Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elhf | Structured version Visualization version GIF version |
Description: Membership in the hereditarily finite sets. (Contributed by Scott Fenton, 9-Jul-2015.) |
Ref | Expression |
---|---|
elhf | ⊢ (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hf 34024 | . . 3 ⊢ Hf = ∪ (𝑅1 “ ω) | |
2 | 1 | eleq2i 2843 | . 2 ⊢ (𝐴 ∈ Hf ↔ 𝐴 ∈ ∪ (𝑅1 “ ω)) |
3 | r111 9237 | . . 3 ⊢ 𝑅1:On–1-1→V | |
4 | f1fun 6562 | . . 3 ⊢ (𝑅1:On–1-1→V → Fun 𝑅1) | |
5 | eluniima 7001 | . . 3 ⊢ (Fun 𝑅1 → (𝐴 ∈ ∪ (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1‘𝑥))) | |
6 | 3, 4, 5 | mp2b 10 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1‘𝑥)) |
7 | 2, 6 | bitri 278 | 1 ⊢ (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2111 ∃wrex 3071 Vcvv 3409 ∪ cuni 4798 “ cima 5527 Oncon0 6169 Fun wfun 6329 –1-1→wf1 6332 ‘cfv 6335 ωcom 7579 𝑅1cr1 9224 Hf chf 34023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-r1 9226 df-hf 34024 |
This theorem is referenced by: elhf2 34026 0hf 34028 |
Copyright terms: Public domain | W3C validator |