![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppco | Structured version Visualization version GIF version |
Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.) |
Ref | Expression |
---|---|
fsuppco.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
fsuppco.g | ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) |
fsuppco.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
fsuppco.v | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
Ref | Expression |
---|---|
fsuppco | ⊢ (𝜑 → (𝐹 ∘ 𝐺) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppco.v | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
2 | fsuppco.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) | |
3 | df-f1 6545 | . . . . . . 7 ⊢ (𝐺:𝑋–1-1→𝑌 ↔ (𝐺:𝑋⟶𝑌 ∧ Fun ◡𝐺)) | |
4 | 3 | simprbi 497 | . . . . . 6 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun ◡𝐺) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → Fun ◡𝐺) |
6 | cofunex2g 7932 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun ◡𝐺) → (𝐹 ∘ 𝐺) ∈ V) | |
7 | 1, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ V) |
8 | fsuppco.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
9 | suppimacnv 8155 | . . . 4 ⊢ (((𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍}))) | |
10 | 7, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍}))) |
11 | suppimacnv 8155 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
12 | 1, 8, 11 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
13 | fsuppco.f | . . . . . 6 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
14 | 13 | fsuppimpd 9365 | . . . . 5 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
15 | 12, 14 | eqeltrrd 2834 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) |
16 | 15, 2 | fsuppcolem 9392 | . . 3 ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) |
17 | 10, 16 | eqeltrd 2833 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin) |
18 | fsuppimp 9364 | . . . . . 6 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
19 | 18 | simpld 495 | . . . . 5 ⊢ (𝐹 finSupp 𝑍 → Fun 𝐹) |
20 | 13, 19 | syl 17 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
21 | f1fun 6786 | . . . . 5 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun 𝐺) | |
22 | 2, 21 | syl 17 | . . . 4 ⊢ (𝜑 → Fun 𝐺) |
23 | funco 6585 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
24 | 20, 22, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → Fun (𝐹 ∘ 𝐺)) |
25 | funisfsupp 9363 | . . 3 ⊢ ((Fun (𝐹 ∘ 𝐺) ∧ (𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘ 𝐺) finSupp 𝑍 ↔ ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin)) | |
26 | 24, 7, 8, 25 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) finSupp 𝑍 ↔ ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin)) |
27 | 17, 26 | mpbird 256 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3944 {csn 4627 class class class wbr 5147 ◡ccnv 5674 “ cima 5678 ∘ ccom 5679 Fun wfun 6534 ⟶wf 6536 –1-1→wf1 6537 (class class class)co 7405 supp csupp 8142 Fincfn 8935 finSupp cfsupp 9357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-supp 8143 df-1o 8462 df-en 8936 df-fin 8939 df-fsupp 9358 |
This theorem is referenced by: mapfienlem1 9396 mapfienlem2 9397 coe1sfi 21728 gsumpart 32194 evlselv 41156 |
Copyright terms: Public domain | W3C validator |