MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem2 Structured version   Visualization version   GIF version

Theorem gsumval3lem2 19818
Description: Lemma 2 for gsumval3 19819. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3.m (𝜑𝑀 ∈ ℕ)
gsumval3.h (𝜑𝐻:(1...𝑀)–1-1𝐴)
gsumval3.n (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
gsumval3.w 𝑊 = ((𝐹𝐻) supp 0 )
Assertion
Ref Expression
gsumval3lem2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))
Distinct variable groups:   + ,𝑓   𝐴,𝑓   𝜑,𝑓   𝑓,𝐺   𝑓,𝑀   𝐵,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝑊
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑓)

Proof of Theorem gsumval3lem2
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.h . . . . . . 7 (𝜑𝐻:(1...𝑀)–1-1𝐴)
2 f1f 6719 . . . . . . 7 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)⟶𝐴)
31, 2syl 17 . . . . . 6 (𝜑𝐻:(1...𝑀)⟶𝐴)
4 fzfid 13880 . . . . . 6 (𝜑 → (1...𝑀) ∈ Fin)
53, 4fexd 7161 . . . . 5 (𝜑𝐻 ∈ V)
6 vex 3440 . . . . 5 𝑓 ∈ V
7 coexg 7859 . . . . 5 ((𝐻 ∈ V ∧ 𝑓 ∈ V) → (𝐻𝑓) ∈ V)
85, 6, 7sylancl 586 . . . 4 (𝜑 → (𝐻𝑓) ∈ V)
98ad2antrr 726 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓) ∈ V)
10 gsumval3.b . . . . 5 𝐵 = (Base‘𝐺)
11 gsumval3.0 . . . . 5 0 = (0g𝐺)
12 gsumval3.p . . . . 5 + = (+g𝐺)
13 gsumval3.z . . . . 5 𝑍 = (Cntz‘𝐺)
14 gsumval3.g . . . . 5 (𝜑𝐺 ∈ Mnd)
15 gsumval3.a . . . . 5 (𝜑𝐴𝑉)
16 gsumval3.f . . . . 5 (𝜑𝐹:𝐴𝐵)
17 gsumval3.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
18 gsumval3.m . . . . 5 (𝜑𝑀 ∈ ℕ)
19 gsumval3.n . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
20 gsumval3.w . . . . 5 𝑊 = ((𝐹𝐻) supp 0 )
2110, 11, 12, 13, 14, 15, 16, 17, 18, 1, 19, 20gsumval3lem1 19817 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
22 fzfi 13879 . . . . . . . 8 (1...𝑀) ∈ Fin
23 suppssdm 8107 . . . . . . . . . 10 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
2420, 23eqsstri 3976 . . . . . . . . 9 𝑊 ⊆ dom (𝐹𝐻)
2516, 3fcod 6676 . . . . . . . . 9 (𝜑 → (𝐹𝐻):(1...𝑀)⟶𝐵)
2624, 25fssdm 6670 . . . . . . . 8 (𝜑𝑊 ⊆ (1...𝑀))
27 ssfi 9082 . . . . . . . 8 (((1...𝑀) ∈ Fin ∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin)
2822, 26, 27sylancr 587 . . . . . . 7 (𝜑𝑊 ∈ Fin)
2928ad2antrr 726 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ∈ Fin)
301ad2antrr 726 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐻:(1...𝑀)–1-1𝐴)
3126ad2antrr 726 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀))
32 f1ores 6777 . . . . . . . 8 ((𝐻:(1...𝑀)–1-1𝐴𝑊 ⊆ (1...𝑀)) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
3330, 31, 32syl2anc 584 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
3420imaeq2i 6006 . . . . . . . . . 10 (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 ))
3516, 15fexd 7161 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
36 ovex 7379 . . . . . . . . . . . . . 14 (1...𝑀) ∈ V
37 fex 7160 . . . . . . . . . . . . . 14 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V)
383, 36, 37sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ V)
3935, 38jca 511 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ V ∧ 𝐻 ∈ V))
40 f1fun 6721 . . . . . . . . . . . . . 14 (𝐻:(1...𝑀)–1-1𝐴 → Fun 𝐻)
411, 40syl 17 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐻)
4241, 19jca 511 . . . . . . . . . . . 12 (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))
43 imacosupp 8139 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 )))
4439, 42, 43sylc 65 . . . . . . . . . . 11 (𝜑 → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
4544adantr 480 . . . . . . . . . 10 ((𝜑𝑊 ≠ ∅) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
4634, 45eqtrid 2778 . . . . . . . . 9 ((𝜑𝑊 ≠ ∅) → (𝐻𝑊) = (𝐹 supp 0 ))
4746adantr 480 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
4847f1oeq3d 6760 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
4933, 48mpbid 232 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
5029, 49hasheqf1od 14260 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (♯‘𝑊) = (♯‘(𝐹 supp 0 )))
5150fveq2d 6826 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))
5221, 51jca 511 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 )))))
53 f1oeq1 6751 . . . 4 (𝑔 = (𝐻𝑓) → (𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
54 coeq2 5797 . . . . . . 7 (𝑔 = (𝐻𝑓) → (𝐹𝑔) = (𝐹 ∘ (𝐻𝑓)))
5554seqeq3d 13916 . . . . . 6 (𝑔 = (𝐻𝑓) → seq1( + , (𝐹𝑔)) = seq1( + , (𝐹 ∘ (𝐻𝑓))))
5655fveq1d 6824 . . . . 5 (𝑔 = (𝐻𝑓) → (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))
5756eqeq2d 2742 . . . 4 (𝑔 = (𝐻𝑓) → ((seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 )))))
5853, 57anbi12d 632 . . 3 (𝑔 = (𝐻𝑓) → ((𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ ((𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))))
599, 52, 58spcedv 3548 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))))
6014ad2antrr 726 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐺 ∈ Mnd)
6115ad2antrr 726 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐴𝑉)
6216ad2antrr 726 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐹:𝐴𝐵)
6317ad2antrr 726 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
64 f1f1orn 6774 . . . . . . . . . . . . 13 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
651, 64syl 17 . . . . . . . . . . . 12 (𝜑𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
66 f1oen3g 8889 . . . . . . . . . . . 12 ((𝐻 ∈ V ∧ 𝐻:(1...𝑀)–1-1-onto→ran 𝐻) → (1...𝑀) ≈ ran 𝐻)
675, 65, 66syl2anc 584 . . . . . . . . . . 11 (𝜑 → (1...𝑀) ≈ ran 𝐻)
68 enfi 9096 . . . . . . . . . . 11 ((1...𝑀) ≈ ran 𝐻 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
6967, 68syl 17 . . . . . . . . . 10 (𝜑 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
7022, 69mpbii 233 . . . . . . . . 9 (𝜑 → ran 𝐻 ∈ Fin)
7170, 19ssfid 9153 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
7271ad2antrr 726 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ∈ Fin)
7320neeq1i 2992 . . . . . . . . . 10 (𝑊 ≠ ∅ ↔ ((𝐹𝐻) supp 0 ) ≠ ∅)
74 supp0cosupp0 8138 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((𝐹 supp 0 ) = ∅ → ((𝐹𝐻) supp 0 ) = ∅))
7574necon3d 2949 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → (((𝐹𝐻) supp 0 ) ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
7635, 38, 75syl2anc 584 . . . . . . . . . 10 (𝜑 → (((𝐹𝐻) supp 0 ) ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
7773, 76biimtrid 242 . . . . . . . . 9 (𝜑 → (𝑊 ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
7877imp 406 . . . . . . . 8 ((𝜑𝑊 ≠ ∅) → (𝐹 supp 0 ) ≠ ∅)
7978adantr 480 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ≠ ∅)
8019ad2antrr 726 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ⊆ ran 𝐻)
813frnd 6659 . . . . . . . . 9 (𝜑 → ran 𝐻𝐴)
8281ad2antrr 726 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ran 𝐻𝐴)
8380, 82sstrd 3940 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ⊆ 𝐴)
8410, 11, 12, 13, 60, 61, 62, 63, 72, 79, 83gsumval3eu 19816 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ∃!𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))))
85 iota1 6460 . . . . . 6 (∃!𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥))
8684, 85syl 17 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥))
87 eqid 2731 . . . . . . 7 (𝐹 supp 0 ) = (𝐹 supp 0 )
88 simprl 770 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ¬ 𝐴 ∈ ran ...)
8910, 11, 12, 13, 60, 61, 62, 63, 72, 79, 87, 88gsumval3a 19815 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))))
9089eqeq1d 2733 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐺 Σg 𝐹) = 𝑥 ↔ (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥))
9186, 90bitr4d 282 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥))
9291alrimiv 1928 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ∀𝑥(∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥))
93 fvex 6835 . . . 4 (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) ∈ V
94 eqeq1 2735 . . . . . . 7 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → (𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))))
9594anbi2d 630 . . . . . 6 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → ((𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))))
9695exbidv 1922 . . . . 5 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ ∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))))
97 eqeq2 2743 . . . . 5 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → ((𝐺 Σg 𝐹) = 𝑥 ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊))))
9896, 97bibi12d 345 . . . 4 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → ((∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥) ↔ (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))))
9993, 98spcv 3555 . . 3 (∀𝑥(∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊))))
10092, 99syl 17 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊))))
10159, 100mpbid 232 1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  wne 2928  Vcvv 3436  wss 3897  c0 4280   class class class wbr 5089  dom cdm 5614  ran crn 5615  cres 5616  cima 5617  ccom 5618  cio 6435  Fun wfun 6475  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481   Isom wiso 6482  (class class class)co 7346   supp csupp 8090  cen 8866  Fincfn 8869  1c1 11007   < clt 11146  cn 12125  ...cfz 13407  seqcseq 13908  chash 14237  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  Cntzccntz 19227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-0g 17345  df-gsum 17346  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-cntz 19229
This theorem is referenced by:  gsumval3  19819
  Copyright terms: Public domain W3C validator