Step | Hyp | Ref
| Expression |
1 | | gsumval3.h |
. . . . . . 7
⊢ (𝜑 → 𝐻:(1...𝑀)–1-1→𝐴) |
2 | | f1f 6654 |
. . . . . . 7
⊢ (𝐻:(1...𝑀)–1-1→𝐴 → 𝐻:(1...𝑀)⟶𝐴) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐻:(1...𝑀)⟶𝐴) |
4 | | fzfid 13621 |
. . . . . 6
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
5 | 3, 4 | fexd 7085 |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ V) |
6 | | vex 3426 |
. . . . 5
⊢ 𝑓 ∈ V |
7 | | coexg 7750 |
. . . . 5
⊢ ((𝐻 ∈ V ∧ 𝑓 ∈ V) → (𝐻 ∘ 𝑓) ∈ V) |
8 | 5, 6, 7 | sylancl 585 |
. . . 4
⊢ (𝜑 → (𝐻 ∘ 𝑓) ∈ V) |
9 | 8 | ad2antrr 722 |
. . 3
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 ∘ 𝑓) ∈ V) |
10 | | gsumval3.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
11 | | gsumval3.0 |
. . . . 5
⊢ 0 =
(0g‘𝐺) |
12 | | gsumval3.p |
. . . . 5
⊢ + =
(+g‘𝐺) |
13 | | gsumval3.z |
. . . . 5
⊢ 𝑍 = (Cntz‘𝐺) |
14 | | gsumval3.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ Mnd) |
15 | | gsumval3.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
16 | | gsumval3.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
17 | | gsumval3.c |
. . . . 5
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
18 | | gsumval3.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℕ) |
19 | | gsumval3.n |
. . . . 5
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻) |
20 | | gsumval3.w |
. . . . 5
⊢ 𝑊 = ((𝐹 ∘ 𝐻) supp 0 ) |
21 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 1, 19, 20 | gsumval3lem1 19421 |
. . . 4
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 ∘ 𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) |
22 | | fzfi 13620 |
. . . . . . . 8
⊢
(1...𝑀) ∈
Fin |
23 | | suppssdm 7964 |
. . . . . . . . . 10
⊢ ((𝐹 ∘ 𝐻) supp 0 ) ⊆ dom (𝐹 ∘ 𝐻) |
24 | 20, 23 | eqsstri 3951 |
. . . . . . . . 9
⊢ 𝑊 ⊆ dom (𝐹 ∘ 𝐻) |
25 | 16, 3 | fcod 6610 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ∘ 𝐻):(1...𝑀)⟶𝐵) |
26 | 24, 25 | fssdm 6604 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ⊆ (1...𝑀)) |
27 | | ssfi 8918 |
. . . . . . . 8
⊢
(((1...𝑀) ∈ Fin
∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin) |
28 | 22, 26, 27 | sylancr 586 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Fin) |
29 | 28 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → 𝑊 ∈ Fin) |
30 | 1 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → 𝐻:(1...𝑀)–1-1→𝐴) |
31 | 26 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → 𝑊 ⊆ (1...𝑀)) |
32 | | f1ores 6714 |
. . . . . . . 8
⊢ ((𝐻:(1...𝑀)–1-1→𝐴 ∧ 𝑊 ⊆ (1...𝑀)) → (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐻 “ 𝑊)) |
33 | 30, 31, 32 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐻 “ 𝑊)) |
34 | 20 | imaeq2i 5956 |
. . . . . . . . . 10
⊢ (𝐻 “ 𝑊) = (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) |
35 | 16, 15 | fexd 7085 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ V) |
36 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢
(1...𝑀) ∈
V |
37 | | fex 7084 |
. . . . . . . . . . . . . 14
⊢ ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V) |
38 | 3, 36, 37 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐻 ∈ V) |
39 | 35, 38 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ∈ V ∧ 𝐻 ∈ V)) |
40 | | f1fun 6656 |
. . . . . . . . . . . . . 14
⊢ (𝐻:(1...𝑀)–1-1→𝐴 → Fun 𝐻) |
41 | 1, 40 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Fun 𝐻) |
42 | 41, 19 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)) |
43 | | imacosupp 7996 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) = (𝐹 supp 0 ))) |
44 | 39, 42, 43 | sylc 65 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) = (𝐹 supp 0 )) |
45 | 44 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑊 ≠ ∅) → (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) = (𝐹 supp 0 )) |
46 | 34, 45 | eqtrid 2790 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑊 ≠ ∅) → (𝐻 “ 𝑊) = (𝐹 supp 0 )) |
47 | 46 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 “ 𝑊) = (𝐹 supp 0 )) |
48 | 47 | f1oeq3d 6697 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ((𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐻 “ 𝑊) ↔ (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 ))) |
49 | 33, 48 | mpbid 231 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 )) |
50 | 29, 49 | hasheqf1od 13996 |
. . . . 5
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) →
(♯‘𝑊) =
(♯‘(𝐹 supp
0
))) |
51 | 50 | fveq2d 6760 |
. . . 4
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘(𝐹 supp 0 )))) |
52 | 21, 51 | jca 511 |
. . 3
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ((𝐻 ∘ 𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘(𝐹 supp 0 ))))) |
53 | | f1oeq1 6688 |
. . . 4
⊢ (𝑔 = (𝐻 ∘ 𝑓) → (𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻 ∘ 𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) |
54 | | coeq2 5756 |
. . . . . . 7
⊢ (𝑔 = (𝐻 ∘ 𝑓) → (𝐹 ∘ 𝑔) = (𝐹 ∘ (𝐻 ∘ 𝑓))) |
55 | 54 | seqeq3d 13657 |
. . . . . 6
⊢ (𝑔 = (𝐻 ∘ 𝑓) → seq1( + , (𝐹 ∘ 𝑔)) = seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))) |
56 | 55 | fveq1d 6758 |
. . . . 5
⊢ (𝑔 = (𝐻 ∘ 𝑓) → (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 ))) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘(𝐹 supp 0 )))) |
57 | 56 | eqeq2d 2749 |
. . . 4
⊢ (𝑔 = (𝐻 ∘ 𝑓) → ((seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘(𝐹 supp 0 ))))) |
58 | 53, 57 | anbi12d 630 |
. . 3
⊢ (𝑔 = (𝐻 ∘ 𝑓) → ((𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ ((𝐻 ∘ 𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘(𝐹 supp 0 )))))) |
59 | 9, 52, 58 | spcedv 3527 |
. 2
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 ))))) |
60 | 14 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → 𝐺 ∈ Mnd) |
61 | 15 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → 𝐴 ∈ 𝑉) |
62 | 16 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → 𝐹:𝐴⟶𝐵) |
63 | 17 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
64 | | f1f1orn 6711 |
. . . . . . . . . . . . 13
⊢ (𝐻:(1...𝑀)–1-1→𝐴 → 𝐻:(1...𝑀)–1-1-onto→ran
𝐻) |
65 | 1, 64 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻:(1...𝑀)–1-1-onto→ran
𝐻) |
66 | | f1oen3g 8709 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ V ∧ 𝐻:(1...𝑀)–1-1-onto→ran
𝐻) → (1...𝑀) ≈ ran 𝐻) |
67 | 5, 65, 66 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (1...𝑀) ≈ ran 𝐻) |
68 | | enfi 8933 |
. . . . . . . . . . 11
⊢
((1...𝑀) ≈ ran
𝐻 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin)) |
69 | 67, 68 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin)) |
70 | 22, 69 | mpbii 232 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐻 ∈ Fin) |
71 | 70, 19 | ssfid 8971 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 supp 0 ) ∈
Fin) |
72 | 71 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐹 supp 0 ) ∈
Fin) |
73 | 20 | neeq1i 3007 |
. . . . . . . . . 10
⊢ (𝑊 ≠ ∅ ↔ ((𝐹 ∘ 𝐻) supp 0 ) ≠
∅) |
74 | | supp0cosupp0 7995 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((𝐹 supp 0 ) = ∅ → ((𝐹 ∘ 𝐻) supp 0 ) =
∅)) |
75 | 74 | necon3d 2963 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ V ∧ 𝐻 ∈ V) → (((𝐹 ∘ 𝐻) supp 0 ) ≠ ∅ →
(𝐹 supp 0 ) ≠
∅)) |
76 | 35, 38, 75 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐹 ∘ 𝐻) supp 0 ) ≠ ∅ →
(𝐹 supp 0 ) ≠
∅)) |
77 | 73, 76 | syl5bi 241 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ≠ ∅ → (𝐹 supp 0 ) ≠
∅)) |
78 | 77 | imp 406 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑊 ≠ ∅) → (𝐹 supp 0 ) ≠
∅) |
79 | 78 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐹 supp 0 ) ≠
∅) |
80 | 19 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐹 supp 0 ) ⊆ ran 𝐻) |
81 | 3 | frnd 6592 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐻 ⊆ 𝐴) |
82 | 81 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ran 𝐻 ⊆ 𝐴) |
83 | 80, 82 | sstrd 3927 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐹 supp 0 ) ⊆ 𝐴) |
84 | 10, 11, 12, 13, 60, 61, 62, 63, 72, 79, 83 | gsumval3eu 19420 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ∃!𝑥∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 ))))) |
85 | | iota1 6395 |
. . . . . 6
⊢
(∃!𝑥∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (℩𝑥∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥)) |
86 | 84, 85 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (℩𝑥∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥)) |
87 | | eqid 2738 |
. . . . . . 7
⊢ (𝐹 supp 0 ) = (𝐹 supp 0 ) |
88 | | simprl 767 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ¬ 𝐴 ∈ ran
...) |
89 | 10, 11, 12, 13, 60, 61, 62, 63, 72, 79, 87, 88 | gsumval3a 19419 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐺 Σg
𝐹) = (℩𝑥∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))))) |
90 | 89 | eqeq1d 2740 |
. . . . 5
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ((𝐺 Σg
𝐹) = 𝑥 ↔ (℩𝑥∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥)) |
91 | 86, 90 | bitr4d 281 |
. . . 4
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg
𝐹) = 𝑥)) |
92 | 91 | alrimiv 1931 |
. . 3
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → ∀𝑥(∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg
𝐹) = 𝑥)) |
93 | | fvex 6769 |
. . . 4
⊢ (seq1(
+ ,
(𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) ∈ V |
94 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑥 = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) → (𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 ))))) |
95 | 94 | anbi2d 628 |
. . . . . 6
⊢ (𝑥 = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) → ((𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))))) |
96 | 95 | exbidv 1925 |
. . . . 5
⊢ (𝑥 = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ ∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))))) |
97 | | eqeq2 2750 |
. . . . 5
⊢ (𝑥 = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) → ((𝐺 Σg 𝐹) = 𝑥 ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)))) |
98 | 96, 97 | bibi12d 345 |
. . . 4
⊢ (𝑥 = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) → ((∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg
𝐹) = 𝑥) ↔ (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg
𝐹) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊))))) |
99 | 93, 98 | spcv 3534 |
. . 3
⊢
(∀𝑥(∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg
𝐹) = 𝑥) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg
𝐹) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)))) |
100 | 92, 99 | syl 17 |
. 2
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ 𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg
𝐹) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊)))) |
101 | 59, 100 | mpbid 231 |
1
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(♯‘𝑊)),
𝑊))) → (𝐺 Σg
𝐹) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊))) |