| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1cocnv2 | Structured version Visualization version GIF version | ||
| Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.) |
| Ref | Expression |
|---|---|
| f1cocnv2 | ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fun 6760 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) | |
| 2 | funcocnv2 6827 | . 2 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 I cid 5534 ◡ccnv 5639 ran crn 5641 ↾ cres 5642 ∘ ccom 5644 Fun wfun 6507 –1-1→wf1 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |