| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2noseqoi | Structured version Visualization version GIF version | ||
| Description: An alternative definition of 𝐺 in terms of df-oi 9405. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
| om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
| Ref | Expression |
|---|---|
| om2noseqoi | ⊢ (𝜑 → 𝐺 = OrdIso( <s , 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2noseq.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 2 | om2noseq.2 | . . . . 5 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
| 3 | om2noseq.3 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
| 4 | 1, 2, 3 | om2noseqiso 28235 | . . . 4 ⊢ (𝜑 → 𝐺 Isom E , <s (ω, 𝑍)) |
| 5 | ordom 7814 | . . . 4 ⊢ Ord ω | |
| 6 | 4, 5 | jctil 519 | . . 3 ⊢ (𝜑 → (Ord ω ∧ 𝐺 Isom E , <s (ω, 𝑍))) |
| 7 | ordwe 6326 | . . . . . 6 ⊢ (Ord ω → E We ω) | |
| 8 | 5, 7 | ax-mp 5 | . . . . 5 ⊢ E We ω |
| 9 | isowe 7291 | . . . . . 6 ⊢ (𝐺 Isom E , <s (ω, 𝑍) → ( E We ω ↔ <s We 𝑍)) | |
| 10 | 4, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ( E We ω ↔ <s We 𝑍)) |
| 11 | 8, 10 | mpbii 233 | . . . 4 ⊢ (𝜑 → <s We 𝑍) |
| 12 | 3 | noseqex 28222 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ V) |
| 13 | exse 5581 | . . . . 5 ⊢ (𝑍 ∈ V → <s Se 𝑍) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → <s Se 𝑍) |
| 15 | eqid 2733 | . . . . 5 ⊢ OrdIso( <s , 𝑍) = OrdIso( <s , 𝑍) | |
| 16 | 15 | oieu 9434 | . . . 4 ⊢ (( <s We 𝑍 ∧ <s Se 𝑍) → ((Ord ω ∧ 𝐺 Isom E , <s (ω, 𝑍)) ↔ (ω = dom OrdIso( <s , 𝑍) ∧ 𝐺 = OrdIso( <s , 𝑍)))) |
| 17 | 11, 14, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((Ord ω ∧ 𝐺 Isom E , <s (ω, 𝑍)) ↔ (ω = dom OrdIso( <s , 𝑍) ∧ 𝐺 = OrdIso( <s , 𝑍)))) |
| 18 | 6, 17 | mpbid 232 | . 2 ⊢ (𝜑 → (ω = dom OrdIso( <s , 𝑍) ∧ 𝐺 = OrdIso( <s , 𝑍))) |
| 19 | 18 | simprd 495 | 1 ⊢ (𝜑 → 𝐺 = OrdIso( <s , 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ↦ cmpt 5176 E cep 5520 Se wse 5572 We wwe 5573 dom cdm 5621 ↾ cres 5623 “ cima 5624 Ord word 6312 Isom wiso 6489 (class class class)co 7354 ωcom 7804 reccrdg 8336 OrdIsocoi 9404 No csur 27581 <s cslt 27582 1s c1s 27770 +s cadds 27905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-dc 10346 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-oadd 8397 df-nadd 8589 df-oi 9405 df-no 27584 df-slt 27585 df-bday 27586 df-sle 27687 df-sslt 27724 df-scut 27726 df-0s 27771 df-1s 27772 df-made 27791 df-old 27792 df-left 27794 df-right 27795 df-norec2 27895 df-adds 27906 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |