MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cocnv2 Structured version   Visualization version   GIF version

Theorem f1cocnv2 6796
Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
Assertion
Ref Expression
f1cocnv2 (𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ ran 𝐹))

Proof of Theorem f1cocnv2
StepHypRef Expression
1 f1fun 6726 . 2 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
2 funcocnv2 6793 . 2 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
31, 2syl 17 1 (𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   I cid 5513  ccnv 5618  ran crn 5620  cres 5621  ccom 5623  Fun wfun 6480  1-1wf1 6483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator