MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dmvrnfibi Structured version   Visualization version   GIF version

Theorem f1dmvrnfibi 9103
Description: A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 9104. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
f1dmvrnfibi ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))

Proof of Theorem f1dmvrnfibi
StepHypRef Expression
1 rnfi 9102 . 2 (𝐹 ∈ Fin → ran 𝐹 ∈ Fin)
2 simpr 485 . . . . 5 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → ran 𝐹 ∈ Fin)
3 f1dm 6674 . . . . . . . . 9 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
4 f1f1orn 6727 . . . . . . . . 9 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
5 eleq1 2826 . . . . . . . . . . . . 13 (𝐴 = dom 𝐹 → (𝐴𝑉 ↔ dom 𝐹𝑉))
6 f1oeq2 6705 . . . . . . . . . . . . 13 (𝐴 = dom 𝐹 → (𝐹:𝐴1-1-onto→ran 𝐹𝐹:dom 𝐹1-1-onto→ran 𝐹))
75, 6anbi12d 631 . . . . . . . . . . . 12 (𝐴 = dom 𝐹 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) ↔ (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
87eqcoms 2746 . . . . . . . . . . 11 (dom 𝐹 = 𝐴 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) ↔ (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
98biimpd 228 . . . . . . . . . 10 (dom 𝐹 = 𝐴 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
109expcomd 417 . . . . . . . . 9 (dom 𝐹 = 𝐴 → (𝐹:𝐴1-1-onto→ran 𝐹 → (𝐴𝑉 → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))))
113, 4, 10sylc 65 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
1211impcom 408 . . . . . . 7 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))
1312adantr 481 . . . . . 6 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))
14 f1oeng 8759 . . . . . 6 ((dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹) → dom 𝐹 ≈ ran 𝐹)
1513, 14syl 17 . . . . 5 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ≈ ran 𝐹)
16 enfii 8972 . . . . 5 ((ran 𝐹 ∈ Fin ∧ dom 𝐹 ≈ ran 𝐹) → dom 𝐹 ∈ Fin)
172, 15, 16syl2anc 584 . . . 4 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ∈ Fin)
18 f1fun 6672 . . . . . 6 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
1918ad2antlr 724 . . . . 5 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → Fun 𝐹)
20 fundmfibi 9098 . . . . 5 (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
2119, 20syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
2217, 21mpbird 256 . . 3 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
2322ex 413 . 2 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (ran 𝐹 ∈ Fin → 𝐹 ∈ Fin))
241, 23impbid2 225 1 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  dom cdm 5589  ran crn 5590  Fun wfun 6427  1-1wf1 6430  1-1-ontowf1o 6432  cen 8730  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-fin 8737
This theorem is referenced by:  f1vrnfibi  9104  fmtnoinf  44988
  Copyright terms: Public domain W3C validator