MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem1 Structured version   Visualization version   GIF version

Theorem gsumval3lem1 19886
Description: Lemma 1 for gsumval3 19888. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3.m (𝜑𝑀 ∈ ℕ)
gsumval3.h (𝜑𝐻:(1...𝑀)–1-1𝐴)
gsumval3.n (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
gsumval3.w 𝑊 = ((𝐹𝐻) supp 0 )
Assertion
Ref Expression
gsumval3lem1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
Distinct variable groups:   + ,𝑓   𝐴,𝑓   𝜑,𝑓   𝑓,𝐺   𝑓,𝑀   𝐵,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝑊
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑓)

Proof of Theorem gsumval3lem1
StepHypRef Expression
1 gsumval3.h . . . . . . 7 (𝜑𝐻:(1...𝑀)–1-1𝐴)
21ad2antrr 726 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐻:(1...𝑀)–1-1𝐴)
3 gsumval3.w . . . . . . . . 9 𝑊 = ((𝐹𝐻) supp 0 )
4 suppssdm 8176 . . . . . . . . 9 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
53, 4eqsstri 4005 . . . . . . . 8 𝑊 ⊆ dom (𝐹𝐻)
6 gsumval3.f . . . . . . . . 9 (𝜑𝐹:𝐴𝐵)
7 f1f 6774 . . . . . . . . . 10 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)⟶𝐴)
81, 7syl 17 . . . . . . . . 9 (𝜑𝐻:(1...𝑀)⟶𝐴)
9 fco 6730 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐻:(1...𝑀)⟶𝐴) → (𝐹𝐻):(1...𝑀)⟶𝐵)
106, 8, 9syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹𝐻):(1...𝑀)⟶𝐵)
115, 10fssdm 6725 . . . . . . 7 (𝜑𝑊 ⊆ (1...𝑀))
1211ad2antrr 726 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀))
13 f1ores 6832 . . . . . 6 ((𝐻:(1...𝑀)–1-1𝐴𝑊 ⊆ (1...𝑀)) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
142, 12, 13syl2anc 584 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
153imaeq2i 6045 . . . . . . 7 (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 ))
16 gsumval3.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
176, 16fexd 7219 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
18 ovex 7438 . . . . . . . . . . . 12 (1...𝑀) ∈ V
19 fex 7218 . . . . . . . . . . . 12 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V)
207, 18, 19sylancl 586 . . . . . . . . . . 11 (𝐻:(1...𝑀)–1-1𝐴𝐻 ∈ V)
211, 20syl 17 . . . . . . . . . 10 (𝜑𝐻 ∈ V)
22 f1fun 6776 . . . . . . . . . . . 12 (𝐻:(1...𝑀)–1-1𝐴 → Fun 𝐻)
231, 22syl 17 . . . . . . . . . . 11 (𝜑 → Fun 𝐻)
24 gsumval3.n . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
2523, 24jca 511 . . . . . . . . . 10 (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))
2617, 21, 25jca31 514 . . . . . . . . 9 (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
2726ad2antrr 726 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
28 imacosupp 8208 . . . . . . . . 9 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 )))
2928imp 406 . . . . . . . 8 (((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
3027, 29syl 17 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
3115, 30eqtrid 2782 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
3231f1oeq3d 6815 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
3314, 32mpbid 232 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
34 isof1o 7316 . . . . 5 (𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊) → 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
3534ad2antll 729 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
36 f1oco 6841 . . . 4 (((𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊) → ((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))
3733, 35, 36syl2anc 584 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))
38 f1of 6818 . . . . 5 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑓:(1...(♯‘𝑊))⟶𝑊)
39 frn 6713 . . . . 5 (𝑓:(1...(♯‘𝑊))⟶𝑊 → ran 𝑓𝑊)
4035, 38, 393syl 18 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ran 𝑓𝑊)
41 cores 6238 . . . 4 (ran 𝑓𝑊 → ((𝐻𝑊) ∘ 𝑓) = (𝐻𝑓))
42 f1oeq1 6806 . . . 4 (((𝐻𝑊) ∘ 𝑓) = (𝐻𝑓) → (((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 )))
4340, 41, 423syl 18 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 )))
4437, 43mpbid 232 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))
45 fzfi 13990 . . . . . . 7 (1...𝑀) ∈ Fin
46 ssfi 9187 . . . . . . 7 (((1...𝑀) ∈ Fin ∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin)
4745, 11, 46sylancr 587 . . . . . 6 (𝜑𝑊 ∈ Fin)
4847ad2antrr 726 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ∈ Fin)
493a1i 11 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 = ((𝐹𝐻) supp 0 ))
5049imaeq2d 6047 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 )))
5145a1i 11 . . . . . . . . . . . 12 (𝜑 → (1...𝑀) ∈ Fin)
528, 51fexd 7219 . . . . . . . . . . 11 (𝜑𝐻 ∈ V)
5317, 52, 25jca31 514 . . . . . . . . . 10 (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
5453ad2antrr 726 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
5554, 29syl 17 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
5650, 55eqtrd 2770 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
5756f1oeq3d 6815 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
5814, 57mpbid 232 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
5948, 58hasheqf1od 14371 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (♯‘𝑊) = (♯‘(𝐹 supp 0 )))
6059oveq2d 7421 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (1...(♯‘𝑊)) = (1...(♯‘(𝐹 supp 0 ))))
6160f1oeq2d 6814 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
6244, 61mpbid 232 1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  wss 3926  c0 4308  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  ccom 5658  Fun wfun 6525  wf 6527  1-1wf1 6528  1-1-ontowf1o 6530  cfv 6531   Isom wiso 6532  (class class class)co 7405   supp csupp 8159  Fincfn 8959  1c1 11130   < clt 11269  cn 12240  ...cfz 13524  chash 14348  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Mndcmnd 18712  Cntzccntz 19298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349
This theorem is referenced by:  gsumval3lem2  19887
  Copyright terms: Public domain W3C validator