MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem6 Structured version   Visualization version   GIF version

Theorem fin1a2lem6 10296
Description: Lemma for fin1a2 10306. Establish that ω can be broken into two equipollent pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypotheses
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
fin1a2lem.aa 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem6 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)

Proof of Theorem fin1a2lem6
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.aa . . . 4 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
21fin1a2lem2 10292 . . 3 𝑆:On–1-1→On
3 fin1a2lem.b . . . . 5 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
43fin1a2lem4 10294 . . . 4 𝐸:ω–1-1→ω
5 f1f 6719 . . . 4 (𝐸:ω–1-1→ω → 𝐸:ω⟶ω)
6 frn 6658 . . . . 5 (𝐸:ω⟶ω → ran 𝐸 ⊆ ω)
7 omsson 7800 . . . . 5 ω ⊆ On
86, 7sstrdi 3947 . . . 4 (𝐸:ω⟶ω → ran 𝐸 ⊆ On)
94, 5, 8mp2b 10 . . 3 ran 𝐸 ⊆ On
10 f1ores 6777 . . 3 ((𝑆:On–1-1→On ∧ ran 𝐸 ⊆ On) → (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸))
112, 9, 10mp2an 692 . 2 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸)
129sseli 3930 . . . . . . . . 9 (𝑏 ∈ ran 𝐸𝑏 ∈ On)
131fin1a2lem1 10291 . . . . . . . . 9 (𝑏 ∈ On → (𝑆𝑏) = suc 𝑏)
1412, 13syl 17 . . . . . . . 8 (𝑏 ∈ ran 𝐸 → (𝑆𝑏) = suc 𝑏)
1514eqeq1d 2733 . . . . . . 7 (𝑏 ∈ ran 𝐸 → ((𝑆𝑏) = 𝑎 ↔ suc 𝑏 = 𝑎))
1615rexbiia 3077 . . . . . 6 (∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎 ↔ ∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎)
174, 5, 6mp2b 10 . . . . . . . . . . . 12 ran 𝐸 ⊆ ω
1817sseli 3930 . . . . . . . . . . 11 (𝑏 ∈ ran 𝐸𝑏 ∈ ω)
19 peano2 7820 . . . . . . . . . . 11 (𝑏 ∈ ω → suc 𝑏 ∈ ω)
2018, 19syl 17 . . . . . . . . . 10 (𝑏 ∈ ran 𝐸 → suc 𝑏 ∈ ω)
213fin1a2lem5 10295 . . . . . . . . . . . 12 (𝑏 ∈ ω → (𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
2221biimpd 229 . . . . . . . . . . 11 (𝑏 ∈ ω → (𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸))
2318, 22mpcom 38 . . . . . . . . . 10 (𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸)
2420, 23jca 511 . . . . . . . . 9 (𝑏 ∈ ran 𝐸 → (suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸))
25 eleq1 2819 . . . . . . . . . 10 (suc 𝑏 = 𝑎 → (suc 𝑏 ∈ ω ↔ 𝑎 ∈ ω))
26 eleq1 2819 . . . . . . . . . . 11 (suc 𝑏 = 𝑎 → (suc 𝑏 ∈ ran 𝐸𝑎 ∈ ran 𝐸))
2726notbid 318 . . . . . . . . . 10 (suc 𝑏 = 𝑎 → (¬ suc 𝑏 ∈ ran 𝐸 ↔ ¬ 𝑎 ∈ ran 𝐸))
2825, 27anbi12d 632 . . . . . . . . 9 (suc 𝑏 = 𝑎 → ((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸)))
2924, 28syl5ibcom 245 . . . . . . . 8 (𝑏 ∈ ran 𝐸 → (suc 𝑏 = 𝑎 → (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸)))
3029rexlimiv 3126 . . . . . . 7 (∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 → (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
31 peano1 7819 . . . . . . . . . . . . . 14 ∅ ∈ ω
323fin1a2lem3 10293 . . . . . . . . . . . . . 14 (∅ ∈ ω → (𝐸‘∅) = (2o ·o ∅))
3331, 32ax-mp 5 . . . . . . . . . . . . 13 (𝐸‘∅) = (2o ·o ∅)
34 2on 8398 . . . . . . . . . . . . . 14 2o ∈ On
35 om0 8432 . . . . . . . . . . . . . 14 (2o ∈ On → (2o ·o ∅) = ∅)
3634, 35ax-mp 5 . . . . . . . . . . . . 13 (2o ·o ∅) = ∅
3733, 36eqtri 2754 . . . . . . . . . . . 12 (𝐸‘∅) = ∅
38 f1fun 6721 . . . . . . . . . . . . . 14 (𝐸:ω–1-1→ω → Fun 𝐸)
394, 38ax-mp 5 . . . . . . . . . . . . 13 Fun 𝐸
40 f1dm 6723 . . . . . . . . . . . . . . 15 (𝐸:ω–1-1→ω → dom 𝐸 = ω)
414, 40ax-mp 5 . . . . . . . . . . . . . 14 dom 𝐸 = ω
4231, 41eleqtrri 2830 . . . . . . . . . . . . 13 ∅ ∈ dom 𝐸
43 fvelrn 7009 . . . . . . . . . . . . 13 ((Fun 𝐸 ∧ ∅ ∈ dom 𝐸) → (𝐸‘∅) ∈ ran 𝐸)
4439, 42, 43mp2an 692 . . . . . . . . . . . 12 (𝐸‘∅) ∈ ran 𝐸
4537, 44eqeltrri 2828 . . . . . . . . . . 11 ∅ ∈ ran 𝐸
