![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wemoiso | Structured version Visualization version GIF version |
Description: Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu 10144. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
wemoiso | ⊢ (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . . . 6 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑅 We 𝐴) | |
2 | vex 3477 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
3 | isof1o 7337 | . . . . . . . . . 10 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴–1-1-onto→𝐵) | |
4 | f1of 6844 | . . . . . . . . . 10 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
5 | 3, 4 | syl 17 | . . . . . . . . 9 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴⟶𝐵) |
6 | dmfex 7919 | . . . . . . . . 9 ⊢ ((𝑓 ∈ V ∧ 𝑓:𝐴⟶𝐵) → 𝐴 ∈ V) | |
7 | 2, 5, 6 | sylancr 585 | . . . . . . . 8 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐴 ∈ V) |
8 | 7 | ad2antrl 726 | . . . . . . 7 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐴 ∈ V) |
9 | exse 5645 | . . . . . . 7 ⊢ (𝐴 ∈ V → 𝑅 Se 𝐴) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑅 Se 𝐴) |
11 | 1, 10 | jca 510 | . . . . 5 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴)) |
12 | weisoeq 7369 | . . . . 5 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔) | |
13 | 11, 12 | sylancom 586 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔) |
14 | 13 | ex 411 | . . 3 ⊢ (𝑅 We 𝐴 → ((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
15 | 14 | alrimivv 1923 | . 2 ⊢ (𝑅 We 𝐴 → ∀𝑓∀𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
16 | isoeq1 7331 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) | |
17 | 16 | mo4 2555 | . 2 ⊢ (∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ ∀𝑓∀𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
18 | 15, 17 | sylibr 233 | 1 ⊢ (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1531 ∈ wcel 2098 ∃*wmo 2527 Vcvv 3473 Se wse 5635 We wwe 5636 ⟶wf 6549 –1-1-onto→wf1o 6552 Isom wiso 6554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 |
This theorem is referenced by: fzisoeu 44711 |
Copyright terms: Public domain | W3C validator |