Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhf Structured version   Visualization version   GIF version

Theorem elhf 36138
Description: Membership in the hereditarily finite sets. (Contributed by Scott Fenton, 9-Jul-2015.)
Assertion
Ref Expression
elhf (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elhf
StepHypRef Expression
1 df-hf 36137 . . 3 Hf = (𝑅1 “ ω)
21eleq2i 2836 . 2 (𝐴 ∈ Hf ↔ 𝐴 (𝑅1 “ ω))
3 r111 9844 . . 3 𝑅1:On–1-1→V
4 f1fun 6819 . . 3 (𝑅1:On–1-1→V → Fun 𝑅1)
5 eluniima 7287 . . 3 (Fun 𝑅1 → (𝐴 (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥)))
63, 4, 5mp2b 10 . 2 (𝐴 (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
72, 6bitri 275 1 (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  wrex 3076  Vcvv 3488   cuni 4931  cima 5703  Oncon0 6395  Fun wfun 6567  1-1wf1 6570  cfv 6573  ωcom 7903  𝑅1cr1 9831   Hf chf 36136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-r1 9833  df-hf 36137
This theorem is referenced by:  elhf2  36139  0hf  36141
  Copyright terms: Public domain W3C validator