46 eleq1 2819 . . . . . . . . . . 11 (𝑎 = ∅ → (𝑎 ∈ ran 𝐸 ↔ ∅ ∈ ran 𝐸))
4745, 46mpbiri 258 . . . . . . . . . 10 (𝑎 = ∅ → 𝑎 ∈ ran 𝐸)
4847necon3bi 2954 . . . . . . . . 9 𝑎 ∈ ran 𝐸𝑎 ≠ ∅)
49 nnsuc 7814 . . . . . . . . 9 ((𝑎 ∈ ω ∧ 𝑎 ≠ ∅) → ∃𝑏 ∈ ω 𝑎 = suc 𝑏)
5048, 49sylan2 593 . . . . . . . 8 ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) → ∃𝑏 ∈ ω 𝑎 = suc 𝑏)
51 eleq1 2819 . . . . . . . . . . . . 13 (𝑎 = suc 𝑏 → (𝑎 ∈ ω ↔ suc 𝑏 ∈ ω))
52 eleq1 2819 . . . . . . . . . . . . . 14 (𝑎 = suc 𝑏 → (𝑎 ∈ ran 𝐸 ↔ suc 𝑏 ∈ ran 𝐸))
5352notbid 318 . . . . . . . . . . . . 13 (𝑎 = suc 𝑏 → (¬ 𝑎 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
5451, 53anbi12d 632 . . . . . . . . . . . 12 (𝑎 = suc 𝑏 → ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ↔ (suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸)))
5554anbi1d 631 . . . . . . . . . . 11 (𝑎 = suc 𝑏 → (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) ↔ ((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω)))
56 simplr 768 . . . . . . . . . . . 12 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → ¬ suc 𝑏 ∈ ran 𝐸)
5721adantl 481 . . . . . . . . . . . 12 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → (𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸))
5856, 57mpbird 257 . . . . . . . . . . 11 (((suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → 𝑏 ∈ ran 𝐸)
5955, 58biimtrdi 253 . . . . . . . . . 10 (𝑎 = suc 𝑏 → (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → 𝑏 ∈ ran 𝐸))
6059com12 32 . . . . . . . . 9 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ 𝑏 ∈ ω) → (𝑎 = suc 𝑏𝑏 ∈ ran 𝐸))
6160impr 454 . . . . . . . 8 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → 𝑏 ∈ ran 𝐸)
62 simprr 772 . . . . . . . . 9 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → 𝑎 = suc 𝑏)
6362eqcomd 2737 . . . . . . . 8 (((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) ∧ (𝑏 ∈ ω ∧ 𝑎 = suc 𝑏)) → suc 𝑏 = 𝑎)
6450, 61, 63reximssdv 3150 . . . . . . 7 ((𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸) → ∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎)
6530, 64impbii 209 . . . . . 6 (∃𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
6616, 65bitri 275 . . . . 5 (∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎 ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
67 f1fn 6720 . . . . . . 7 (𝑆:On–1-1→On → 𝑆 Fn On)
682, 67ax-mp 5 . . . . . 6 𝑆 Fn On
69 fvelimab 6894 . . . . . 6 ((𝑆 Fn On ∧ ran 𝐸 ⊆ On) → (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ ∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎))
7068, 9, 69mp2an 692 . . . . 5 (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ ∃𝑏 ∈ ran 𝐸(𝑆𝑏) = 𝑎)
71 eldif 3912 . . . . 5 (𝑎 ∈ (ω ∖ ran 𝐸) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸))
7266, 70, 713bitr4i 303 . . . 4 (𝑎 ∈ (𝑆 “ ran 𝐸) ↔ 𝑎 ∈ (ω ∖ ran 𝐸))
7372eqriv 2728 . . 3 (𝑆 “ ran 𝐸) = (ω ∖ ran 𝐸)
74 f1oeq3 6753 . . 3 ((𝑆 “ ran 𝐸) = (ω ∖ ran 𝐸) → ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸) ↔ (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)))
7573, 74ax-mp 5 . 2 ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(𝑆 “ ran 𝐸) ↔ (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸))
7611, 75mpbi 230 1 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cdif 3899  wss 3902  c0 4283  cmpt 5172  dom cdm 5616  ran crn 5617  cres 5618  cima 5619  Oncon0 6306  suc csuc 6308  Fun wfun 6475   Fn wfn 6476  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  ωcom 7796  2oc2o 8379   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390
This theorem is referenced by:  fin1a2lem7  10297
  Copyright terms: Public domain W3C validator