MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem6 Structured version   Visualization version   GIF version

Theorem fin1a2lem6 9816
Description: Lemma for fin1a2 9826. Establish that ω can be broken into two equipollent pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypotheses
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
fin1a2lem.aa 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem6 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)

Proof of Theorem fin1a2lem6
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.aa . . . 4 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
21fin1a2lem2 9812 . . 3 𝑆:On–1-1→On
3 fin1a2lem.b . . . . 5 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
43fin1a2lem4 9814 . . . 4 𝐸:ω–1-1→ω
5 f1f 6572 . . . 4 (𝐸:ω–1-1→ω → 𝐸:ω⟶ω)
6 frn 6517 . . . . 5 (𝐸:ω⟶ω → ran 𝐸 ⊆ ω)
7 omsson 7572 . . . . 5 ω ⊆ On
86, 7syl6ss 3983 . . . 4 (𝐸:ω⟶ω → ran 𝐸 ⊆ On)
94, 5, 8mp2b 10 . . 3 ran 𝐸 ⊆ On
10 f1ores 6626 . . 3 ((𝑆:On–1-1→On ∧ ran 𝐸 ⊆ On) → (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸))
112, 9, 10mp2an 688 . 2 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸)
129sseli 3967 . . . . . . . . 9 (𝑏 ∈ ran 𝐸𝑏 ∈ On)
131fin1a2lem1 9811 . . . . . . . . 9 (𝑏 ∈ On → (𝑆𝑏) = suc 𝑏)
1412, 13syl 17 . . . . . . . 8 (𝑏 ∈ ran 𝐸 → (𝑆𝑏) = suc 𝑏)
1514eqeq1d 2828 . . . . . . 7 (𝑏 ∈ ran 𝐸 → ((𝑆𝑏) = 𝑎 ↔ suc 𝑏 = 𝑎))
1615rexbiia 3251 . . . . . 6 (∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎 ↔ ∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎)
174, 5, 6mp2b 10 . . . . . . . . . . . 12 ran 𝐸 ⊆ ω
1817sseli 3967 . . . . . . . . . . 11 (𝑏 ∈ ran 𝐸𝑏 ∈ ω)
19 peano2 7590 . . . . . . . . . . 11 (𝑏 ∈ ω → suc 𝑏 ∈ ω)
2018, 19syl 17 . . . . . . . . . 10 (𝑏 ∈ ran 𝐸 → suc 𝑏 ∈ ω)
213fin1a2lem5 9815 . . . . . . . . . . . 12 (𝑏 ∈ ω → (𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
2221biimpd 230 . . . . . . . . . . 11 (𝑏 ∈ ω → (𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸))
2318, 22mpcom 38 . . . . . . . . . 10 (𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸)
2420, 23jca 512 . . . . . . . . 9 (𝑏 ∈ ran 𝐸 → (suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸))
25 eleq1 2905 . . . . . . . . . 10 (suc 𝑏 = 𝑎 → (suc 𝑏 ∈ ω ↔ 𝑎 ∈ ω))
26 eleq1 2905 . . . . . . . . . . 11 (suc 𝑏 = 𝑎 → (suc 𝑏 ∈ ran 𝐸𝑎 ∈ ran 𝐸))
2726notbid 319 . . . . . . . . . 10 (suc 𝑏 = 𝑎 → (¬ suc 𝑏 ∈ ran 𝐸 ↔ ¬ 𝑎 ∈ ran 𝐸))
2825, 27anbi12d 630 . . . . . . . . 9 (suc 𝑏 = 𝑎 → ((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸)))
2924, 28syl5ibcom 246 . . . . . . . 8 (𝑏 ∈ ran 𝐸 → (suc 𝑏 = 𝑎 → (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸)))
3029rexlimiv 3285 . . . . . . 7 (∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 → (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
31 peano1 7589 . . . . . . . . . . . . . 14 ∅ ∈ ω
323fin1a2lem3 9813 . . . . . . . . . . . . . 14 (∅ ∈ ω → (𝐸‘∅) = (2o ·o ∅))
3331, 32ax-mp 5 . . . . . . . . . . . . 13 (𝐸‘∅) = (2o ·o ∅)
34 2on 8102 . . . . . . . . . . . . . 14 2o ∈ On
35 om0 8133 . . . . . . . . . . . . . 14 (2o ∈ On → (2o ·o ∅) = ∅)
3634, 35ax-mp 5 . . . . . . . . . . . . 13 (2o ·o ∅) = ∅
3733, 36eqtri 2849 . . . . . . . . . . . 12 (𝐸‘∅) = ∅
38 f1fun 6574 . . . . . . . . . . . . . 14 (𝐸:ω–1-1→ω → Fun 𝐸)
394, 38ax-mp 5 . . . . . . . . . . . . 13 Fun 𝐸
40 f1dm 6576 . . . . . . . . . . . . . . 15 (𝐸:ω–1-1→ω → dom 𝐸 = ω)
414, 40ax-mp 5 . . . . . . . . . . . . . 14 dom 𝐸 = ω
4231, 41eleqtrri 2917 . . . . . . . . . . . . 13 ∅ ∈ dom 𝐸
43 fvelrn 6840 . . . . . . . . . . . . 13 ((Fun 𝐸 ∧ ∅ ∈ dom 𝐸) → (𝐸‘∅) ∈ ran 𝐸)
4439, 42, 43mp2an 688 . . . . . . . . . . . 12 (𝐸‘∅) ∈ ran 𝐸
4537, 44eqeltrri 2915 . . . . . . . . . . 11 ∅ ∈ ran 𝐸
