| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppco | Structured version Visualization version GIF version | ||
| Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fsuppco.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| fsuppco.g | ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) |
| fsuppco.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| fsuppco.v | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fsuppco | ⊢ (𝜑 → (𝐹 ∘ 𝐺) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppco.v | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | fsuppco.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) | |
| 3 | df-f1 6516 | . . . . . . 7 ⊢ (𝐺:𝑋–1-1→𝑌 ↔ (𝐺:𝑋⟶𝑌 ∧ Fun ◡𝐺)) | |
| 4 | 3 | simprbi 496 | . . . . . 6 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun ◡𝐺) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → Fun ◡𝐺) |
| 6 | cofunex2g 7928 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun ◡𝐺) → (𝐹 ∘ 𝐺) ∈ V) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ V) |
| 8 | fsuppco.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 9 | suppimacnv 8153 | . . . 4 ⊢ (((𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍}))) | |
| 10 | 7, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍}))) |
| 11 | suppimacnv 8153 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
| 12 | 1, 8, 11 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 13 | fsuppco.f | . . . . . 6 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 14 | 13 | fsuppimpd 9320 | . . . . 5 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 15 | 12, 14 | eqeltrrd 2829 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) |
| 16 | 15, 2 | fsuppcolem 9352 | . . 3 ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) |
| 17 | 10, 16 | eqeltrd 2828 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin) |
| 18 | fsuppimp 9319 | . . . . . 6 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
| 19 | 18 | simpld 494 | . . . . 5 ⊢ (𝐹 finSupp 𝑍 → Fun 𝐹) |
| 20 | 13, 19 | syl 17 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
| 21 | f1fun 6758 | . . . . 5 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun 𝐺) | |
| 22 | 2, 21 | syl 17 | . . . 4 ⊢ (𝜑 → Fun 𝐺) |
| 23 | funco 6556 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
| 24 | 20, 22, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → Fun (𝐹 ∘ 𝐺)) |
| 25 | funisfsupp 9318 | . . 3 ⊢ ((Fun (𝐹 ∘ 𝐺) ∧ (𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘ 𝐺) finSupp 𝑍 ↔ ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin)) | |
| 26 | 24, 7, 8, 25 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) finSupp 𝑍 ↔ ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin)) |
| 27 | 17, 26 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 {csn 4589 class class class wbr 5107 ◡ccnv 5637 “ cima 5641 ∘ ccom 5642 Fun wfun 6505 ⟶wf 6507 –1-1→wf1 6508 (class class class)co 7387 supp csupp 8139 Fincfn 8918 finSupp cfsupp 9312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-supp 8140 df-1o 8434 df-en 8919 df-dom 8920 df-fin 8922 df-fsupp 9313 |
| This theorem is referenced by: mapfienlem1 9356 mapfienlem2 9357 psdmplcl 22049 coe1sfi 22098 gsumpart 32997 gsumwrd2dccat 33007 evlselv 42575 |
| Copyright terms: Public domain | W3C validator |