MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem2 Structured version   Visualization version   GIF version

Theorem gsumval3lem2 19887
Description: Lemma 2 for gsumval3 19888. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3.m (𝜑𝑀 ∈ ℕ)
gsumval3.h (𝜑𝐻:(1...𝑀)–1-1𝐴)
gsumval3.n (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
gsumval3.w 𝑊 = ((𝐹𝐻) supp 0 )
Assertion
Ref Expression
gsumval3lem2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))
Distinct variable groups:   + ,𝑓   𝐴,𝑓   𝜑,𝑓   𝑓,𝐺   𝑓,𝑀   𝐵,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝑊
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑓)

Proof of Theorem gsumval3lem2
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.h . . . . . . 7 (𝜑𝐻:(1...𝑀)–1-1𝐴)
2 f1f 6774 . . . . . . 7 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)⟶𝐴)
31, 2syl 17 . . . . . 6 (𝜑𝐻:(1...𝑀)⟶𝐴)
4 fzfid 13991 . . . . . 6 (𝜑 → (1...𝑀) ∈ Fin)
53, 4fexd 7219 . . . . 5 (𝜑𝐻 ∈ V)
6 vex 3463 . . . . 5 𝑓 ∈ V
7 coexg 7925 . . . . 5 ((𝐻 ∈ V ∧ 𝑓 ∈ V) → (𝐻𝑓) ∈ V)
85, 6, 7sylancl 586 . . . 4 (𝜑 → (𝐻𝑓) ∈ V)
98ad2antrr 726 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓) ∈ V)
10 gsumval3.b . . . . 5 𝐵 = (Base‘𝐺)
11 gsumval3.0 . . . . 5 0 = (0g𝐺)
12 gsumval3.p . . . . 5 + = (+g𝐺)
13 gsumval3.z . . . . 5 𝑍 = (Cntz‘𝐺)
14 gsumval3.g . . . . 5 (𝜑𝐺 ∈ Mnd)
15 gsumval3.a . . . . 5 (𝜑𝐴𝑉)
16 gsumval3.f . . . . 5 (𝜑𝐹:𝐴𝐵)
17 gsumval3.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
18 gsumval3.m . . . . 5 (𝜑𝑀 ∈ ℕ)
19 gsumval3.n . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
20 gsumval3.w . . . . 5 𝑊 = ((𝐹𝐻) supp 0 )
2110, 11, 12, 13, 14, 15, 16, 17, 18, 1, 19, 20gsumval3lem1 19886 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
22 fzfi 13990 . . . . . . . 8 (1...𝑀) ∈ Fin
23 suppssdm 8176 . . . . . . . . . 10 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
2420, 23eqsstri 4005 . . . . . . . . 9 𝑊 ⊆ dom (𝐹𝐻)
2516, 3fcod 6731 . . . . . . . . 9 (𝜑 → (𝐹𝐻):(1...𝑀)⟶𝐵)
2624, 25fssdm 6725 . . . . . . . 8 (𝜑𝑊 ⊆ (1...𝑀))
27 ssfi 9187 . . . . . . . 8 (((1...𝑀) ∈ Fin ∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin)
2822, 26, 27sylancr 587 . . . . . . 7 (𝜑𝑊 ∈ Fin)
2928ad2antrr 726 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ∈ Fin)
301ad2antrr 726 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐻:(1...𝑀)–1-1𝐴)
3126ad2antrr 726 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀))
32 f1ores 6832 . . . . . . . 8 ((𝐻:(1...𝑀)–1-1𝐴𝑊 ⊆ (1...𝑀)) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
3330, 31, 32syl2anc 584 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
3420imaeq2i 6045 . . . . . . . . . 10 (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 ))
3516, 15fexd 7219 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
36 ovex 7438 . . . . . . . . . . . . . 14 (1...𝑀) ∈ V
37 fex 7218 . . . . . . . . . . . . . 14 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V)
383, 36, 37sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ V)
3935, 38jca 511 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ V ∧ 𝐻 ∈ V))
40 f1fun 6776 . . . . . . . . . . . . . 14 (𝐻:(1...𝑀)–1-1𝐴 → Fun 𝐻)
411, 40syl 17 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐻)
4241, 19jca 511 . . . . . . . . . . . 12 (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))
43 imacosupp 8208 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 )))
4439, 42, 43sylc 65 . . . . . . . . . . 11 (𝜑 → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
4544adantr 480 . . . . . . . . . 10 ((𝜑𝑊 ≠ ∅) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
4634, 45eqtrid 2782 . . . . . . . . 9 ((𝜑𝑊 ≠ ∅) → (𝐻𝑊) = (𝐹 supp 0 ))
4746adantr 480 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
4847f1oeq3d 6815 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
4933, 48mpbid 232 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
5029, 49hasheqf1od 14371 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (♯‘𝑊) = (♯‘(𝐹 supp 0 )))
5150fveq2d 6880 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))
5221, 51jca 511 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 )))))
53 f1oeq1 6806 . . . 4 (𝑔 = (𝐻𝑓) → (𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
54 coeq2 5838 . . . . . . 7 (𝑔 = (𝐻𝑓) → (𝐹𝑔) = (𝐹 ∘ (𝐻𝑓)))
5554seqeq3d 14027 . . . . . 6 (𝑔 = (𝐻𝑓) → seq1( + , (𝐹𝑔)) = seq1( + , (𝐹 ∘ (𝐻𝑓))))
5655fveq1d 6878 . . . . 5 (𝑔 = (𝐻𝑓) → (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))
5756eqeq2d 2746 . . . 4 (𝑔 = (𝐻𝑓) → ((seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 )))))
5853, 57anbi12d 632 . . 3 (𝑔 = (𝐻𝑓) → ((𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ ((𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))))
599, 52, 58spcedv 3577 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))))
