MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem6 Structured version   Visualization version   GIF version

Theorem fin1a2lem6 10341
Description: Lemma for fin1a2 10351. Establish that ω can be broken into two equipollent pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypotheses
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
fin1a2lem.aa 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem6 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)

Proof of Theorem fin1a2lem6
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.aa . . . 4 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
21fin1a2lem2 10337 . . 3 𝑆:On–1-1→On
3 fin1a2lem.b . . . . 5 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
43fin1a2lem4 10339 . . . 4 𝐸:ω–1-1→ω
5 f1f 6738 . . . 4 (𝐸:ω–1-1→ω → 𝐸:ω⟶ω)
6 frn 6675 . . . . 5 (𝐸:ω⟶ω → ran 𝐸 ⊆ ω)
7 omsson 7806 . . . . 5 ω ⊆ On
86, 7sstrdi 3956 . . . 4 (𝐸:ω⟶ω → ran 𝐸 ⊆ On)
94, 5, 8mp2b 10 . . 3 ran 𝐸 ⊆ On
10 f1ores 6798 . . 3 ((𝑆:On–1-1→On ∧ ran 𝐸 ⊆ On) → (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸))
112, 9, 10mp2an 690 . 2 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸)
129sseli 3940 . . . . . . . . 9 (𝑏 ∈ ran 𝐸𝑏 ∈ On)
131fin1a2lem1 10336 . . . . . . . . 9 (𝑏 ∈ On → (𝑆𝑏) = suc 𝑏)
1412, 13syl 17 . . . . . . . 8 (𝑏 ∈ ran 𝐸 → (𝑆𝑏) = suc 𝑏)
1514eqeq1d 2738 . . . . . . 7 (𝑏 ∈ ran 𝐸 → ((𝑆𝑏) = 𝑎 ↔ suc 𝑏 = 𝑎))
1615rexbiia 3095 . . . . . 6 (∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎 ↔ ∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎)
174, 5, 6mp2b 10 . . . . . . . . . . . 12 ran 𝐸 ⊆ ω
1817sseli 3940 . . . . . . . . . . 11 (𝑏 ∈ ran 𝐸𝑏 ∈ ω)
19 peano2 7827 . . . . . . . . . . 11 (𝑏 ∈ ω → suc 𝑏 ∈ ω)
2018, 19syl 17 . . . . . . . . . 10 (𝑏 ∈ ran 𝐸 → suc 𝑏 ∈ ω)
213fin1a2lem5 10340 . . . . . . . . . . . 12 (𝑏 ∈ ω → (𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
2221biimpd 228 . . . . . . . . . . 11 (𝑏 ∈ ω → (𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸))
2318, 22mpcom 38 . . . . . . . . . 10 (𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸)
2420, 23jca 512 . . . . . . . . 9 (𝑏 ∈ ran 𝐸 → (suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸))
25 eleq1 2825 . . . . . . . . . 10 (suc 𝑏 = 𝑎 → (suc 𝑏 ∈ ω ↔ 𝑎 ∈ ω))
26 eleq1 2825 . . . . . . . . . . 11 (suc 𝑏 = 𝑎 → (suc 𝑏 ∈ ran 𝐸𝑎 ∈ ran 𝐸))
2726notbid 317 . . . . . . . . . 10 (suc 𝑏 = 𝑎 → (¬ suc 𝑏 ∈ ran 𝐸 ↔ ¬ 𝑎 ∈ ran 𝐸))
2825, 27anbi12d 631 . . . . . . . . 9 (suc 𝑏 = 𝑎 → ((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸)))
2924, 28syl5ibcom 244 . . . . . . . 8 (𝑏 ∈ ran 𝐸 → (suc 𝑏 = 𝑎 → (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸)))
3029rexlimiv 3145 . . . . . . 7 (∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 → (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
31 peano1 7825 . . . . . . . . . . . . . 14 ∅ ∈ ω
323fin1a2lem3 10338 . . . . . . . . . . . . . 14 (∅ ∈ ω → (𝐸‘∅) = (2o ·o ∅))
3331, 32ax-mp 5 . . . . . . . . . . . . 13 (𝐸‘∅) = (2o ·o ∅)
34 2on 8426 . . . . . . . . . . . . . 14 2o ∈ On
35 om0 8463 . . . . . . . . . . . . . 14 (2o ∈ On → (2o ·o ∅) = ∅)
3634, 35ax-mp 5 . . . . . . . . . . . . 13 (2o ·o ∅) = ∅
3733, 36eqtri 2764 . . . . . . . . . . . 12 (𝐸‘∅) = ∅
38 f1fun 6740 . . . . . . . . . . . . . 14 (𝐸:ω–1-1→ω → Fun 𝐸)
394, 38ax-mp 5 . . . . . . . . . . . . 13 Fun 𝐸
40 f1dm 6742 . . . . . . . . . . . . . . 15 (𝐸:ω–1-1→ω → dom 𝐸 = ω)
414, 40ax-mp 5 . . . . . . . . . . . . . 14 dom 𝐸 = ω
4231, 41eleqtrri 2837 . . . . . . . . . . . . 13 ∅ ∈ dom 𝐸
43 fvelrn 7027 . . . . . . . . . . . . 13 ((Fun 𝐸 ∧ ∅ ∈ dom 𝐸) → (𝐸‘∅) ∈ ran 𝐸)
4439, 42, 43mp2an 690 . . . . . . . . . . . 12 (𝐸‘∅) ∈ ran 𝐸
4537, 44eqeltrri 2835 . . . . . . . . . . 11 ∅ ∈ ran 𝐸
