Proof of Theorem f1dmvrnfibi
Step | Hyp | Ref
| Expression |
1 | | rnfi 9032 |
. 2
⊢ (𝐹 ∈ Fin → ran 𝐹 ∈ Fin) |
2 | | simpr 484 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → ran 𝐹 ∈ Fin) |
3 | | f1dm 6658 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
4 | | f1f1orn 6711 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran
𝐹) |
5 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝐴 = dom 𝐹 → (𝐴 ∈ 𝑉 ↔ dom 𝐹 ∈ 𝑉)) |
6 | | f1oeq2 6689 |
. . . . . . . . . . . . 13
⊢ (𝐴 = dom 𝐹 → (𝐹:𝐴–1-1-onto→ran
𝐹 ↔ 𝐹:dom 𝐹–1-1-onto→ran
𝐹)) |
7 | 5, 6 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ (𝐴 = dom 𝐹 → ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→ran
𝐹) ↔ (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹))) |
8 | 7 | eqcoms 2746 |
. . . . . . . . . . 11
⊢ (dom
𝐹 = 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→ran
𝐹) ↔ (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹))) |
9 | 8 | biimpd 228 |
. . . . . . . . . 10
⊢ (dom
𝐹 = 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→ran
𝐹) → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹))) |
10 | 9 | expcomd 416 |
. . . . . . . . 9
⊢ (dom
𝐹 = 𝐴 → (𝐹:𝐴–1-1-onto→ran
𝐹 → (𝐴 ∈ 𝑉 → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹)))) |
11 | 3, 4, 10 | sylc 65 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1→𝐵 → (𝐴 ∈ 𝑉 → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹))) |
12 | 11 | impcom 407 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹)) |
13 | 12 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹)) |
14 | | f1oeng 8714 |
. . . . . 6
⊢ ((dom
𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹) → dom 𝐹 ≈ ran 𝐹) |
15 | 13, 14 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ≈ ran 𝐹) |
16 | | enfii 8932 |
. . . . 5
⊢ ((ran
𝐹 ∈ Fin ∧ dom
𝐹 ≈ ran 𝐹) → dom 𝐹 ∈ Fin) |
17 | 2, 15, 16 | syl2anc 583 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ∈ Fin) |
18 | | f1fun 6656 |
. . . . . 6
⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
19 | 18 | ad2antlr 723 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → Fun 𝐹) |
20 | | fundmfibi 9028 |
. . . . 5
⊢ (Fun
𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) |
21 | 19, 20 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) |
22 | 17, 21 | mpbird 256 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin) |
23 | 22 | ex 412 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (ran 𝐹 ∈ Fin → 𝐹 ∈ Fin)) |
24 | 1, 23 | impbid2 225 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |