MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppco Structured version   Visualization version   GIF version

Theorem fsuppco 8849
Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.)
Hypotheses
Ref Expression
fsuppco.f (𝜑𝐹 finSupp 𝑍)
fsuppco.g (𝜑𝐺:𝑋1-1𝑌)
fsuppco.z (𝜑𝑍𝑊)
fsuppco.v (𝜑𝐹𝑉)
Assertion
Ref Expression
fsuppco (𝜑 → (𝐹𝐺) finSupp 𝑍)

Proof of Theorem fsuppco
StepHypRef Expression
1 fsuppco.v . . . . 5 (𝜑𝐹𝑉)
2 fsuppco.g . . . . . 6 (𝜑𝐺:𝑋1-1𝑌)
3 df-f1 6329 . . . . . . 7 (𝐺:𝑋1-1𝑌 ↔ (𝐺:𝑋𝑌 ∧ Fun 𝐺))
43simprbi 500 . . . . . 6 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
52, 4syl 17 . . . . 5 (𝜑 → Fun 𝐺)
6 cofunex2g 7633 . . . . 5 ((𝐹𝑉 ∧ Fun 𝐺) → (𝐹𝐺) ∈ V)
71, 5, 6syl2anc 587 . . . 4 (𝜑 → (𝐹𝐺) ∈ V)
8 fsuppco.z . . . 4 (𝜑𝑍𝑊)
9 suppimacnv 7824 . . . 4 (((𝐹𝐺) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
107, 8, 9syl2anc 587 . . 3 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
11 suppimacnv 7824 . . . . . 6 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
121, 8, 11syl2anc 587 . . . . 5 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
13 fsuppco.f . . . . . 6 (𝜑𝐹 finSupp 𝑍)
1413fsuppimpd 8824 . . . . 5 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
1512, 14eqeltrrd 2891 . . . 4 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
1615, 2fsuppcolem 8848 . . 3 (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
1710, 16eqeltrd 2890 . 2 (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)
18 fsuppimp 8823 . . . . . 6 (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))
1918simpld 498 . . . . 5 (𝐹 finSupp 𝑍 → Fun 𝐹)
2013, 19syl 17 . . . 4 (𝜑 → Fun 𝐹)
21 f1fun 6551 . . . . 5 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
222, 21syl 17 . . . 4 (𝜑 → Fun 𝐺)
23 funco 6364 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
2420, 22, 23syl2anc 587 . . 3 (𝜑 → Fun (𝐹𝐺))
25 funisfsupp 8822 . . 3 ((Fun (𝐹𝐺) ∧ (𝐹𝐺) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
2624, 7, 8, 25syl3anc 1368 . 2 (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
2717, 26mpbird 260 1 (𝜑 → (𝐹𝐺) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  {csn 4525   class class class wbr 5030  ccnv 5518  cima 5522  ccom 5523  Fun wfun 6318  wf 6320  1-1wf1 6321  (class class class)co 7135   supp csupp 7813  Fincfn 8492   finSupp cfsupp 8817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-supp 7814  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-fin 8496  df-fsupp 8818
This theorem is referenced by:  mapfienlem1  8852  mapfienlem2  8853  coe1sfi  20842  gsumpart  30740
  Copyright terms: Public domain W3C validator