MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cocnv2 Structured version   Visualization version   GIF version

Theorem f1cocnv2 6877
Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
Assertion
Ref Expression
f1cocnv2 (𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ ran 𝐹))

Proof of Theorem f1cocnv2
StepHypRef Expression
1 f1fun 6807 . 2 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
2 funcocnv2 6874 . 2 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
31, 2syl 17 1 (𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537   I cid 5582  ccnv 5688  ran crn 5690  cres 5691  ccom 5693  Fun wfun 6557  1-1wf1 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator