| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppco | Structured version Visualization version GIF version | ||
| Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fsuppco.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| fsuppco.g | ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) |
| fsuppco.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| fsuppco.v | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fsuppco | ⊢ (𝜑 → (𝐹 ∘ 𝐺) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppco.v | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | fsuppco.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) | |
| 3 | df-f1 6481 | . . . . . . 7 ⊢ (𝐺:𝑋–1-1→𝑌 ↔ (𝐺:𝑋⟶𝑌 ∧ Fun ◡𝐺)) | |
| 4 | 3 | simprbi 496 | . . . . . 6 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun ◡𝐺) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → Fun ◡𝐺) |
| 6 | cofunex2g 7877 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun ◡𝐺) → (𝐹 ∘ 𝐺) ∈ V) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ V) |
| 8 | fsuppco.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 9 | suppimacnv 8099 | . . . 4 ⊢ (((𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍}))) | |
| 10 | 7, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍}))) |
| 11 | suppimacnv 8099 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
| 12 | 1, 8, 11 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 13 | fsuppco.f | . . . . . 6 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 14 | 13 | fsuppimpd 9248 | . . . . 5 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 15 | 12, 14 | eqeltrrd 2832 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) |
| 16 | 15, 2 | fsuppcolem 9280 | . . 3 ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) |
| 17 | 10, 16 | eqeltrd 2831 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin) |
| 18 | fsuppimp 9247 | . . . . . 6 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
| 19 | 18 | simpld 494 | . . . . 5 ⊢ (𝐹 finSupp 𝑍 → Fun 𝐹) |
| 20 | 13, 19 | syl 17 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
| 21 | f1fun 6716 | . . . . 5 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun 𝐺) | |
| 22 | 2, 21 | syl 17 | . . . 4 ⊢ (𝜑 → Fun 𝐺) |
| 23 | funco 6516 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
| 24 | 20, 22, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → Fun (𝐹 ∘ 𝐺)) |
| 25 | funisfsupp 9246 | . . 3 ⊢ ((Fun (𝐹 ∘ 𝐺) ∧ (𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘ 𝐺) finSupp 𝑍 ↔ ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin)) | |
| 26 | 24, 7, 8, 25 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) finSupp 𝑍 ↔ ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin)) |
| 27 | 17, 26 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 {csn 4571 class class class wbr 5086 ◡ccnv 5610 “ cima 5614 ∘ ccom 5615 Fun wfun 6470 ⟶wf 6472 –1-1→wf1 6473 (class class class)co 7341 supp csupp 8085 Fincfn 8864 finSupp cfsupp 9240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-supp 8086 df-1o 8380 df-en 8865 df-dom 8866 df-fin 8868 df-fsupp 9241 |
| This theorem is referenced by: mapfienlem1 9284 mapfienlem2 9285 psdmplcl 22072 coe1sfi 22121 gsumpart 33029 gsumwrd2dccat 33039 mplvrpmlem 33565 mplvrpmfgalem 33566 mplvrpmga 33567 mplvrpmmhm 33568 mplvrpmrhm 33569 evlselv 42620 |
| Copyright terms: Public domain | W3C validator |