Proof of Theorem f1dmvrnfibi
| Step | Hyp | Ref
| Expression |
| 1 | | rnfi 9357 |
. 2
⊢ (𝐹 ∈ Fin → ran 𝐹 ∈ Fin) |
| 2 | | simpr 484 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → ran 𝐹 ∈ Fin) |
| 3 | | f1dm 6783 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| 4 | | f1f1orn 6834 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran
𝐹) |
| 5 | | eleq1 2823 |
. . . . . . . . . . . . 13
⊢ (𝐴 = dom 𝐹 → (𝐴 ∈ 𝑉 ↔ dom 𝐹 ∈ 𝑉)) |
| 6 | | f1oeq2 6812 |
. . . . . . . . . . . . 13
⊢ (𝐴 = dom 𝐹 → (𝐹:𝐴–1-1-onto→ran
𝐹 ↔ 𝐹:dom 𝐹–1-1-onto→ran
𝐹)) |
| 7 | 5, 6 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝐴 = dom 𝐹 → ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→ran
𝐹) ↔ (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹))) |
| 8 | 7 | eqcoms 2744 |
. . . . . . . . . . 11
⊢ (dom
𝐹 = 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→ran
𝐹) ↔ (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹))) |
| 9 | 8 | biimpd 229 |
. . . . . . . . . 10
⊢ (dom
𝐹 = 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→ran
𝐹) → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹))) |
| 10 | 9 | expcomd 416 |
. . . . . . . . 9
⊢ (dom
𝐹 = 𝐴 → (𝐹:𝐴–1-1-onto→ran
𝐹 → (𝐴 ∈ 𝑉 → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹)))) |
| 11 | 3, 4, 10 | sylc 65 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1→𝐵 → (𝐴 ∈ 𝑉 → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹))) |
| 12 | 11 | impcom 407 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹)) |
| 13 | 12 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹)) |
| 14 | | f1oeng 8990 |
. . . . . 6
⊢ ((dom
𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹) → dom 𝐹 ≈ ran 𝐹) |
| 15 | 13, 14 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ≈ ran 𝐹) |
| 16 | | enfii 9205 |
. . . . 5
⊢ ((ran
𝐹 ∈ Fin ∧ dom
𝐹 ≈ ran 𝐹) → dom 𝐹 ∈ Fin) |
| 17 | 2, 15, 16 | syl2anc 584 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ∈ Fin) |
| 18 | | f1fun 6781 |
. . . . . 6
⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| 19 | 18 | ad2antlr 727 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → Fun 𝐹) |
| 20 | | fundmfibi 9353 |
. . . . 5
⊢ (Fun
𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) |
| 21 | 19, 20 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) |
| 22 | 17, 21 | mpbird 257 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin) |
| 23 | 22 | ex 412 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (ran 𝐹 ∈ Fin → 𝐹 ∈ Fin)) |
| 24 | 1, 23 | impbid2 226 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |