![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wemoiso | Structured version Visualization version GIF version |
Description: Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu 10054. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
wemoiso | ⊢ (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . . . . 6 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑅 We 𝐴) | |
2 | vex 3448 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
3 | isof1o 7269 | . . . . . . . . . 10 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴–1-1-onto→𝐵) | |
4 | f1of 6785 | . . . . . . . . . 10 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
5 | 3, 4 | syl 17 | . . . . . . . . 9 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴⟶𝐵) |
6 | dmfex 7845 | . . . . . . . . 9 ⊢ ((𝑓 ∈ V ∧ 𝑓:𝐴⟶𝐵) → 𝐴 ∈ V) | |
7 | 2, 5, 6 | sylancr 588 | . . . . . . . 8 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐴 ∈ V) |
8 | 7 | ad2antrl 727 | . . . . . . 7 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐴 ∈ V) |
9 | exse 5597 | . . . . . . 7 ⊢ (𝐴 ∈ V → 𝑅 Se 𝐴) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑅 Se 𝐴) |
11 | 1, 10 | jca 513 | . . . . 5 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴)) |
12 | weisoeq 7301 | . . . . 5 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔) | |
13 | 11, 12 | sylancom 589 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔) |
14 | 13 | ex 414 | . . 3 ⊢ (𝑅 We 𝐴 → ((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
15 | 14 | alrimivv 1932 | . 2 ⊢ (𝑅 We 𝐴 → ∀𝑓∀𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
16 | isoeq1 7263 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) | |
17 | 16 | mo4 2561 | . 2 ⊢ (∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ ∀𝑓∀𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
18 | 15, 17 | sylibr 233 | 1 ⊢ (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1540 ∈ wcel 2107 ∃*wmo 2533 Vcvv 3444 Se wse 5587 We wwe 5588 ⟶wf 6493 –1-1-onto→wf1o 6496 Isom wiso 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 |
This theorem is referenced by: fzisoeu 43621 |
Copyright terms: Public domain | W3C validator |