Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem1 Structured version   Visualization version   GIF version

Theorem gsumval3lem1 19018
 Description: Lemma 1 for gsumval3 19020. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3.m (𝜑𝑀 ∈ ℕ)
gsumval3.h (𝜑𝐻:(1...𝑀)–1-1𝐴)
gsumval3.n (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
gsumval3.w 𝑊 = ((𝐹𝐻) supp 0 )
Assertion
Ref Expression
gsumval3lem1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
Distinct variable groups:   + ,𝑓   𝐴,𝑓   𝜑,𝑓   𝑓,𝐺   𝑓,𝑀   𝐵,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝑊
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑓)

Proof of Theorem gsumval3lem1
StepHypRef Expression
1 gsumval3.h . . . . . . 7 (𝜑𝐻:(1...𝑀)–1-1𝐴)
21ad2antrr 725 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐻:(1...𝑀)–1-1𝐴)
3 gsumval3.w . . . . . . . . 9 𝑊 = ((𝐹𝐻) supp 0 )
4 suppssdm 7826 . . . . . . . . 9 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
53, 4eqsstri 3949 . . . . . . . 8 𝑊 ⊆ dom (𝐹𝐻)
6 gsumval3.f . . . . . . . . 9 (𝜑𝐹:𝐴𝐵)
7 f1f 6549 . . . . . . . . . 10 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)⟶𝐴)
81, 7syl 17 . . . . . . . . 9 (𝜑𝐻:(1...𝑀)⟶𝐴)
9 fco 6505 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐻:(1...𝑀)⟶𝐴) → (𝐹𝐻):(1...𝑀)⟶𝐵)
106, 8, 9syl2anc 587 . . . . . . . 8 (𝜑 → (𝐹𝐻):(1...𝑀)⟶𝐵)
115, 10fssdm 6504 . . . . . . 7 (𝜑𝑊 ⊆ (1...𝑀))
1211ad2antrr 725 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀))
13 f1ores 6604 . . . . . 6 ((𝐻:(1...𝑀)–1-1𝐴𝑊 ⊆ (1...𝑀)) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
142, 12, 13syl2anc 587 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
153imaeq2i 5894 . . . . . . 7 (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 ))
16 gsumval3.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
17 fex 6966 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
186, 16, 17syl2anc 587 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
19 ovex 7168 . . . . . . . . . . . 12 (1...𝑀) ∈ V
20 fex 6966 . . . . . . . . . . . 12 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V)
217, 19, 20sylancl 589 . . . . . . . . . . 11 (𝐻:(1...𝑀)–1-1𝐴𝐻 ∈ V)
221, 21syl 17 . . . . . . . . . 10 (𝜑𝐻 ∈ V)
23 f1fun 6551 . . . . . . . . . . . 12 (𝐻:(1...𝑀)–1-1𝐴 → Fun 𝐻)
241, 23syl 17 . . . . . . . . . . 11 (𝜑 → Fun 𝐻)
25 gsumval3.n . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
2624, 25jca 515 . . . . . . . . . 10 (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))
2718, 22, 26jca31 518 . . . . . . . . 9 (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
2827ad2antrr 725 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
29 imacosupp 7857 . . . . . . . . 9 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 )))
3029imp 410 . . . . . . . 8 (((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
3128, 30syl 17 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
3215, 31syl5eq 2845 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
3332f1oeq3d 6587 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
3414, 33mpbid 235 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
35 isof1o 7055 . . . . 5 (𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊) → 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
3635ad2antll 728 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
37 f1oco 6612 . . . 4 (((𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊) → ((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))
3834, 36, 37syl2anc 587 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))
39 f1of 6590 . . . . 5 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑓:(1...(♯‘𝑊))⟶𝑊)
40 frn 6493 . . . . 5 (𝑓:(1...(♯‘𝑊))⟶𝑊 → ran 𝑓𝑊)
4136, 39, 403syl 18 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ran 𝑓𝑊)
42 cores 6069 . . . 4 (ran 𝑓𝑊 → ((𝐻𝑊) ∘ 𝑓) = (𝐻𝑓))
43 f1oeq1 6579 . . . 4 (((𝐻𝑊) ∘ 𝑓) = (𝐻𝑓) → (((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 )))
4441, 42, 433syl 18 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 )))
4538, 44mpbid 235 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))
46 fzfi 13335 . . . . . . 7 (1...𝑀) ∈ Fin
47 ssfi 8722 . . . . . . 7 (((1...𝑀) ∈ Fin ∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin)
4846, 11, 47sylancr 590 . . . . . 6 (𝜑𝑊 ∈ Fin)
4948ad2antrr 725 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ∈ Fin)
503a1i 11 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 = ((𝐹𝐻) supp 0 ))
5150imaeq2d 5896 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 )))
5246a1i 11 . . . . . . . . . . . 12 (𝜑 → (1...𝑀) ∈ Fin)
53 fex2 7620 . . . . . . . . . . . 12 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ Fin ∧ 𝐴𝑉) → 𝐻 ∈ V)
548, 52, 16, 53syl3anc 1368 . . . . . . . . . . 11 (𝜑𝐻 ∈ V)
5518, 54, 26jca31 518 . . . . . . . . . 10 (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
5655ad2antrr 725 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
5756, 30syl 17 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
5851, 57eqtrd 2833 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
5958f1oeq3d 6587 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
6014, 59mpbid 235 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
6149, 60hasheqf1od 13710 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (♯‘𝑊) = (♯‘(𝐹 supp 0 )))
6261oveq2d 7151 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (1...(♯‘𝑊)) = (1...(♯‘(𝐹 supp 0 ))))
6362f1oeq2d 6586 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
6445, 63mpbid 235 1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  Vcvv 3441   ⊆ wss 3881  ∅c0 4243  dom cdm 5519  ran crn 5520   ↾ cres 5521   “ cima 5522   ∘ ccom 5523  Fun wfun 6318  ⟶wf 6320  –1-1→wf1 6321  –1-1-onto→wf1o 6323  ‘cfv 6324   Isom wiso 6325  (class class class)co 7135   supp csupp 7813  Fincfn 8492  1c1 10527   < clt 10664  ℕcn 11625  ...cfz 12885  ♯chash 13686  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Mndcmnd 17903  Cntzccntz 18437 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687 This theorem is referenced by:  gsumval3lem2  19019
 Copyright terms: Public domain W3C validator