Proof of Theorem gsumval3lem1
Step | Hyp | Ref
| Expression |
1 | | gsumval3.h |
. . . . . . 7
⊢ (𝜑 → 𝐻:(1...𝑀)–1-1→𝐴) |
2 | 1 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → 𝐻:(1...𝑀)–1-1→𝐴) |
3 | | gsumval3.w |
. . . . . . . . 9
⊢ 𝑊 = ((𝐹 ∘ 𝐻) supp 0 ) |
4 | | suppssdm 7993 |
. . . . . . . . 9
⊢ ((𝐹 ∘ 𝐻) supp 0 ) ⊆ dom (𝐹 ∘ 𝐻) |
5 | 3, 4 | eqsstri 3955 |
. . . . . . . 8
⊢ 𝑊 ⊆ dom (𝐹 ∘ 𝐻) |
6 | | gsumval3.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
7 | | f1f 6670 |
. . . . . . . . . 10
⊢ (𝐻:(1...𝑀)–1-1→𝐴 → 𝐻:(1...𝑀)⟶𝐴) |
8 | 1, 7 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻:(1...𝑀)⟶𝐴) |
9 | | fco 6624 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐻:(1...𝑀)⟶𝐴) → (𝐹 ∘ 𝐻):(1...𝑀)⟶𝐵) |
10 | 6, 8, 9 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∘ 𝐻):(1...𝑀)⟶𝐵) |
11 | 5, 10 | fssdm 6620 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ⊆ (1...𝑀)) |
12 | 11 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → 𝑊 ⊆ (1...𝑀)) |
13 | | f1ores 6730 |
. . . . . 6
⊢ ((𝐻:(1...𝑀)–1-1→𝐴 ∧ 𝑊 ⊆ (1...𝑀)) → (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐻 “ 𝑊)) |
14 | 2, 12, 13 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐻 “ 𝑊)) |
15 | 3 | imaeq2i 5967 |
. . . . . . 7
⊢ (𝐻 “ 𝑊) = (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) |
16 | | gsumval3.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
17 | 6, 16 | fexd 7103 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ V) |
18 | | ovex 7308 |
. . . . . . . . . . . 12
⊢
(1...𝑀) ∈
V |
19 | | fex 7102 |
. . . . . . . . . . . 12
⊢ ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V) |
20 | 7, 18, 19 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝐻:(1...𝑀)–1-1→𝐴 → 𝐻 ∈ V) |
21 | 1, 20 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ V) |
22 | | f1fun 6672 |
. . . . . . . . . . . 12
⊢ (𝐻:(1...𝑀)–1-1→𝐴 → Fun 𝐻) |
23 | 1, 22 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐻) |
24 | | gsumval3.n |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻) |
25 | 23, 24 | jca 512 |
. . . . . . . . . 10
⊢ (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)) |
26 | 17, 21, 25 | jca31 515 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))) |
27 | 26 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))) |
28 | | imacosupp 8025 |
. . . . . . . . 9
⊢ ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) = (𝐹 supp 0 ))) |
29 | 28 | imp 407 |
. . . . . . . 8
⊢ (((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)) → (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) = (𝐹 supp 0 )) |
30 | 27, 29 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) = (𝐹 supp 0 )) |
31 | 15, 30 | eqtrid 2790 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 “ 𝑊) = (𝐹 supp 0 )) |
32 | 31 | f1oeq3d 6713 |
. . . . 5
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ((𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐻 “ 𝑊) ↔ (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 ))) |
33 | 14, 32 | mpbid 231 |
. . . 4
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 )) |
34 | | isof1o 7194 |
. . . . 5
⊢ (𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊) → 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
35 | 34 | ad2antll 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) |
36 | | f1oco 6739 |
. . . 4
⊢ (((𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 ) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) → ((𝐻 ↾ 𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 )) |
37 | 33, 35, 36 | syl2anc 584 |
. . 3
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ((𝐻 ↾ 𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 )) |
38 | | f1of 6716 |
. . . . 5
⊢ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 → 𝑓:(1...(♯‘𝑊))⟶𝑊) |
39 | | frn 6607 |
. . . . 5
⊢ (𝑓:(1...(♯‘𝑊))⟶𝑊 → ran 𝑓 ⊆ 𝑊) |
40 | 35, 38, 39 | 3syl 18 |
. . . 4
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ran 𝑓 ⊆ 𝑊) |
41 | | cores 6153 |
. . . 4
⊢ (ran
𝑓 ⊆ 𝑊 → ((𝐻 ↾ 𝑊) ∘ 𝑓) = (𝐻 ∘ 𝑓)) |
42 | | f1oeq1 6704 |
. . . 4
⊢ (((𝐻 ↾ 𝑊) ∘ 𝑓) = (𝐻 ∘ 𝑓) → (((𝐻 ↾ 𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻 ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))) |
43 | 40, 41, 42 | 3syl 18 |
. . 3
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (((𝐻 ↾ 𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻 ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))) |
44 | 37, 43 | mpbid 231 |
. 2
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 )) |
45 | | fzfi 13692 |
. . . . . . 7
⊢
(1...𝑀) ∈
Fin |
46 | | ssfi 8956 |
. . . . . . 7
⊢
(((1...𝑀) ∈ Fin
∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin) |
47 | 45, 11, 46 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ Fin) |
48 | 47 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → 𝑊 ∈ Fin) |
49 | 3 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → 𝑊 = ((𝐹 ∘ 𝐻) supp 0 )) |
50 | 49 | imaeq2d 5969 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 “ 𝑊) = (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 ))) |
51 | 45 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
52 | 8, 51 | fexd 7103 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ V) |
53 | 17, 52, 25 | jca31 515 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))) |
54 | 53 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))) |
55 | 54, 29 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) = (𝐹 supp 0 )) |
56 | 50, 55 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 “ 𝑊) = (𝐹 supp 0 )) |
57 | 56 | f1oeq3d 6713 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ((𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐻 “ 𝑊) ↔ (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 ))) |
58 | 14, 57 | mpbid 231 |
. . . . 5
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 )) |
59 | 48, 58 | hasheqf1od 14068 |
. . . 4
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) →
(♯‘𝑊) =
(♯‘(𝐹 supp
0
))) |
60 | 59 | oveq2d 7291 |
. . 3
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) →
(1...(♯‘𝑊)) =
(1...(♯‘(𝐹 supp
0
)))) |
61 | 60 | f1oeq2d 6712 |
. 2
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ((𝐻 ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻 ∘ 𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) |
62 | 44, 61 | mpbid 231 |
1
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 ∘ 𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) |