MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsegvdeglem6 Structured version   Visualization version   GIF version

Theorem trlsegvdeglem6 30161
Description: Lemma for trlsegvdeg 30163. (Contributed by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeglem6 (𝜑 → dom (iEdg‘𝑋) ∈ Fin)

Proof of Theorem trlsegvdeglem6
StepHypRef Expression
1 trlsegvdeg.v . . 3 𝑉 = (Vtx‘𝐺)
2 trlsegvdeg.i . . 3 𝐼 = (iEdg‘𝐺)
3 trlsegvdeg.f . . 3 (𝜑 → Fun 𝐼)
4 trlsegvdeg.n . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
5 trlsegvdeg.u . . 3 (𝜑𝑈𝑉)
6 trlsegvdeg.w . . 3 (𝜑𝐹(Trails‘𝐺)𝑃)
7 trlsegvdeg.vx . . 3 (𝜑 → (Vtx‘𝑋) = 𝑉)
8 trlsegvdeg.vy . . 3 (𝜑 → (Vtx‘𝑌) = 𝑉)
9 trlsegvdeg.vz . . 3 (𝜑 → (Vtx‘𝑍) = 𝑉)
10 trlsegvdeg.ix . . 3 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
11 trlsegvdeg.iy . . 3 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
12 trlsegvdeg.iz . . 3 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12trlsegvdeglem4 30159 . 2 (𝜑 → dom (iEdg‘𝑋) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼))
142trlf1 29633 . . . . 5 (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
15 f1fun 6761 . . . . 5 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → Fun 𝐹)
166, 14, 153syl 18 . . . 4 (𝜑 → Fun 𝐹)
17 fzofi 13946 . . . 4 (0..^𝑁) ∈ Fin
18 imafi 9271 . . . 4 ((Fun 𝐹 ∧ (0..^𝑁) ∈ Fin) → (𝐹 “ (0..^𝑁)) ∈ Fin)
1916, 17, 18sylancl 586 . . 3 (𝜑 → (𝐹 “ (0..^𝑁)) ∈ Fin)
20 infi 9220 . . 3 ((𝐹 “ (0..^𝑁)) ∈ Fin → ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∈ Fin)
2119, 20syl 17 . 2 (𝜑 → ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∈ Fin)
2213, 21eqeltrd 2829 1 (𝜑 → dom (iEdg‘𝑋) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3916  {csn 4592  cop 4598   class class class wbr 5110  dom cdm 5641  cres 5643  cima 5644  Fun wfun 6508  1-1wf1 6511  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075  ...cfz 13475  ..^cfzo 13622  chash 14302  Vtxcvtx 28930  iEdgciedg 28931  Trailsctrls 29625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-wlks 29534  df-trls 29627
This theorem is referenced by:  trlsegvdeg  30163  eupth2lem3lem1  30164
  Copyright terms: Public domain W3C validator