MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem1 Structured version   Visualization version   GIF version

Theorem gsumval3lem1 19601
Description: Lemma 1 for gsumval3 19603. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3.m (𝜑𝑀 ∈ ℕ)
gsumval3.h (𝜑𝐻:(1...𝑀)–1-1𝐴)
gsumval3.n (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
gsumval3.w 𝑊 = ((𝐹𝐻) supp 0 )
Assertion
Ref Expression
gsumval3lem1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
Distinct variable groups:   + ,𝑓   𝐴,𝑓   𝜑,𝑓   𝑓,𝐺   𝑓,𝑀   𝐵,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝑊
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑓)

Proof of Theorem gsumval3lem1
StepHypRef Expression
1 gsumval3.h . . . . . . 7 (𝜑𝐻:(1...𝑀)–1-1𝐴)
21ad2antrr 723 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐻:(1...𝑀)–1-1𝐴)
3 gsumval3.w . . . . . . . . 9 𝑊 = ((𝐹𝐻) supp 0 )
4 suppssdm 8063 . . . . . . . . 9 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
53, 4eqsstri 3966 . . . . . . . 8 𝑊 ⊆ dom (𝐹𝐻)
6 gsumval3.f . . . . . . . . 9 (𝜑𝐹:𝐴𝐵)
7 f1f 6721 . . . . . . . . . 10 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)⟶𝐴)
81, 7syl 17 . . . . . . . . 9 (𝜑𝐻:(1...𝑀)⟶𝐴)
9 fco 6675 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐻:(1...𝑀)⟶𝐴) → (𝐹𝐻):(1...𝑀)⟶𝐵)
106, 8, 9syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹𝐻):(1...𝑀)⟶𝐵)
115, 10fssdm 6671 . . . . . . 7 (𝜑𝑊 ⊆ (1...𝑀))
1211ad2antrr 723 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀))
13 f1ores 6781 . . . . . 6 ((𝐻:(1...𝑀)–1-1𝐴𝑊 ⊆ (1...𝑀)) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
142, 12, 13syl2anc 584 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
153imaeq2i 5997 . . . . . . 7 (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 ))
16 gsumval3.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
176, 16fexd 7159 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
18 ovex 7370 . . . . . . . . . . . 12 (1...𝑀) ∈ V
19 fex 7158 . . . . . . . . . . . 12 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V)
207, 18, 19sylancl 586 . . . . . . . . . . 11 (𝐻:(1...𝑀)–1-1𝐴𝐻 ∈ V)
211, 20syl 17 . . . . . . . . . 10 (𝜑𝐻 ∈ V)
22 f1fun 6723 . . . . . . . . . . . 12 (𝐻:(1...𝑀)–1-1𝐴 → Fun 𝐻)
231, 22syl 17 . . . . . . . . . . 11 (𝜑 → Fun 𝐻)
24 gsumval3.n . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
2523, 24jca 512 . . . . . . . . . 10 (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))
2617, 21, 25jca31 515 . . . . . . . . 9 (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
2726ad2antrr 723 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
28 imacosupp 8095 . . . . . . . . 9 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 )))
2928imp 407 . . . . . . . 8 (((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
3027, 29syl 17 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
3115, 30eqtrid 2788 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
3231f1oeq3d 6764 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
3314, 32mpbid 231 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
34 isof1o 7250 . . . . 5 (𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊) → 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
3534ad2antll 726 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
36 f1oco 6790 . . . 4 (((𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ) ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊) → ((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))
3733, 35, 36syl2anc 584 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))
38 f1of 6767 . . . . 5 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑓:(1...(♯‘𝑊))⟶𝑊)
39 frn 6658 . . . . 5 (𝑓:(1...(♯‘𝑊))⟶𝑊 → ran 𝑓𝑊)
4035, 38, 393syl 18 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ran 𝑓𝑊)
41 cores 6187 . . . 4 (ran 𝑓𝑊 → ((𝐻𝑊) ∘ 𝑓) = (𝐻𝑓))
42 f1oeq1 6755 . . . 4 (((𝐻𝑊) ∘ 𝑓) = (𝐻𝑓) → (((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 )))
4340, 41, 423syl 18 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (((𝐻𝑊) ∘ 𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 )))
4437, 43mpbid 231 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ))
45 fzfi 13793 . . . . . . 7 (1...𝑀) ∈ Fin
46 ssfi 9038 . . . . . . 7 (((1...𝑀) ∈ Fin ∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin)
4745, 11, 46sylancr 587 . . . . . 6 (𝜑𝑊 ∈ Fin)
4847ad2antrr 723 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ∈ Fin)
493a1i 11 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 = ((𝐹𝐻) supp 0 ))
5049imaeq2d 5999 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 )))
5145a1i 11 . . . . . . . . . . . 12 (𝜑 → (1...𝑀) ∈ Fin)
528, 51fexd 7159 . . . . . . . . . . 11 (𝜑𝐻 ∈ V)
5317, 52, 25jca31 515 . . . . . . . . . 10 (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
5453ad2antrr 723 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
5554, 29syl 17 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
5650, 55eqtrd 2776 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
5756f1oeq3d 6764 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
5814, 57mpbid 231 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
5948, 58hasheqf1od 14168 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (♯‘𝑊) = (♯‘(𝐹 supp 0 )))
6059oveq2d 7353 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (1...(♯‘𝑊)) = (1...(♯‘(𝐹 supp 0 ))))
6160f1oeq2d 6763 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑓):(1...(♯‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
6244, 61mpbid 231 1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940  Vcvv 3441  wss 3898  c0 4269  dom cdm 5620  ran crn 5621  cres 5622  cima 5623  ccom 5624  Fun wfun 6473  wf 6475  1-1wf1 6476  1-1-ontowf1o 6478  cfv 6479   Isom wiso 6480  (class class class)co 7337   supp csupp 8047  Fincfn 8804  1c1 10973   < clt 11110  cn 12074  ...cfz 13340  chash 14145  Basecbs 17009  +gcplusg 17059  0gc0g 17247  Mndcmnd 18482  Cntzccntz 19017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-hash 14146
This theorem is referenced by:  gsumval3lem2  19602
  Copyright terms: Public domain W3C validator