46 eleq1 2825 . . . . . . . . . . 11 (𝑎 = ∅ → (𝑎 ∈ ran 𝐸 ↔ ∅ ∈ ran 𝐸))
4745, 46mpbiri 257 . . . . . . . . . 10 (𝑎 = ∅ → 𝑎 ∈ ran 𝐸)
4847necon3bi 2970 . . . . . . . . 9 𝑎 ∈ ran 𝐸𝑎 ≠ ∅)
49 nnsuc 7820 . . . . . . . . 9 ((𝑎 ∈ ω ∧ 𝑎 ≠ ∅) → ∃𝑏 ∈ ω 𝑎 = suc 𝑏)
5048, 49sylan2 593 . . . . . . . 8 ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) → ∃𝑏 ∈ ω 𝑎 = suc 𝑏)
51 eleq1 2825 . . . . . . . . . . . . 13 (𝑎 = suc 𝑏 → (𝑎 ∈ ω ↔ suc 𝑏 ∈ ω))
52 eleq1 2825 . . . . . . . . . . . . . 14 (𝑎 = suc 𝑏 → (𝑎 ∈ ran 𝐸 ↔ suc 𝑏 ∈ ran 𝐸))
5352notbid 317 . . . . . . . . . . . . 13 (𝑎 = suc 𝑏 → (¬ 𝑎 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
5451, 53anbi12d 631 . . . . . . . . . . . 12 (𝑎 = suc 𝑏 → ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ↔ (suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸)))
5554anbi1d 630 . . . . . . . . . . 11 (𝑎 = suc 𝑏 → (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) ↔ ((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω)))
56 simplr 767 . . . . . . . . . . . 12 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → ¬ suc 𝑏 ∈ ran 𝐸)
5721adantl 482 . . . . . . . . . . . 12 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → (𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
5856, 57mpbird 256 . . . . . . . . . . 11 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → 𝑏 ∈ ran 𝐸)
5955, 58syl6bi 252 . . . . . . . . . 10 (𝑎 = suc 𝑏 → (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → 𝑏 ∈ ran 𝐸))
6059com12 32 . . . . . . . . 9 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → (𝑎 = suc 𝑏𝑏 ∈ ran 𝐸))
6160impr 455 . . . . . . . 8 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → 𝑏 ∈ ran 𝐸)
62 simprr 771 . . . . . . . . 9 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → 𝑎 = suc 𝑏)
6362eqcomd 2742 . . . . . . . 8 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → suc 𝑏 = 𝑎)
6450, 61, 63reximssdv 3169 . . . . . . 7 ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) → ∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎)
6530, 64impbii 208 . . . . . 6 (∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
6616, 65bitri 274 . . . . 5 (∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎 ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
67 f1fn 6739 . . . . . . 7 (𝑆:On–1-1→On → 𝑆 Fn On)
682, 67ax-mp 5 . . . . . 6 𝑆 Fn On
69 fvelimab 6914 . . . . . 6 ((𝑆 Fn On ∧ ran 𝐸 ⊆ On) → (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ ∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎))
7068, 9, 69mp2an 690 . . . . 5 (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ ∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎)
71 eldif 3920 . . . . 5 (𝑎 ∈ (ω ∖ ran 𝐸) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
7266, 70, 713bitr4i 302 . . . 4 (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ 𝑎 ∈ (ω ∖ ran 𝐸))
7372eqriv 2733 . . 3 (𝑆 “ ran 𝐸) = (ω ∖ ran 𝐸)
74 f1oeq3 6774 . . 3 ((𝑆 “ ran 𝐸) = (ω ∖ ran 𝐸) → ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸) ↔ (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)))
7573, 74ax-mp 5 . 2 ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸) ↔ (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸))
7611, 75mpbi 229 1 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cdif 3907  wss 3910  c0 4282  cmpt 5188  dom cdm 5633  ran crn 5634  cres 5635  cima 5636  Oncon0 6317  suc csuc 6319  Fun wfun 6490   Fn wfn 6491  wf 6492  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  ωcom 7802  2oc2o 8406   ·o comu 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417
This theorem is referenced by:  fin1a2lem7  10342
  Copyright terms: Public domain W3C validator