46 eleq1 2905 . . . . . . . . . . 11 (𝑎 = ∅ → (𝑎 ∈ ran 𝐸 ↔ ∅ ∈ ran 𝐸))
4745, 46mpbiri 259 . . . . . . . . . 10 (𝑎 = ∅ → 𝑎 ∈ ran 𝐸)
4847necon3bi 3047 . . . . . . . . 9 𝑎 ∈ ran 𝐸𝑎 ≠ ∅)
49 nnsuc 7585 . . . . . . . . 9 ((𝑎 ∈ ω ∧ 𝑎 ≠ ∅) → ∃𝑏 ∈ ω 𝑎 = suc 𝑏)
5048, 49sylan2 592 . . . . . . . 8 ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) → ∃𝑏 ∈ ω 𝑎 = suc 𝑏)
51 eleq1 2905 . . . . . . . . . . . . 13 (𝑎 = suc 𝑏 → (𝑎 ∈ ω ↔ suc 𝑏 ∈ ω))
52 eleq1 2905 . . . . . . . . . . . . . 14 (𝑎 = suc 𝑏 → (𝑎 ∈ ran 𝐸 ↔ suc 𝑏 ∈ ran 𝐸))
5352notbid 319 . . . . . . . . . . . . 13 (𝑎 = suc 𝑏 → (¬ 𝑎 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
5451, 53anbi12d 630 . . . . . . . . . . . 12 (𝑎 = suc 𝑏 → ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ↔ (suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸)))
5554anbi1d 629 . . . . . . . . . . 11 (𝑎 = suc 𝑏 → (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) ↔ ((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω)))
56 simplr 765 . . . . . . . . . . . 12 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → ¬ suc 𝑏 ∈ ran 𝐸)
5721adantl 482 . . . . . . . . . . . 12 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → (𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
5856, 57mpbird 258 . . . . . . . . . . 11 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → 𝑏 ∈ ran 𝐸)
5955, 58syl6bi 254 . . . . . . . . . 10 (𝑎 = suc 𝑏 → (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → 𝑏 ∈ ran 𝐸))
6059com12 32 . . . . . . . . 9 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → (𝑎 = suc 𝑏𝑏 ∈ ran 𝐸))
6160impr 455 . . . . . . . 8 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → 𝑏 ∈ ran 𝐸)
62 simprr 769 . . . . . . . . 9 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → 𝑎 = suc 𝑏)
6362eqcomd 2832 . . . . . . . 8 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → suc 𝑏 = 𝑎)
6450, 61, 63reximssdv 3281 . . . . . . 7 ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) → ∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎)
6530, 64impbii 210 . . . . . 6 (∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
6616, 65bitri 276 . . . . 5 (∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎 ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
67 f1fn 6573 . . . . . . 7 (𝑆:On–1-1→On → 𝑆 Fn On)
682, 67ax-mp 5 . . . . . 6 𝑆 Fn On
69 fvelimab 6734 . . . . . 6 ((𝑆 Fn On ∧ ran 𝐸 ⊆ On) → (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ ∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎))
7068, 9, 69mp2an 688 . . . . 5 (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ ∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎)
71 eldif 3950 . . . . 5 (𝑎 ∈ (ω ∖ ran 𝐸) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
7266, 70, 713bitr4i 304 . . . 4 (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ 𝑎 ∈ (ω ∖ ran 𝐸))
7372eqriv 2823 . . 3 (𝑆 “ ran 𝐸) = (ω ∖ ran 𝐸)
74 f1oeq3 6603 . . 3 ((𝑆 “ ran 𝐸) = (ω ∖ ran 𝐸) → ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸) ↔ (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)))
7573, 74ax-mp 5 . 2 ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸) ↔ (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸))
7611, 75mpbi 231 1 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3021  wrex 3144  cdif 3937  wss 3940  c0 4295  cmpt 5143  dom cdm 5554  ran crn 5555  cres 5556  cima 5557  Oncon0 6189  suc csuc 6191  Fun wfun 6346   Fn wfn 6347  wf 6348  1-1wf1 6349  1-1-ontowf1o 6351  cfv 6352  (class class class)co 7148  ωcom 7568  2oc2o 8087   ·o comu 8091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-omul 8098
This theorem is referenced by:  fin1a2lem7  9817
  Copyright terms: Public domain W3C validator