MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem2 Structured version   Visualization version   GIF version

Theorem gsumval3lem2 19683
Description: Lemma 2 for gsumval3 19684. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3.m (𝜑𝑀 ∈ ℕ)
gsumval3.h (𝜑𝐻:(1...𝑀)–1-1𝐴)
gsumval3.n (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
gsumval3.w 𝑊 = ((𝐹𝐻) supp 0 )
Assertion
Ref Expression
gsumval3lem2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))
Distinct variable groups:   + ,𝑓   𝐴,𝑓   𝜑,𝑓   𝑓,𝐺   𝑓,𝑀   𝐵,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝑊
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑓)

Proof of Theorem gsumval3lem2
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.h . . . . . . 7 (𝜑𝐻:(1...𝑀)–1-1𝐴)
2 f1f 6738 . . . . . . 7 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)⟶𝐴)
31, 2syl 17 . . . . . 6 (𝜑𝐻:(1...𝑀)⟶𝐴)
4 fzfid 13878 . . . . . 6 (𝜑 → (1...𝑀) ∈ Fin)
53, 4fexd 7177 . . . . 5 (𝜑𝐻 ∈ V)
6 vex 3449 . . . . 5 𝑓 ∈ V
7 coexg 7866 . . . . 5 ((𝐻 ∈ V ∧ 𝑓 ∈ V) → (𝐻𝑓) ∈ V)
85, 6, 7sylancl 586 . . . 4 (𝜑 → (𝐻𝑓) ∈ V)
98ad2antrr 724 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓) ∈ V)
10 gsumval3.b . . . . 5 𝐵 = (Base‘𝐺)
11 gsumval3.0 . . . . 5 0 = (0g𝐺)
12 gsumval3.p . . . . 5 + = (+g𝐺)
13 gsumval3.z . . . . 5 𝑍 = (Cntz‘𝐺)
14 gsumval3.g . . . . 5 (𝜑𝐺 ∈ Mnd)
15 gsumval3.a . . . . 5 (𝜑𝐴𝑉)
16 gsumval3.f . . . . 5 (𝜑𝐹:𝐴𝐵)
17 gsumval3.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
18 gsumval3.m . . . . 5 (𝜑𝑀 ∈ ℕ)
19 gsumval3.n . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
20 gsumval3.w . . . . 5 𝑊 = ((𝐹𝐻) supp 0 )
2110, 11, 12, 13, 14, 15, 16, 17, 18, 1, 19, 20gsumval3lem1 19682 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
22 fzfi 13877 . . . . . . . 8 (1...𝑀) ∈ Fin
23 suppssdm 8108 . . . . . . . . . 10 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
2420, 23eqsstri 3978 . . . . . . . . 9 𝑊 ⊆ dom (𝐹𝐻)
2516, 3fcod 6694 . . . . . . . . 9 (𝜑 → (𝐹𝐻):(1...𝑀)⟶𝐵)
2624, 25fssdm 6688 . . . . . . . 8 (𝜑𝑊 ⊆ (1...𝑀))
27 ssfi 9117 . . . . . . . 8 (((1...𝑀) ∈ Fin ∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin)
2822, 26, 27sylancr 587 . . . . . . 7 (𝜑𝑊 ∈ Fin)
2928ad2antrr 724 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ∈ Fin)
301ad2antrr 724 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐻:(1...𝑀)–1-1𝐴)
3126ad2antrr 724 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀))
32 f1ores 6798 . . . . . . . 8 ((𝐻:(1...𝑀)–1-1𝐴𝑊 ⊆ (1...𝑀)) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
3330, 31, 32syl2anc 584 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
3420imaeq2i 6011 . . . . . . . . . 10 (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 ))
3516, 15fexd 7177 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
36 ovex 7390 . . . . . . . . . . . . . 14 (1...𝑀) ∈ V
37 fex 7176 . . . . . . . . . . . . . 14 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V)
383, 36, 37sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ V)
3935, 38jca 512 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ V ∧ 𝐻 ∈ V))
40 f1fun 6740 . . . . . . . . . . . . . 14 (𝐻:(1...𝑀)–1-1𝐴 → Fun 𝐻)
411, 40syl 17 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐻)
4241, 19jca 512 . . . . . . . . . . . 12 (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))
43 imacosupp 8140 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 )))
4439, 42, 43sylc 65 . . . . . . . . . . 11 (𝜑 → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
4544adantr 481 . . . . . . . . . 10 ((𝜑𝑊 ≠ ∅) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
4634, 45eqtrid 2788 . . . . . . . . 9 ((𝜑𝑊 ≠ ∅) → (𝐻𝑊) = (𝐹 supp 0 ))
4746adantr 481 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
4847f1oeq3d 6781 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
4933, 48mpbid 231 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
5029, 49hasheqf1od 14253 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (♯‘𝑊) = (♯‘(𝐹 supp 0 )))
5150fveq2d 6846 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))
5221, 51jca 512 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 )))))
53 f1oeq1 6772 . . . 4 (𝑔 = (𝐻𝑓) → (𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
54 coeq2 5814 . . . . . . 7 (𝑔 = (𝐻𝑓) → (𝐹𝑔) = (𝐹 ∘ (𝐻𝑓)))
5554seqeq3d 13914 . . . . . 6 (𝑔 = (𝐻𝑓) → seq1( + , (𝐹𝑔)) = seq1( + , (𝐹 ∘ (𝐻𝑓))))
5655fveq1d 6844 . . . . 5 (𝑔 = (𝐻𝑓) → (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))
5756eqeq2d 2747 . . . 4 (𝑔 = (𝐻𝑓) → ((seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 )))))
5853, 57anbi12d 631 . . 3 (𝑔 = (𝐻𝑓) → ((𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ ((𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))))
599, 52, 58spcedv 3557 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))))
