MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem1 Structured version   Visualization version   GIF version

Theorem gsumval3lem1 19506
Description: Lemma 1 for gsumval3 19508. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3.m (𝜑𝑀 ∈ ℕ)
gsumval3.h (𝜑𝐻:(1...𝑀)–1-1𝐴)
gsumval3.n (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
gsumval3.w 𝑊 = ((𝐹𝐻) supp 0 )
Assertion
Ref Expression
gsumval3lem1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
Distinct variable groups:   + ,𝑓   𝐴,𝑓   𝜑,𝑓   𝑓,𝐺   𝑓,𝑀   𝐵,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝑊
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑓)

Proof of Theorem gsumval3lem1
StepHypRef Expression
1 gsumval3.h . . . . . . 7 (𝜑𝐻:(1...𝑀)–1-1𝐴)
21ad2antrr 723 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐻:(1...𝑀)–1-1𝐴)
3 gsumval3.w . . . . . . . . 9 𝑊 = ((𝐹𝐻) supp 0 )
4 suppssdm 7993 . . . . . . . . 9 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
53, 4eqsstri 3955 . . . . . . . 8 𝑊 ⊆ dom (𝐹𝐻)
6 gsumval3.f . . . . . . . . 9 (𝜑𝐹:𝐴𝐵)
7 f1f 6670 . . . . . . . . . 10 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)⟶𝐴)
81, 7syl 17 . . . . . . . . 9 (𝜑𝐻:(1...𝑀)⟶𝐴)
9 fco 6624 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐻:(1...𝑀)⟶𝐴) → (𝐹𝐻):(1...𝑀)⟶𝐵)
106, 8, 9syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹𝐻):(1...𝑀)⟶𝐵)
115, 10fssdm 6620 . . . . . . 7 (𝜑𝑊 ⊆ (1...𝑀))
1211ad2antrr 723 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀))
13 f1ores 6730 . . . . . 6 ((𝐻:(1...𝑀)–1-1𝐴𝑊 ⊆ (1...𝑀)) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
142, 12, 13syl2anc 584 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
153imaeq2i 5967 . . . . . . 7 (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 ))
16 gsumval3.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
176, 16fexd 7103 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
18 ovex 7308 . . . . . . . . . . . 12 (1...𝑀) ∈ V
19 fex 7102 . . . . . . . . . . . 12 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V)
207, 18, 19sylancl 586 . . . . . . . . . . 11 (𝐻:(1...𝑀)–1-1𝐴𝐻 ∈ V)
211, 20syl 17 . . . . . . . . . 10 (𝜑𝐻 ∈ V)
22 f1fun 6672 . . . . . . . . . . . 12 (𝐻:(1...𝑀)–1-1𝐴 → Fun 𝐻)
231, 22syl 17 . . . . . . . . . . 11 (𝜑 → Fun 𝐻)
24 gsumval3.n . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
2523, 24jca 512 . . . . . . . . . 10 (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))
2617, 21, 25jca31 515 . . . . . . . . 9 (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
2726ad2antrr 723 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
28 imacosupp 8025 . . . . . . . . 9 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 )))
2928imp 407 . . . . . . . 8 (((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
3027, 29syl 17 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
3115, 30eqtrid 2790 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
3231f1oeq3d 6713 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
3314, 32mpbid 231 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
34 isof1o 7194 . . . . 5 (𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊) → 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
3534ad2antll 726 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
36 f1oco 6739 . . . 4 (((𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊) → ((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))
3733, 35, 36syl2anc 584 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))
38 f1of 6716 . . . . 5 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑓:(1...(♯‘𝑊))⟶𝑊)
39 frn 6607 . . . . 5 (𝑓:(1...(♯‘𝑊))⟶𝑊 → ran 𝑓𝑊)
4035, 38, 393syl 18 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ran 𝑓𝑊)
41 cores 6153 . . . 4 (ran 𝑓𝑊 → ((𝐻𝑊) ∘ 𝑓) = (𝐻𝑓))
42 f1oeq1 6704 . . . 4 (((𝐻𝑊) ∘ 𝑓) = (𝐻𝑓) → (((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 )))
4340, 41, 423syl 18 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 )))
4437, 43mpbid 231 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))
45 fzfi 13692 . . . . . . 7 (1...𝑀) ∈ Fin
46 ssfi 8956 . . . . . . 7 (((1...𝑀) ∈ Fin ∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin)
4745, 11, 46sylancr 587 . . . . . 6 (𝜑𝑊 ∈ Fin)
4847ad2antrr 723 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ∈ Fin)
493a1i 11 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 = ((𝐹𝐻) supp 0 ))
5049imaeq2d 5969 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 )))
5145a1i 11 . . . . . . . . . . . 12 (𝜑 → (1...𝑀) ∈ Fin)
528, 51fexd 7103 . . . . . . . . . . 11 (𝜑𝐻 ∈ V)
5317, 52, 25jca31 515 . . . . . . . . . 10 (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
5453ad2antrr 723 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
5554, 29syl 17 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
5650, 55eqtrd 2778 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
5756f1oeq3d 6713 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
5814, 57mpbid 231 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
5948, 58hasheqf1od 14068 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (♯‘𝑊) = (♯‘(𝐹 supp 0 )))
6059oveq2d 7291 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (1...(♯‘𝑊)) = (1...(♯‘(𝐹 supp 0 ))))
6160f1oeq2d 6712 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
6244, 61mpbid 231 1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  wss 3887  c0 4256  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  ccom 5593  Fun wfun 6427  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433   Isom wiso 6434  (class class class)co 7275   supp csupp 7977  Fincfn 8733  1c1 10872   < clt 11009  cn 11973  ...cfz 13239  chash 14044  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385  Cntzccntz 18921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  gsumval3lem2  19507
  Copyright terms: Public domain W3C validator