MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem2 Structured version   Visualization version   GIF version

Theorem gsumval3lem2 19904
Description: Lemma 2 for gsumval3 19905. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3.m (𝜑𝑀 ∈ ℕ)
gsumval3.h (𝜑𝐻:(1...𝑀)–1-1𝐴)
gsumval3.n (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
gsumval3.w 𝑊 = ((𝐹𝐻) supp 0 )
Assertion
Ref Expression
gsumval3lem2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))
Distinct variable groups:   + ,𝑓   𝐴,𝑓   𝜑,𝑓   𝑓,𝐺   𝑓,𝑀   𝐵,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝑊
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑓)

Proof of Theorem gsumval3lem2
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.h . . . . . . 7 (𝜑𝐻:(1...𝑀)–1-1𝐴)
2 f1f 6798 . . . . . . 7 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)⟶𝐴)
31, 2syl 17 . . . . . 6 (𝜑𝐻:(1...𝑀)⟶𝐴)
4 fzfid 13993 . . . . . 6 (𝜑 → (1...𝑀) ∈ Fin)
53, 4fexd 7244 . . . . 5 (𝜑𝐻 ∈ V)
6 vex 3466 . . . . 5 𝑓 ∈ V
7 coexg 7942 . . . . 5 ((𝐻 ∈ V ∧ 𝑓 ∈ V) → (𝐻𝑓) ∈ V)
85, 6, 7sylancl 584 . . . 4 (𝜑 → (𝐻𝑓) ∈ V)
98ad2antrr 724 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓) ∈ V)
10 gsumval3.b . . . . 5 𝐵 = (Base‘𝐺)
11 gsumval3.0 . . . . 5 0 = (0g𝐺)
12 gsumval3.p . . . . 5 + = (+g𝐺)
13 gsumval3.z . . . . 5 𝑍 = (Cntz‘𝐺)
14 gsumval3.g . . . . 5 (𝜑𝐺 ∈ Mnd)
15 gsumval3.a . . . . 5 (𝜑𝐴𝑉)
16 gsumval3.f . . . . 5 (𝜑𝐹:𝐴𝐵)
17 gsumval3.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
18 gsumval3.m . . . . 5 (𝜑𝑀 ∈ ℕ)
19 gsumval3.n . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
20 gsumval3.w . . . . 5 𝑊 = ((𝐹𝐻) supp 0 )
2110, 11, 12, 13, 14, 15, 16, 17, 18, 1, 19, 20gsumval3lem1 19903 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
22 fzfi 13992 . . . . . . . 8 (1...𝑀) ∈ Fin
23 suppssdm 8191 . . . . . . . . . 10 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
2420, 23eqsstri 4014 . . . . . . . . 9 𝑊 ⊆ dom (𝐹𝐻)
2516, 3fcod 6754 . . . . . . . . 9 (𝜑 → (𝐹𝐻):(1...𝑀)⟶𝐵)
2624, 25fssdm 6747 . . . . . . . 8 (𝜑𝑊 ⊆ (1...𝑀))
27 ssfi 9211 . . . . . . . 8 (((1...𝑀) ∈ Fin ∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin)
2822, 26, 27sylancr 585 . . . . . . 7 (𝜑𝑊 ∈ Fin)
2928ad2antrr 724 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ∈ Fin)
301ad2antrr 724 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐻:(1...𝑀)–1-1𝐴)
3126ad2antrr 724 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀))
32 f1ores 6857 . . . . . . . 8 ((𝐻:(1...𝑀)–1-1𝐴𝑊 ⊆ (1...𝑀)) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
3330, 31, 32syl2anc 582 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
3420imaeq2i 6067 . . . . . . . . . 10 (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 ))
3516, 15fexd 7244 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
36 ovex 7457 . . . . . . . . . . . . . 14 (1...𝑀) ∈ V
37 fex 7243 . . . . . . . . . . . . . 14 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V)
383, 36, 37sylancl 584 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ V)
3935, 38jca 510 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ V ∧ 𝐻 ∈ V))
40 f1fun 6800 . . . . . . . . . . . . . 14 (𝐻:(1...𝑀)–1-1𝐴 → Fun 𝐻)
411, 40syl 17 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐻)
4241, 19jca 510 . . . . . . . . . . . 12 (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))
43 imacosupp 8224 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 )))
4439, 42, 43sylc 65 . . . . . . . . . . 11 (𝜑 → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
4544adantr 479 . . . . . . . . . 10 ((𝜑𝑊 ≠ ∅) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
4634, 45eqtrid 2778 . . . . . . . . 9 ((𝜑𝑊 ≠ ∅) → (𝐻𝑊) = (𝐹 supp 0 ))
4746adantr 479 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
4847f1oeq3d 6840 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
4933, 48mpbid 231 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
5029, 49hasheqf1od 14370 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (♯‘𝑊) = (♯‘(𝐹 supp 0 )))
5150fveq2d 6905 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))
5221, 51jca 510 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 )))))
53 f1oeq1 6831 . . . 4 (𝑔 = (𝐻𝑓) → (𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
54 coeq2 5865 . . . . . . 7 (𝑔 = (𝐻𝑓) → (𝐹𝑔) = (𝐹 ∘ (𝐻𝑓)))
5554seqeq3d 14029 . . . . . 6 (𝑔 = (𝐻𝑓) → seq1( + , (𝐹𝑔)) = seq1( + , (𝐹 ∘ (𝐻𝑓))))
5655fveq1d 6903 . . . . 5 (𝑔 = (𝐻𝑓) → (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))
5756eqeq2d 2737 . . . 4 (𝑔 = (𝐻𝑓) → ((seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 )))))
5853, 57anbi12d 630 . . 3 (𝑔 = (𝐻𝑓) → ((𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ ((𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))))
599, 52, 58spcedv 3584 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))))
