MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem6 Structured version   Visualization version   GIF version

Theorem fin1a2lem6 10307
Description: Lemma for fin1a2 10317. Establish that ω can be broken into two equipollent pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypotheses
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
fin1a2lem.aa 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem6 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)

Proof of Theorem fin1a2lem6
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.aa . . . 4 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
21fin1a2lem2 10303 . . 3 𝑆:On–1-1→On
3 fin1a2lem.b . . . . 5 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
43fin1a2lem4 10305 . . . 4 𝐸:ω–1-1→ω
5 f1f 6727 . . . 4 (𝐸:ω–1-1→ω → 𝐸:ω⟶ω)
6 frn 6666 . . . . 5 (𝐸:ω⟶ω → ran 𝐸 ⊆ ω)
7 omsson 7809 . . . . 5 ω ⊆ On
86, 7sstrdi 3943 . . . 4 (𝐸:ω⟶ω → ran 𝐸 ⊆ On)
94, 5, 8mp2b 10 . . 3 ran 𝐸 ⊆ On
10 f1ores 6785 . . 3 ((𝑆:On–1-1→On ∧ ran 𝐸 ⊆ On) → (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸))
112, 9, 10mp2an 692 . 2 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸)
129sseli 3926 . . . . . . . . 9 (𝑏 ∈ ran 𝐸𝑏 ∈ On)
131fin1a2lem1 10302 . . . . . . . . 9 (𝑏 ∈ On → (𝑆𝑏) = suc 𝑏)
1412, 13syl 17 . . . . . . . 8 (𝑏 ∈ ran 𝐸 → (𝑆𝑏) = suc 𝑏)
1514eqeq1d 2735 . . . . . . 7 (𝑏 ∈ ran 𝐸 → ((𝑆𝑏) = 𝑎 ↔ suc 𝑏 = 𝑎))
1615rexbiia 3078 . . . . . 6 (∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎 ↔ ∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎)
174, 5, 6mp2b 10 . . . . . . . . . . . 12 ran 𝐸 ⊆ ω
1817sseli 3926 . . . . . . . . . . 11 (𝑏 ∈ ran 𝐸𝑏 ∈ ω)
19 peano2 7829 . . . . . . . . . . 11 (𝑏 ∈ ω → suc 𝑏 ∈ ω)
2018, 19syl 17 . . . . . . . . . 10 (𝑏 ∈ ran 𝐸 → suc 𝑏 ∈ ω)
213fin1a2lem5 10306 . . . . . . . . . . . 12 (𝑏 ∈ ω → (𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
2221biimpd 229 . . . . . . . . . . 11 (𝑏 ∈ ω → (𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸))
2318, 22mpcom 38 . . . . . . . . . 10 (𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸)
2420, 23jca 511 . . . . . . . . 9 (𝑏 ∈ ran 𝐸 → (suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸))
25 eleq1 2821 . . . . . . . . . 10 (suc 𝑏 = 𝑎 → (suc 𝑏 ∈ ω ↔ 𝑎 ∈ ω))
26 eleq1 2821 . . . . . . . . . . 11 (suc 𝑏 = 𝑎 → (suc 𝑏 ∈ ran 𝐸𝑎 ∈ ran 𝐸))
2726notbid 318 . . . . . . . . . 10 (suc 𝑏 = 𝑎 → (¬ suc 𝑏 ∈ ran 𝐸 ↔ ¬ 𝑎 ∈ ran 𝐸))
2825, 27anbi12d 632 . . . . . . . . 9 (suc 𝑏 = 𝑎 → ((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸)))
2924, 28syl5ibcom 245 . . . . . . . 8 (𝑏 ∈ ran 𝐸 → (suc 𝑏 = 𝑎 → (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸)))
3029rexlimiv 3127 . . . . . . 7 (∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 → (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
31 peano1 7828 . . . . . . . . . . . . . 14 ∅ ∈ ω
323fin1a2lem3 10304 . . . . . . . . . . . . . 14 (∅ ∈ ω → (𝐸‘∅) = (2o ·o ∅))
3331, 32ax-mp 5 . . . . . . . . . . . . 13 (𝐸‘∅) = (2o ·o ∅)
34 2on 8407 . . . . . . . . . . . . . 14 2o ∈ On
35 om0 8441 . . . . . . . . . . . . . 14 (2o ∈ On → (2o ·o ∅) = ∅)
3634, 35ax-mp 5 . . . . . . . . . . . . 13 (2o ·o ∅) = ∅
3733, 36eqtri 2756 . . . . . . . . . . . 12 (𝐸‘∅) = ∅
38 f1fun 6729 . . . . . . . . . . . . . 14 (𝐸:ω–1-1→ω → Fun 𝐸)
394, 38ax-mp 5 . . . . . . . . . . . . 13 Fun 𝐸
40 f1dm 6731 . . . . . . . . . . . . . . 15 (𝐸:ω–1-1→ω → dom 𝐸 = ω)
414, 40ax-mp 5 . . . . . . . . . . . . . 14 dom 𝐸 = ω
4231, 41eleqtrri 2832 . . . . . . . . . . . . 13 ∅ ∈ dom 𝐸
43 fvelrn 7018 . . . . . . . . . . . . 13 ((Fun 𝐸 ∧ ∅ ∈ dom 𝐸) → (𝐸‘∅) ∈ ran 𝐸)
4439, 42, 43mp2an 692 . . . . . . . . . . . 12 (𝐸‘∅) ∈ ran 𝐸
4537, 44eqeltrri 2830 . . . . . . . . . . 11 ∅ ∈ ran 𝐸
46 eleq1 2821 . . . . . . . . . . 11 (𝑎 = ∅ → (𝑎 ∈ ran 𝐸 ↔ ∅ ∈ ran 𝐸))
4745, 46mpbiri 258 . . . . . . . . . 10 (𝑎 = ∅ → 𝑎 ∈ ran 𝐸)
4847necon3bi 2955 . . . . . . . . 9 𝑎 ∈ ran 𝐸𝑎 ≠ ∅)
49 nnsuc 7823 . . . . . . . . 9 ((𝑎 ∈ ω ∧ 𝑎 ≠ ∅) → ∃𝑏 ∈ ω 𝑎 = suc 𝑏)
5048, 49sylan2 593 . . . . . . . 8 ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) → ∃𝑏 ∈ ω 𝑎 = suc 𝑏)
51 eleq1 2821 . . . . . . . . . . . . 13 (𝑎 = suc 𝑏 → (𝑎 ∈ ω ↔ suc 𝑏 ∈ ω))
52 eleq1 2821 . . . . . . . . . . . . . 14 (𝑎 = suc 𝑏 → (𝑎 ∈ ran 𝐸 ↔ suc 𝑏 ∈ ran 𝐸))
5352notbid 318 . . . . . . . . . . . . 13 (𝑎 = suc 𝑏 → (¬ 𝑎 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
5451, 53anbi12d 632 . . . . . . . . . . . 12 (𝑎 = suc 𝑏 → ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ↔ (suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸)))
5554anbi1d 631 . . . . . . . . . . 11 (𝑎 = suc 𝑏 → (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) ↔ ((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω)))
56 simplr 768 . . . . . . . . . . . 12 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → ¬ suc 𝑏 ∈ ran 𝐸)
5721adantl 481 . . . . . . . . . . . 12 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → (𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
5856, 57mpbird 257 . . . . . . . . . . 11 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → 𝑏 ∈ ran 𝐸)
5955, 58biimtrdi 253 . . . . . . . . . 10 (𝑎 = suc 𝑏 → (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → 𝑏 ∈ ran 𝐸))
6059com12 32 . . . . . . . . 9 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → (𝑎 = suc 𝑏𝑏 ∈ ran 𝐸))
6160impr 454 . . . . . . . 8 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → 𝑏 ∈ ran 𝐸)
62 simprr 772 . . . . . . . . 9 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → 𝑎 = suc 𝑏)
6362eqcomd 2739 . . . . . . . 8 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → suc 𝑏 = 𝑎)
6450, 61, 63reximssdv 3151 . . . . . . 7 ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) → ∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎)
6530, 64impbii 209 . . . . . 6 (∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
6616, 65bitri 275 . . . . 5 (∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎 ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
67 f1fn 6728 . . . . . . 7 (𝑆:On–1-1→On → 𝑆 Fn On)
682, 67ax-mp 5 . . . . . 6 𝑆 Fn On
69 fvelimab 6903 . . . . . 6 ((𝑆 Fn On ∧ ran 𝐸 ⊆ On) → (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ ∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎))
7068, 9, 69mp2an 692 . . . . 5 (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ ∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎)
71 eldif 3908 . . . . 5 (𝑎 ∈ (ω ∖ ran 𝐸) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
7266, 70, 713bitr4i 303 . . . 4 (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ 𝑎 ∈ (ω ∖ ran 𝐸))
7372eqriv 2730 . . 3 (𝑆 “ ran 𝐸) = (ω ∖ ran 𝐸)
74 f1oeq3 6761 . . 3 ((𝑆 “ ran 𝐸) = (ω ∖ ran 𝐸) → ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸) ↔ (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)))
7573, 74ax-mp 5 . 2 ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸) ↔ (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸))
7611, 75mpbi 230 1 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  cdif 3895  wss 3898  c0 4282  cmpt 5176  dom cdm 5621  ran crn 5622  cres 5623  cima 5624  Oncon0 6314  suc csuc 6316  Fun wfun 6483   Fn wfn 6484  wf 6485  1-1wf1 6486  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  ωcom 7805  2oc2o 8388   ·o comu 8392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399
This theorem is referenced by:  fin1a2lem7  10308
  Copyright terms: Public domain W3C validator