MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppco Structured version   Visualization version   GIF version

Theorem fsuppco 8576
Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.)
Hypotheses
Ref Expression
fsuppco.f (𝜑𝐹 finSupp 𝑍)
fsuppco.g (𝜑𝐺:𝑋1-1𝑌)
fsuppco.z (𝜑𝑍𝑊)
fsuppco.v (𝜑𝐹𝑉)
Assertion
Ref Expression
fsuppco (𝜑 → (𝐹𝐺) finSupp 𝑍)

Proof of Theorem fsuppco
StepHypRef Expression
1 fsuppco.v . . . . 5 (𝜑𝐹𝑉)
2 fsuppco.g . . . . . 6 (𝜑𝐺:𝑋1-1𝑌)
3 df-f1 6128 . . . . . . 7 (𝐺:𝑋1-1𝑌 ↔ (𝐺:𝑋𝑌 ∧ Fun 𝐺))
43simprbi 492 . . . . . 6 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
52, 4syl 17 . . . . 5 (𝜑 → Fun 𝐺)
6 cofunex2g 7393 . . . . 5 ((𝐹𝑉 ∧ Fun 𝐺) → (𝐹𝐺) ∈ V)
71, 5, 6syl2anc 581 . . . 4 (𝜑 → (𝐹𝐺) ∈ V)
8 fsuppco.z . . . 4 (𝜑𝑍𝑊)
9 suppimacnv 7570 . . . 4 (((𝐹𝐺) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
107, 8, 9syl2anc 581 . . 3 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
11 suppimacnv 7570 . . . . . 6 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
121, 8, 11syl2anc 581 . . . . 5 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
13 fsuppco.f . . . . . 6 (𝜑𝐹 finSupp 𝑍)
1413fsuppimpd 8551 . . . . 5 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
1512, 14eqeltrrd 2907 . . . 4 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
1615, 2fsuppcolem 8575 . . 3 (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
1710, 16eqeltrd 2906 . 2 (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)
18 fsuppimp 8550 . . . . . 6 (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))
1918simpld 490 . . . . 5 (𝐹 finSupp 𝑍 → Fun 𝐹)
2013, 19syl 17 . . . 4 (𝜑 → Fun 𝐹)
21 f1fun 6340 . . . . 5 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
222, 21syl 17 . . . 4 (𝜑 → Fun 𝐺)
23 funco 6163 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
2420, 22, 23syl2anc 581 . . 3 (𝜑 → Fun (𝐹𝐺))
25 funisfsupp 8549 . . 3 ((Fun (𝐹𝐺) ∧ (𝐹𝐺) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
2624, 7, 8, 25syl3anc 1496 . 2 (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
2717, 26mpbird 249 1 (𝜑 → (𝐹𝐺) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1658  wcel 2166  Vcvv 3414  cdif 3795  {csn 4397   class class class wbr 4873  ccnv 5341  cima 5345  ccom 5346  Fun wfun 6117  wf 6119  1-1wf1 6120  (class class class)co 6905   supp csupp 7559  Fincfn 8222   finSupp cfsupp 8544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-supp 7560  df-1o 7826  df-er 8009  df-en 8223  df-dom 8224  df-fin 8226  df-fsupp 8545
This theorem is referenced by:  mapfienlem1  8579  mapfienlem2  8580  coe1sfi  19943
  Copyright terms: Public domain W3C validator