Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhf Structured version   Visualization version   GIF version

Theorem elhf 36218
Description: Membership in the hereditarily finite sets. (Contributed by Scott Fenton, 9-Jul-2015.)
Assertion
Ref Expression
elhf (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elhf
StepHypRef Expression
1 df-hf 36217 . . 3 Hf = (𝑅1 “ ω)
21eleq2i 2823 . 2 (𝐴 ∈ Hf ↔ 𝐴 (𝑅1 “ ω))
3 r111 9668 . . 3 𝑅1:On–1-1→V
4 f1fun 6721 . . 3 (𝑅1:On–1-1→V → Fun 𝑅1)
5 eluniima 7184 . . 3 (Fun 𝑅1 → (𝐴 (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥)))
63, 4, 5mp2b 10 . 2 (𝐴 (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
72, 6bitri 275 1 (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  wrex 3056  Vcvv 3436   cuni 4856  cima 5617  Oncon0 6306  Fun wfun 6475  1-1wf1 6478  cfv 6481  ωcom 7796  𝑅1cr1 9655   Hf chf 36216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-r1 9657  df-hf 36217
This theorem is referenced by:  elhf2  36219  0hf  36221
  Copyright terms: Public domain W3C validator