6014ad2antrr 726 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐺 ∈ Mnd)
6115ad2antrr 726 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐴𝑉)
6216ad2antrr 726 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐹:𝐴𝐵)
6317ad2antrr 726 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
64 f1f1orn 6829 . . . . . . . . . . . . 13 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
651, 64syl 17 . . . . . . . . . . . 12 (𝜑𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
66 f1oen3g 8981 . . . . . . . . . . . 12 ((𝐻 ∈ V ∧ 𝐻:(1...𝑀)–1-1-onto→ran 𝐻) → (1...𝑀) ≈ ran 𝐻)
675, 65, 66syl2anc 584 . . . . . . . . . . 11 (𝜑 → (1...𝑀) ≈ ran 𝐻)
68 enfi 9201 . . . . . . . . . . 11 ((1...𝑀) ≈ ran 𝐻 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
6967, 68syl 17 . . . . . . . . . 10 (𝜑 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
7022, 69mpbii 233 . . . . . . . . 9 (𝜑 → ran 𝐻 ∈ Fin)
7170, 19ssfid 9273 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
7271ad2antrr 726 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ∈ Fin)
7320neeq1i 2996 . . . . . . . . . 10 (𝑊 ≠ ∅ ↔ ((𝐹𝐻) supp 0 ) ≠ ∅)
74 supp0cosupp0 8207 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((𝐹 supp 0 ) = ∅ → ((𝐹𝐻) supp 0 ) = ∅))
7574necon3d 2953 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → (((𝐹𝐻) supp 0 ) ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
7635, 38, 75syl2anc 584 . . . . . . . . . 10 (𝜑 → (((𝐹𝐻) supp 0 ) ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
7773, 76biimtrid 242 . . . . . . . . 9 (𝜑 → (𝑊 ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
7877imp 406 . . . . . . . 8 ((𝜑𝑊 ≠ ∅) → (𝐹 supp 0 ) ≠ ∅)
7978adantr 480 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ≠ ∅)
8019ad2antrr 726 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ⊆ ran 𝐻)
813frnd 6714 . . . . . . . . 9 (𝜑 → ran 𝐻𝐴)
8281ad2antrr 726 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ran 𝐻𝐴)
8380, 82sstrd 3969 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ⊆ 𝐴)
8410, 11, 12, 13, 60, 61, 62, 63, 72, 79, 83gsumval3eu 19885 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ∃!𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))))
85 iota1 6508 . . . . . 6 (∃!𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥))
8684, 85syl 17 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥))
87 eqid 2735 . . . . . . 7 (𝐹 supp 0 ) = (𝐹 supp 0 )
88 simprl 770 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ¬ 𝐴 ∈ ran ...)
8910, 11, 12, 13, 60, 61, 62, 63, 72, 79, 87, 88gsumval3a 19884 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))))
9089eqeq1d 2737 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐺 Σg 𝐹) = 𝑥 ↔ (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥))
9186, 90bitr4d 282 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥))
9291alrimiv 1927 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ∀𝑥(∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥))
93 fvex 6889 . . . 4 (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) ∈ V
94 eqeq1 2739 . . . . . . 7 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → (𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))))
9594anbi2d 630 . . . . . 6 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → ((𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))))
9695exbidv 1921 . . . . 5 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ ∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))))
97 eqeq2 2747 . . . . 5 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → ((𝐺 Σg 𝐹) = 𝑥 ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊))))
9896, 97bibi12d 345 . . . 4 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → ((∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥) ↔ (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))))
9993, 98spcv 3584 . . 3 (∀𝑥(∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊))))
10092, 99syl 17 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊))))
10159, 100mpbid 232 1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2108  ∃!weu 2567  wne 2932  Vcvv 3459  wss 3926  c0 4308   class class class wbr 5119  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  ccom 5658  cio 6482  Fun wfun 6525  wf 6527  1-1wf1 6528  1-1-ontowf1o 6530  cfv 6531   Isom wiso 6532  (class class class)co 7405   supp csupp 8159  cen 8956  Fincfn 8959  1c1 11130   < clt 11269  cn 12240  ...cfz 13524  seqcseq 14019  chash 14348  Basecbs 17228  +gcplusg 17271  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712  Cntzccntz 19298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-0g 17455  df-gsum 17456  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-cntz 19300
This theorem is referenced by:  gsumval3  19888
  Copyright terms: Public domain W3C validator