Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhf Structured version   Visualization version   GIF version

Theorem elhf 34025
Description: Membership in the hereditarily finite sets. (Contributed by Scott Fenton, 9-Jul-2015.)
Assertion
Ref Expression
elhf (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elhf
StepHypRef Expression
1 df-hf 34024 . . 3 Hf = (𝑅1 “ ω)
21eleq2i 2843 . 2 (𝐴 ∈ Hf ↔ 𝐴 (𝑅1 “ ω))
3 r111 9237 . . 3 𝑅1:On–1-1→V
4 f1fun 6562 . . 3 (𝑅1:On–1-1→V → Fun 𝑅1)
5 eluniima 7001 . . 3 (Fun 𝑅1 → (𝐴 (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥)))
63, 4, 5mp2b 10 . 2 (𝐴 (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
72, 6bitri 278 1 (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wcel 2111  wrex 3071  Vcvv 3409   cuni 4798  cima 5527  Oncon0 6169  Fun wfun 6329  1-1wf1 6332  cfv 6335  ωcom 7579  𝑅1cr1 9224   Hf chf 34023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-r1 9226  df-hf 34024
This theorem is referenced by:  elhf2  34026  0hf  34028
  Copyright terms: Public domain W3C validator