MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppco Structured version   Visualization version   GIF version

Theorem fsuppco 9297
Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.)
Hypotheses
Ref Expression
fsuppco.f (𝜑𝐹 finSupp 𝑍)
fsuppco.g (𝜑𝐺:𝑋1-1𝑌)
fsuppco.z (𝜑𝑍𝑊)
fsuppco.v (𝜑𝐹𝑉)
Assertion
Ref Expression
fsuppco (𝜑 → (𝐹𝐺) finSupp 𝑍)

Proof of Theorem fsuppco
StepHypRef Expression
1 fsuppco.v . . . . 5 (𝜑𝐹𝑉)
2 fsuppco.g . . . . . 6 (𝜑𝐺:𝑋1-1𝑌)
3 df-f1 6494 . . . . . . 7 (𝐺:𝑋1-1𝑌 ↔ (𝐺:𝑋𝑌 ∧ Fun 𝐺))
43simprbi 496 . . . . . 6 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
52, 4syl 17 . . . . 5 (𝜑 → Fun 𝐺)
6 cofunex2g 7891 . . . . 5 ((𝐹𝑉 ∧ Fun 𝐺) → (𝐹𝐺) ∈ V)
71, 5, 6syl2anc 584 . . . 4 (𝜑 → (𝐹𝐺) ∈ V)
8 fsuppco.z . . . 4 (𝜑𝑍𝑊)
9 suppimacnv 8113 . . . 4 (((𝐹𝐺) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
107, 8, 9syl2anc 584 . . 3 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
11 suppimacnv 8113 . . . . . 6 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
121, 8, 11syl2anc 584 . . . . 5 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
13 fsuppco.f . . . . . 6 (𝜑𝐹 finSupp 𝑍)
1413fsuppimpd 9264 . . . . 5 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
1512, 14eqeltrrd 2834 . . . 4 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
1615, 2fsuppcolem 9296 . . 3 (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
1710, 16eqeltrd 2833 . 2 (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)
18 fsuppimp 9263 . . . . . 6 (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))
1918simpld 494 . . . . 5 (𝐹 finSupp 𝑍 → Fun 𝐹)
2013, 19syl 17 . . . 4 (𝜑 → Fun 𝐹)
21 f1fun 6729 . . . . 5 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
222, 21syl 17 . . . 4 (𝜑 → Fun 𝐺)
23 funco 6529 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
2420, 22, 23syl2anc 584 . . 3 (𝜑 → Fun (𝐹𝐺))
25 funisfsupp 9262 . . 3 ((Fun (𝐹𝐺) ∧ (𝐹𝐺) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
2624, 7, 8, 25syl3anc 1373 . 2 (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
2717, 26mpbird 257 1 (𝜑 → (𝐹𝐺) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  {csn 4577   class class class wbr 5095  ccnv 5620  cima 5624  ccom 5625  Fun wfun 6483  wf 6485  1-1wf1 6486  (class class class)co 7355   supp csupp 8099  Fincfn 8879   finSupp cfsupp 9256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-supp 8100  df-1o 8394  df-en 8880  df-dom 8881  df-fin 8883  df-fsupp 9257
This theorem is referenced by:  mapfienlem1  9300  mapfienlem2  9301  psdmplcl  22096  coe1sfi  22145  gsumpart  33074  gsumwrd2dccat  33088  mplvrpmlem  33636  mplvrpmfgalem  33637  mplvrpmga  33638  mplvrpmmhm  33639  mplvrpmrhm  33640  evlselv  42745
  Copyright terms: Public domain W3C validator