6014ad2antrr 724 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐺 ∈ Mnd)
6115ad2antrr 724 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐴𝑉)
6216ad2antrr 724 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐹:𝐴𝐵)
6317ad2antrr 724 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
64 f1f1orn 6795 . . . . . . . . . . . . 13 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
651, 64syl 17 . . . . . . . . . . . 12 (𝜑𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
66 f1oen3g 8906 . . . . . . . . . . . 12 ((𝐻 ∈ V ∧ 𝐻:(1...𝑀)–1-1-onto→ran 𝐻) → (1...𝑀) ≈ ran 𝐻)
675, 65, 66syl2anc 584 . . . . . . . . . . 11 (𝜑 → (1...𝑀) ≈ ran 𝐻)
68 enfi 9134 . . . . . . . . . . 11 ((1...𝑀) ≈ ran 𝐻 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
6967, 68syl 17 . . . . . . . . . 10 (𝜑 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
7022, 69mpbii 232 . . . . . . . . 9 (𝜑 → ran 𝐻 ∈ Fin)
7170, 19ssfid 9211 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
7271ad2antrr 724 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ∈ Fin)
7320neeq1i 3008 . . . . . . . . . 10 (𝑊 ≠ ∅ ↔ ((𝐹𝐻) supp 0 ) ≠ ∅)
74 supp0cosupp0 8139 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((𝐹 supp 0 ) = ∅ → ((𝐹𝐻) supp 0 ) = ∅))
7574necon3d 2964 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → (((𝐹𝐻) supp 0 ) ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
7635, 38, 75syl2anc 584 . . . . . . . . . 10 (𝜑 → (((𝐹𝐻) supp 0 ) ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
7773, 76biimtrid 241 . . . . . . . . 9 (𝜑 → (𝑊 ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
7877imp 407 . . . . . . . 8 ((𝜑𝑊 ≠ ∅) → (𝐹 supp 0 ) ≠ ∅)
7978adantr 481 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ≠ ∅)
8019ad2antrr 724 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ⊆ ran 𝐻)
813frnd 6676 . . . . . . . . 9 (𝜑 → ran 𝐻𝐴)
8281ad2antrr 724 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ran 𝐻𝐴)
8380, 82sstrd 3954 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ⊆ 𝐴)
8410, 11, 12, 13, 60, 61, 62, 63, 72, 79, 83gsumval3eu 19681 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ∃!𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))))
85 iota1 6473 . . . . . 6 (∃!𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥))
8684, 85syl 17 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥))
87 eqid 2736 . . . . . . 7 (𝐹 supp 0 ) = (𝐹 supp 0 )
88 simprl 769 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ¬ 𝐴 ∈ ran ...)
8910, 11, 12, 13, 60, 61, 62, 63, 72, 79, 87, 88gsumval3a 19680 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))))
9089eqeq1d 2738 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐺 Σg 𝐹) = 𝑥 ↔ (℩𝑥𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))) = 𝑥))
9186, 90bitr4d 281 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥))
9291alrimiv 1930 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ∀𝑥(∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥))
93 fvex 6855 . . . 4 (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) ∈ V
94 eqeq1 2740 . . . . . . 7 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → (𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))))
9594anbi2d 629 . . . . . 6 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → ((𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))))
9695exbidv 1924 . . . . 5 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ ∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 ))))))
97 eqeq2 2748 . . . . 5 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → ((𝐺 Σg 𝐹) = 𝑥 ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊))))
9896, 97bibi12d 345 . . . 4 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) → ((∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥) ↔ (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))))
9993, 98spcv 3564 . . 3 (∀𝑥(∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊))))
10092, 99syl 17 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)) = (seq1( + , (𝐹𝑔))‘(♯‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊))))
10159, 100mpbid 231 1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wex 1781  wcel 2106  ∃!weu 2566  wne 2943  Vcvv 3445  wss 3910  c0 4282   class class class wbr 5105  dom cdm 5633  ran crn 5634  cres 5635  cima 5636  ccom 5637  cio 6446  Fun wfun 6490  wf 6492  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496   Isom wiso 6497  (class class class)co 7357   supp csupp 8092  cen 8880  Fincfn 8883  1c1 11052   < clt 11189  cn 12153  ...cfz 13424  seqcseq 13906  chash 14230  Basecbs 17083  +gcplusg 17133  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556  Cntzccntz 19095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-cntz 19097
This theorem is referenced by:  gsumval3  19684
  Copyright terms: Public domain W3C validator