![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wemoiso | Structured version Visualization version GIF version |
Description: Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu 10107. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
wemoiso | ⊢ (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . 6 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑅 We 𝐴) | |
2 | vex 3472 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
3 | isof1o 7315 | . . . . . . . . . 10 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴–1-1-onto→𝐵) | |
4 | f1of 6826 | . . . . . . . . . 10 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
5 | 3, 4 | syl 17 | . . . . . . . . 9 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴⟶𝐵) |
6 | dmfex 7894 | . . . . . . . . 9 ⊢ ((𝑓 ∈ V ∧ 𝑓:𝐴⟶𝐵) → 𝐴 ∈ V) | |
7 | 2, 5, 6 | sylancr 586 | . . . . . . . 8 ⊢ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐴 ∈ V) |
8 | 7 | ad2antrl 725 | . . . . . . 7 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐴 ∈ V) |
9 | exse 5632 | . . . . . . 7 ⊢ (𝐴 ∈ V → 𝑅 Se 𝐴) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑅 Se 𝐴) |
11 | 1, 10 | jca 511 | . . . . 5 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴)) |
12 | weisoeq 7347 | . . . . 5 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔) | |
13 | 11, 12 | sylancom 587 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔) |
14 | 13 | ex 412 | . . 3 ⊢ (𝑅 We 𝐴 → ((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
15 | 14 | alrimivv 1923 | . 2 ⊢ (𝑅 We 𝐴 → ∀𝑓∀𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
16 | isoeq1 7309 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) | |
17 | 16 | mo4 2554 | . 2 ⊢ (∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ ∀𝑓∀𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔)) |
18 | 15, 17 | sylibr 233 | 1 ⊢ (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1531 ∈ wcel 2098 ∃*wmo 2526 Vcvv 3468 Se wse 5622 We wwe 5623 ⟶wf 6532 –1-1-onto→wf1o 6535 Isom wiso 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 |
This theorem is referenced by: fzisoeu 44564 |
Copyright terms: Public domain | W3C validator |