| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppco | Structured version Visualization version GIF version | ||
| Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fsuppco.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| fsuppco.g | ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) |
| fsuppco.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| fsuppco.v | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fsuppco | ⊢ (𝜑 → (𝐹 ∘ 𝐺) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppco.v | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | fsuppco.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) | |
| 3 | df-f1 6541 | . . . . . . 7 ⊢ (𝐺:𝑋–1-1→𝑌 ↔ (𝐺:𝑋⟶𝑌 ∧ Fun ◡𝐺)) | |
| 4 | 3 | simprbi 496 | . . . . . 6 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun ◡𝐺) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → Fun ◡𝐺) |
| 6 | cofunex2g 7953 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun ◡𝐺) → (𝐹 ∘ 𝐺) ∈ V) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ V) |
| 8 | fsuppco.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 9 | suppimacnv 8178 | . . . 4 ⊢ (((𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍}))) | |
| 10 | 7, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍}))) |
| 11 | suppimacnv 8178 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
| 12 | 1, 8, 11 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 13 | fsuppco.f | . . . . . 6 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 14 | 13 | fsuppimpd 9386 | . . . . 5 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 15 | 12, 14 | eqeltrrd 2836 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) |
| 16 | 15, 2 | fsuppcolem 9418 | . . 3 ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) |
| 17 | 10, 16 | eqeltrd 2835 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin) |
| 18 | fsuppimp 9385 | . . . . . 6 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
| 19 | 18 | simpld 494 | . . . . 5 ⊢ (𝐹 finSupp 𝑍 → Fun 𝐹) |
| 20 | 13, 19 | syl 17 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
| 21 | f1fun 6781 | . . . . 5 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun 𝐺) | |
| 22 | 2, 21 | syl 17 | . . . 4 ⊢ (𝜑 → Fun 𝐺) |
| 23 | funco 6581 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
| 24 | 20, 22, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → Fun (𝐹 ∘ 𝐺)) |
| 25 | funisfsupp 9384 | . . 3 ⊢ ((Fun (𝐹 ∘ 𝐺) ∧ (𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘ 𝐺) finSupp 𝑍 ↔ ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin)) | |
| 26 | 24, 7, 8, 25 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) finSupp 𝑍 ↔ ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin)) |
| 27 | 17, 26 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 {csn 4606 class class class wbr 5124 ◡ccnv 5658 “ cima 5662 ∘ ccom 5663 Fun wfun 6530 ⟶wf 6532 –1-1→wf1 6533 (class class class)co 7410 supp csupp 8164 Fincfn 8964 finSupp cfsupp 9378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-supp 8165 df-1o 8485 df-en 8965 df-dom 8966 df-fin 8968 df-fsupp 9379 |
| This theorem is referenced by: mapfienlem1 9422 mapfienlem2 9423 psdmplcl 22105 coe1sfi 22154 gsumpart 33056 gsumwrd2dccat 33066 evlselv 42577 |
| Copyright terms: Public domain | W3C validator |