Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dmvrnfibi Structured version   Visualization version   GIF version

Theorem f1dmvrnfibi 8855
 Description: A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 8856. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
f1dmvrnfibi ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))

Proof of Theorem f1dmvrnfibi
StepHypRef Expression
1 rnfi 8854 . 2 (𝐹 ∈ Fin → ran 𝐹 ∈ Fin)
2 simpr 488 . . . . 5 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → ran 𝐹 ∈ Fin)
3 f1dm 6570 . . . . . . . . 9 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
4 f1f1orn 6619 . . . . . . . . 9 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
5 eleq1 2840 . . . . . . . . . . . . 13 (𝐴 = dom 𝐹 → (𝐴𝑉 ↔ dom 𝐹𝑉))
6 f1oeq2 6597 . . . . . . . . . . . . 13 (𝐴 = dom 𝐹 → (𝐹:𝐴1-1-onto→ran 𝐹𝐹:dom 𝐹1-1-onto→ran 𝐹))
75, 6anbi12d 633 . . . . . . . . . . . 12 (𝐴 = dom 𝐹 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) ↔ (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
87eqcoms 2767 . . . . . . . . . . 11 (dom 𝐹 = 𝐴 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) ↔ (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
98biimpd 232 . . . . . . . . . 10 (dom 𝐹 = 𝐴 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
109expcomd 420 . . . . . . . . 9 (dom 𝐹 = 𝐴 → (𝐹:𝐴1-1-onto→ran 𝐹 → (𝐴𝑉 → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))))
113, 4, 10sylc 65 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
1211impcom 411 . . . . . . 7 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))
1312adantr 484 . . . . . 6 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))
14 f1oeng 8560 . . . . . 6 ((dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹) → dom 𝐹 ≈ ran 𝐹)
1513, 14syl 17 . . . . 5 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ≈ ran 𝐹)
16 enfii 8787 . . . . 5 ((ran 𝐹 ∈ Fin ∧ dom 𝐹 ≈ ran 𝐹) → dom 𝐹 ∈ Fin)
172, 15, 16syl2anc 587 . . . 4 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ∈ Fin)
18 f1fun 6568 . . . . . 6 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
1918ad2antlr 726 . . . . 5 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → Fun 𝐹)
20 fundmfibi 8850 . . . . 5 (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
2119, 20syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
2217, 21mpbird 260 . . 3 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
2322ex 416 . 2 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (ran 𝐹 ∈ Fin → 𝐹 ∈ Fin))
241, 23impbid2 229 1 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1539   ∈ wcel 2112   class class class wbr 5037  dom cdm 5529  ran crn 5530  Fun wfun 6335  –1-1→wf1 6338  –1-1-onto→wf1o 6340   ≈ cen 8538  Fincfn 8541 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-om 7587  df-1st 7700  df-2nd 7701  df-1o 8119  df-er 8306  df-en 8542  df-dom 8543  df-fin 8545 This theorem is referenced by:  f1vrnfibi  8856  fmtnoinf  44481
 Copyright terms: Public domain W3C validator