MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dmvrnfibi Structured version   Visualization version   GIF version

Theorem f1dmvrnfibi 9033
Description: A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 9034. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
f1dmvrnfibi ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))

Proof of Theorem f1dmvrnfibi
StepHypRef Expression
1 rnfi 9032 . 2 (𝐹 ∈ Fin → ran 𝐹 ∈ Fin)
2 simpr 484 . . . . 5 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → ran 𝐹 ∈ Fin)
3 f1dm 6658 . . . . . . . . 9 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
4 f1f1orn 6711 . . . . . . . . 9 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
5 eleq1 2826 . . . . . . . . . . . . 13 (𝐴 = dom 𝐹 → (𝐴𝑉 ↔ dom 𝐹𝑉))
6 f1oeq2 6689 . . . . . . . . . . . . 13 (𝐴 = dom 𝐹 → (𝐹:𝐴1-1-onto→ran 𝐹𝐹:dom 𝐹1-1-onto→ran 𝐹))
75, 6anbi12d 630 . . . . . . . . . . . 12 (𝐴 = dom 𝐹 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) ↔ (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
87eqcoms 2746 . . . . . . . . . . 11 (dom 𝐹 = 𝐴 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) ↔ (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
98biimpd 228 . . . . . . . . . 10 (dom 𝐹 = 𝐴 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
109expcomd 416 . . . . . . . . 9 (dom 𝐹 = 𝐴 → (𝐹:𝐴1-1-onto→ran 𝐹 → (𝐴𝑉 → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))))
113, 4, 10sylc 65 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
1211impcom 407 . . . . . . 7 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))
1312adantr 480 . . . . . 6 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))
14 f1oeng 8714 . . . . . 6 ((dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹) → dom 𝐹 ≈ ran 𝐹)
1513, 14syl 17 . . . . 5 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ≈ ran 𝐹)
16 enfii 8932 . . . . 5 ((ran 𝐹 ∈ Fin ∧ dom 𝐹 ≈ ran 𝐹) → dom 𝐹 ∈ Fin)
172, 15, 16syl2anc 583 . . . 4 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ∈ Fin)
18 f1fun 6656 . . . . . 6 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
1918ad2antlr 723 . . . . 5 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → Fun 𝐹)
20 fundmfibi 9028 . . . . 5 (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
2119, 20syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
2217, 21mpbird 256 . . 3 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
2322ex 412 . 2 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (ran 𝐹 ∈ Fin → 𝐹 ∈ Fin))
241, 23impbid2 225 1 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  dom cdm 5580  ran crn 5581  Fun wfun 6412  1-1wf1 6415  1-1-ontowf1o 6417  cen 8688  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-fin 8695
This theorem is referenced by:  f1vrnfibi  9034  fmtnoinf  44876
  Copyright terms: Public domain W3C validator