | 4, 5 | jctil 519 | . . 3 ⊢ (𝜑 → (Ord ω ∧ 𝐺 Isom E , <s (ω, 𝑍))) |
| 7 | ordwe 6319 | . . . . . 6 ⊢ (Ord ω → E We ω) | |
| 8 | 5, 7 | ax-mp 5 | . . . . 5 ⊢ E We ω |
| 9 | isowe 7283 | . . . . . 6 ⊢ (𝐺 Isom E , <s (ω, 𝑍) → ( E We ω ↔ <s We 𝑍)) | |
| 10 | 4, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ( E We ω ↔ <s We 𝑍)) |
| 11 | 8, 10 | mpbii 233 | . . . 4 ⊢ (𝜑 → <s We 𝑍) |
| 12 | 3 | noseqex 28220 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ V) |
| 13 | exse 5576 | . . . . 5 ⊢ (𝑍 ∈ V → <s Se 𝑍) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → <s Se 𝑍) |
| 15 | eqid 2731 | . . . . 5 ⊢ OrdIso( <s , 𝑍) = OrdIso( <s , 𝑍) | |
| 16 | 15 | oieu 9425 | . . . 4 ⊢ (( <s We 𝑍 ∧ <s Se 𝑍) → ((Ord ω ∧ 𝐺 Isom E , <s (ω, 𝑍)) ↔ (ω = dom OrdIso( <s , 𝑍) ∧ 𝐺 = OrdIso( <s , 𝑍)))) |
| 17 | 11, 14, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((Ord ω ∧ 𝐺 Isom E , <s (ω, 𝑍)) ↔ (ω = dom OrdIso( <s , 𝑍) ∧ 𝐺 = OrdIso( <s , 𝑍)))) |
| 18 | 6, 17 | mpbid 232 | . 2 ⊢ (𝜑 → (ω = dom OrdIso( <s , 𝑍) ∧ 𝐺 = OrdIso( <s , 𝑍))) |
| 19 | 18 | simprd 495 | 1 ⊢ (𝜑 → 𝐺 = OrdIso( <s , 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5172 E cep 5515 Se wse 5567 We wwe 5568 dom cdm 5616 ↾ cres 5618 “ cima 5619 Ord word 6305 Isom wiso 6482 (class class class)co 7346 ωcom 7796 reccrdg 8328 OrdIsocoi 9395 No csur 27579 <s cslt 27580 1s c1s 27768 +s cadds 27903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-dc 10337 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-nadd 8581 df-oi 9396 df-no 27582 df-slt 27583 df-bday 27584 df-sle 27685 df-sslt 27722 df-scut 27724 df-0s 27769 df-1s 27770 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec2 27893 df-adds 27904 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |