MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsegvdeglem6 Structured version   Visualization version   GIF version

Theorem trlsegvdeglem6 30257
Description: Lemma for trlsegvdeg 30259. (Contributed by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeglem6 (𝜑 → dom (iEdg‘𝑋) ∈ Fin)

Proof of Theorem trlsegvdeglem6
StepHypRef Expression
1 trlsegvdeg.v . . 3 𝑉 = (Vtx‘𝐺)
2 trlsegvdeg.i . . 3 𝐼 = (iEdg‘𝐺)
3 trlsegvdeg.f . . 3 (𝜑 → Fun 𝐼)
4 trlsegvdeg.n . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
5 trlsegvdeg.u . . 3 (𝜑𝑈𝑉)
6 trlsegvdeg.w . . 3 (𝜑𝐹(Trails‘𝐺)𝑃)
7 trlsegvdeg.vx . . 3 (𝜑 → (Vtx‘𝑋) = 𝑉)
8 trlsegvdeg.vy . . 3 (𝜑 → (Vtx‘𝑌) = 𝑉)
9 trlsegvdeg.vz . . 3 (𝜑 → (Vtx‘𝑍) = 𝑉)
10 trlsegvdeg.ix . . 3 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
11 trlsegvdeg.iy . . 3 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
12 trlsegvdeg.iz . . 3 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12trlsegvdeglem4 30255 . 2 (𝜑 → dom (iEdg‘𝑋) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼))
142trlf1 29734 . . . . 5 (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
15 f1fun 6819 . . . . 5 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → Fun 𝐹)
166, 14, 153syl 18 . . . 4 (𝜑 → Fun 𝐹)
17 fzofi 14025 . . . 4 (0..^𝑁) ∈ Fin
18 imafi 9381 . . . 4 ((Fun 𝐹 ∧ (0..^𝑁) ∈ Fin) → (𝐹 “ (0..^𝑁)) ∈ Fin)
1916, 17, 18sylancl 585 . . 3 (𝜑 → (𝐹 “ (0..^𝑁)) ∈ Fin)
20 infi 9330 . . 3 ((𝐹 “ (0..^𝑁)) ∈ Fin → ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∈ Fin)
2119, 20syl 17 . 2 (𝜑 → ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∈ Fin)
2213, 21eqeltrd 2844 1 (𝜑 → dom (iEdg‘𝑋) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cin 3975  {csn 4648  cop 4654   class class class wbr 5166  dom cdm 5700  cres 5702  cima 5703  Fun wfun 6567  1-1wf1 6570  cfv 6573  (class class class)co 7448  Fincfn 9003  0cc0 11184  ...cfz 13567  ..^cfzo 13711  chash 14379  Vtxcvtx 29031  iEdgciedg 29032  Trailsctrls 29726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-wlks 29635  df-trls 29728
This theorem is referenced by:  trlsegvdeg  30259  eupth2lem3lem1  30260
  Copyright terms: Public domain W3C validator