| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2noseqoi | Structured version Visualization version GIF version | ||
| Description: An alternative definition of 𝐺 in terms of df-oi 9529. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
| om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
| Ref | Expression |
|---|---|
| om2noseqoi | ⊢ (𝜑 → 𝐺 = OrdIso( <s , 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2noseq.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 2 | om2noseq.2 | . . . . 5 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
| 3 | om2noseq.3 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
| 4 | 1, 2, 3 | om2noseqiso 28253 | . . . 4 ⊢ (𝜑 → 𝐺 Isom E , <s (ω, 𝑍)) |
| 5 | ordom 7876 | . . . 4 ⊢ Ord ω | |
| 6 | 4, 5 | jctil 519 | . . 3 ⊢ (𝜑 → (Ord ω ∧ 𝐺 Isom E , <s (ω, 𝑍))) |
| 7 | ordwe 6370 | . . . . . 6 ⊢ (Ord ω → E We ω) | |
| 8 | 5, 7 | ax-mp 5 | . . . . 5 ⊢ E We ω |
| 9 | isowe 7347 | . . . . . 6 ⊢ (𝐺 Isom E , <s (ω, 𝑍) → ( E We ω ↔ <s We 𝑍)) | |
| 10 | 4, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ( E We ω ↔ <s We 𝑍)) |
| 11 | 8, 10 | mpbii 233 | . . . 4 ⊢ (𝜑 → <s We 𝑍) |
| 12 | 3 | noseqex 28240 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ V) |
| 13 | exse 5619 | . . . . 5 ⊢ (𝑍 ∈ V → <s Se 𝑍) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → <s Se 𝑍) |
| 15 | eqid 2736 | . . . . 5 ⊢ OrdIso( <s , 𝑍) = OrdIso( <s , 𝑍) | |
| 16 | 15 | oieu 9558 | . . . 4 ⊢ (( <s We 𝑍 ∧ <s Se 𝑍) → ((Ord ω ∧ 𝐺 Isom E , <s (ω, 𝑍)) ↔ (ω = dom OrdIso( <s , 𝑍) ∧ 𝐺 = OrdIso( <s , 𝑍)))) |
| 17 | 11, 14, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((Ord ω ∧ 𝐺 Isom E , <s (ω, 𝑍)) ↔ (ω = dom OrdIso( <s , 𝑍) ∧ 𝐺 = OrdIso( <s , 𝑍)))) |
| 18 | 6, 17 | mpbid 232 | . 2 ⊢ (𝜑 → (ω = dom OrdIso( <s , 𝑍) ∧ 𝐺 = OrdIso( <s , 𝑍))) |
| 19 | 18 | simprd 495 | 1 ⊢ (𝜑 → 𝐺 = OrdIso( <s , 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ↦ cmpt 5206 E cep 5557 Se wse 5609 We wwe 5610 dom cdm 5659 ↾ cres 5661 “ cima 5662 Ord word 6356 Isom wiso 6537 (class class class)co 7410 ωcom 7866 reccrdg 8428 OrdIsocoi 9528 No csur 27608 <s cslt 27609 1s c1s 27792 +s cadds 27923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-dc 10465 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-nadd 8683 df-oi 9529 df-no 27611 df-slt 27612 df-bday 27613 df-sle 27714 df-sslt 27750 df-scut 27752 df-0s 27793 df-1s 27794 df-made 27812 df-old 27813 df-left 27815 df-right 27816 df-norec2 27913 df-adds 27924 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |