MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem6 Structured version   Visualization version   GIF version

Theorem fin1a2lem6 10358
Description: Lemma for fin1a2 10368. Establish that ω can be broken into two equipollent pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypotheses
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
fin1a2lem.aa 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem6 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)

Proof of Theorem fin1a2lem6
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.aa . . . 4 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
21fin1a2lem2 10354 . . 3 𝑆:On–1-1→On
3 fin1a2lem.b . . . . 5 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
43fin1a2lem4 10356 . . . 4 𝐸:ω–1-1→ω
5 f1f 6756 . . . 4 (𝐸:ω–1-1→ω → 𝐸:ω⟶ω)
6 frn 6695 . . . . 5 (𝐸:ω⟶ω → ran 𝐸 ⊆ ω)
7 omsson 7846 . . . . 5 ω ⊆ On
86, 7sstrdi 3959 . . . 4 (𝐸:ω⟶ω → ran 𝐸 ⊆ On)
94, 5, 8mp2b 10 . . 3 ran 𝐸 ⊆ On
10 f1ores 6814 . . 3 ((𝑆:On–1-1→On ∧ ran 𝐸 ⊆ On) → (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸))
112, 9, 10mp2an 692 . 2 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸)
129sseli 3942 . . . . . . . . 9 (𝑏 ∈ ran 𝐸𝑏 ∈ On)
131fin1a2lem1 10353 . . . . . . . . 9 (𝑏 ∈ On → (𝑆𝑏) = suc 𝑏)
1412, 13syl 17 . . . . . . . 8 (𝑏 ∈ ran 𝐸 → (𝑆𝑏) = suc 𝑏)
1514eqeq1d 2731 . . . . . . 7 (𝑏 ∈ ran 𝐸 → ((𝑆𝑏) = 𝑎 ↔ suc 𝑏 = 𝑎))
1615rexbiia 3074 . . . . . 6 (∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎 ↔ ∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎)
174, 5, 6mp2b 10 . . . . . . . . . . . 12 ran 𝐸 ⊆ ω
1817sseli 3942 . . . . . . . . . . 11 (𝑏 ∈ ran 𝐸𝑏 ∈ ω)
19 peano2 7866 . . . . . . . . . . 11 (𝑏 ∈ ω → suc 𝑏 ∈ ω)
2018, 19syl 17 . . . . . . . . . 10 (𝑏 ∈ ran 𝐸 → suc 𝑏 ∈ ω)
213fin1a2lem5 10357 . . . . . . . . . . . 12 (𝑏 ∈ ω → (𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
2221biimpd 229 . . . . . . . . . . 11 (𝑏 ∈ ω → (𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸))
2318, 22mpcom 38 . . . . . . . . . 10 (𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸)
2420, 23jca 511 . . . . . . . . 9 (𝑏 ∈ ran 𝐸 → (suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸))
25 eleq1 2816 . . . . . . . . . 10 (suc 𝑏 = 𝑎 → (suc 𝑏 ∈ ω ↔ 𝑎 ∈ ω))
26 eleq1 2816 . . . . . . . . . . 11 (suc 𝑏 = 𝑎 → (suc 𝑏 ∈ ran 𝐸𝑎 ∈ ran 𝐸))
2726notbid 318 . . . . . . . . . 10 (suc 𝑏 = 𝑎 → (¬ suc 𝑏 ∈ ran 𝐸 ↔ ¬ 𝑎 ∈ ran 𝐸))
2825, 27anbi12d 632 . . . . . . . . 9 (suc 𝑏 = 𝑎 → ((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸)))
2924, 28syl5ibcom 245 . . . . . . . 8 (𝑏 ∈ ran 𝐸 → (suc 𝑏 = 𝑎 → (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸)))
3029rexlimiv 3127 . . . . . . 7 (∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 → (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
31 peano1 7865 . . . . . . . . . . . . . 14 ∅ ∈ ω
323fin1a2lem3 10355 . . . . . . . . . . . . . 14 (∅ ∈ ω → (𝐸‘∅) = (2o ·o ∅))
3331, 32ax-mp 5 . . . . . . . . . . . . 13 (𝐸‘∅) = (2o ·o ∅)
34 2on 8447 . . . . . . . . . . . . . 14 2o ∈ On
35 om0 8481 . . . . . . . . . . . . . 14 (2o ∈ On → (2o ·o ∅) = ∅)
3634, 35ax-mp 5 . . . . . . . . . . . . 13 (2o ·o ∅) = ∅
3733, 36eqtri 2752 . . . . . . . . . . . 12 (𝐸‘∅) = ∅
38 f1fun 6758 . . . . . . . . . . . . . 14 (𝐸:ω–1-1→ω → Fun 𝐸)
394, 38ax-mp 5 . . . . . . . . . . . . 13 Fun 𝐸
40 f1dm 6760 . . . . . . . . . . . . . . 15 (𝐸:ω–1-1→ω → dom 𝐸 = ω)
414, 40ax-mp 5 . . . . . . . . . . . . . 14 dom 𝐸 = ω
4231, 41eleqtrri 2827 . . . . . . . . . . . . 13 ∅ ∈ dom 𝐸
43 fvelrn 7048 . . . . . . . . . . . . 13 ((Fun 𝐸 ∧ ∅ ∈ dom 𝐸) → (𝐸‘∅) ∈ ran 𝐸)
4439, 42, 43mp2an 692 . . . . . . . . . . . 12 (𝐸‘∅) ∈ ran 𝐸
4537, 44eqeltrri 2825 . . . . . . . . . . 11 ∅ ∈ ran 𝐸
46 eleq1 2816 . . . . . . . . . . 11 (𝑎 = ∅ → (𝑎 ∈ ran 𝐸 ↔ ∅ ∈ ran 𝐸))
4745, 46mpbiri 258 . . . . . . . . . 10 (𝑎 = ∅ → 𝑎 ∈ ran 𝐸)
4847necon3bi 2951 . . . . . . . . 9 𝑎 ∈ ran 𝐸𝑎 ≠ ∅)
49 nnsuc 7860 . . . . . . . . 9 ((𝑎 ∈ ω ∧ 𝑎 ≠ ∅) → ∃𝑏 ∈ ω 𝑎 = suc 𝑏)
5048, 49sylan2 593 . . . . . . . 8 ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) → ∃𝑏 ∈ ω 𝑎 = suc 𝑏)
51 eleq1 2816 . . . . . . . . . . . . 13 (𝑎 = suc 𝑏 → (𝑎 ∈ ω ↔ suc 𝑏 ∈ ω))
52 eleq1 2816 . . . . . . . . . . . . . 14 (𝑎 = suc 𝑏 → (𝑎 ∈ ran 𝐸 ↔ suc 𝑏 ∈ ran 𝐸))
5352notbid 318 . . . . . . . . . . . . 13 (𝑎 = suc 𝑏 → (¬ 𝑎 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
5451, 53anbi12d 632 . . . . . . . . . . . 12 (𝑎 = suc 𝑏 → ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ↔ (suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸)))
5554anbi1d 631 . . . . . . . . . . 11 (𝑎 = suc 𝑏 → (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) ↔ ((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω)))
56 simplr 768 . . . . . . . . . . . 12 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → ¬ suc 𝑏 ∈ ran 𝐸)
5721adantl 481 . . . . . . . . . . . 12 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → (𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
5856, 57mpbird 257 . . . . . . . . . . 11 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → 𝑏 ∈ ran 𝐸)
5955, 58biimtrdi 253 . . . . . . . . . 10 (𝑎 = suc 𝑏 → (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → 𝑏 ∈ ran 𝐸))
6059com12 32 . . . . . . . . 9 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → (𝑎 = suc 𝑏𝑏 ∈ ran 𝐸))
6160impr 454 . . . . . . . 8 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → 𝑏 ∈ ran 𝐸)
62 simprr 772 . . . . . . . . 9 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → 𝑎 = suc 𝑏)
6362eqcomd 2735 . . . . . . . 8 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → suc 𝑏 = 𝑎)
6450, 61, 63reximssdv 3151 . . . . . . 7 ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) → ∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎)
6530, 64impbii 209 . . . . . 6 (∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
6616, 65bitri 275 . . . . 5 (∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎 ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
67 f1fn 6757 . . . . . . 7 (𝑆:On–1-1→On → 𝑆 Fn On)
682, 67ax-mp 5 . . . . . 6 𝑆 Fn On
69 fvelimab 6933 . . . . . 6 ((𝑆 Fn On ∧ ran 𝐸 ⊆ On) → (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ ∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎))
7068, 9, 69mp2an 692 . . . . 5 (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ ∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎)
71 eldif 3924 . . . . 5 (𝑎 ∈ (ω ∖ ran 𝐸) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
7266, 70, 713bitr4i 303 . . . 4 (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ 𝑎 ∈ (ω ∖ ran 𝐸))
7372eqriv 2726 . . 3 (𝑆 “ ran 𝐸) = (ω ∖ ran 𝐸)
74 f1oeq3 6790 . . 3 ((𝑆 “ ran 𝐸) = (ω ∖ ran 𝐸) → ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸) ↔ (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)))
7573, 74ax-mp 5 . 2 ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸) ↔ (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸))
7611, 75mpbi 230 1 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3911  wss 3914  c0 4296  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Oncon0 6332  suc csuc 6334  Fun wfun 6505   Fn wfn 6506  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  ωcom 7842  2oc2o 8428   ·o comu 8432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439
This theorem is referenced by:  fin1a2lem7  10359
  Copyright terms: Public domain W3C validator