6014ad2antrr 724 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐺 ∈ Mnd)
6115ad2antrr 724 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐴𝑉)
6216ad2antrr 724 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐹:𝐴𝐵)
6317ad2antrr 724 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
64 f1f1orn 6854 . . . . . . . . . . . . 13 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
651, 64syl 17 . . . . . . . . . . . 12 (𝜑𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
66 f1oen3g 8997 . . . . . . . . . . . 12 ((𝐻 ∈ V ∧ 𝐻:(1...𝑀)–1-1-onto→ran 𝐻) → (1...𝑀) ≈ ran 𝐻)
675, 65, 66syl2anc 582 . . . . . . . . . . 11 (𝜑 → (1...𝑀) ≈ ran 𝐻)
68 enfi 9224 . . . . . . . . . . 11 ((1...𝑀) ≈ ran 𝐻 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
6967, 68syl 17 . . . . . . . . . 10 (𝜑 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
7022, 69mpbii 232 . . . . . . . . 9 (𝜑 → ran 𝐻 ∈ Fin)
7170, 19ssfid 9301 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
7271ad2antrr 724 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ∈ Fin)
7320neeq1i 2995 . . . . . . . . . 10 (𝑊 ≠ ∅ ↔ ((𝐹𝐻) supp 0 ) ≠ ∅)
74 supp0cosupp0 8223 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((𝐹 supp 0 ) = ∅ → ((𝐹𝐻) supp 0 ) = ∅))
7574necon3d 2951 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → (((𝐹𝐻) supp 0 ) ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
7635, 38, 75syl2anc 582 . . . . . . . . . 10 (𝜑 → (((𝐹𝐻) supp 0 ) ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
7773, 76biimtrid 241 . . . . . . . . 9 (𝜑 → (𝑊 ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
7877imp 405 . . . . . . . 8 ((𝜑𝑊 ≠ ∅) → (𝐹 supp 0 ) ≠ ∅)
7978adantr 479 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ≠ ∅)
8019ad2antrr 724 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ⊆ ran 𝐻)
813frnd 6736 . . . . . . . . 9 (𝜑 → ran 𝐻𝐴)
8281ad2antrr 724 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ran 𝐻𝐴)
8380, 82sstrd 3990 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ⊆ 𝐴)
8410, 11, 12, 13, 60, 61, 62, 63, 72, 79, 83gsumval3eu 19902 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ∃!𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))))
85 iota1 6531 . . . . . 6 (∃!𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥))
8684, 85syl 17 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥))
87 eqid 2726 . . . . . . 7 (𝐹 supp 0 ) = (𝐹 supp 0 )
88 simprl 769 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ¬ 𝐴 ∈ ran ...)
8910, 11, 12, 13, 60, 61, 62, 63, 72, 79, 87, 88gsumval3a 19901 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))))
9089eqeq1d 2728 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐺 Σg 𝐹) = 𝑥 ↔ (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥))
9186, 90bitr4d 281 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥))
9291alrimiv 1923 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ∀𝑥(∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥))
93 fvex 6914 . . . 4 (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) ∈ V
94 eqeq1 2730 . . . . . . 7 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → (𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))))
9594anbi2d 628 . . . . . 6 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → ((𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))))
9695exbidv 1917 . . . . 5 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ ∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))))
97 eqeq2 2738 . . . . 5 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → ((𝐺 Σg 𝐹) = 𝑥 ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊))))
9896, 97bibi12d 344 . . . 4 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → ((∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥) ↔ (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))))
9993, 98spcv 3591 . . 3 (∀𝑥(∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊))))
10092, 99syl 17 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊))))
10159, 100mpbid 231 1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wal 1532   = wceq 1534  wex 1774  wcel 2099  ∃!weu 2557  wne 2930  Vcvv 3462  wss 3947  c0 4325   class class class wbr 5153  dom cdm 5682  ran crn 5683  cres 5684  cima 5685  ccom 5686  cio 6504  Fun wfun 6548  wf 6550  1-1wf1 6551  1-1-ontowf1o 6553  cfv 6554   Isom wiso 6555  (class class class)co 7424   supp csupp 8174  cen 8971  Fincfn 8974  1c1 11159   < clt 11298  cn 12264  ...cfz 13538  seqcseq 14021  chash 14347  Basecbs 17213  +gcplusg 17266  0gc0g 17454   Σg cgsu 17455  Mndcmnd 18727  Cntzccntz 19309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-0g 17456  df-gsum 17457  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-cntz 19311
This theorem is referenced by:  gsumval3  19905
  Copyright terms: Public domain W3C validator