| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trlsegvdeglem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for trlsegvdeg 30163. (Contributed by AV, 21-Feb-2021.) |
| Ref | Expression |
|---|---|
| trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
| trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
| trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
| trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
| trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
| trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
| Ref | Expression |
|---|---|
| trlsegvdeglem6 | ⊢ (𝜑 → dom (iEdg‘𝑋) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | trlsegvdeg.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | trlsegvdeg.f | . . 3 ⊢ (𝜑 → Fun 𝐼) | |
| 4 | trlsegvdeg.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
| 5 | trlsegvdeg.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 6 | trlsegvdeg.w | . . 3 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
| 7 | trlsegvdeg.vx | . . 3 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) | |
| 8 | trlsegvdeg.vy | . . 3 ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) | |
| 9 | trlsegvdeg.vz | . . 3 ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) | |
| 10 | trlsegvdeg.ix | . . 3 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
| 11 | trlsegvdeg.iy | . . 3 ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
| 12 | trlsegvdeg.iz | . . 3 ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | trlsegvdeglem4 30159 | . 2 ⊢ (𝜑 → dom (iEdg‘𝑋) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) |
| 14 | 2 | trlf1 29633 | . . . . 5 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
| 15 | f1fun 6761 | . . . . 5 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → Fun 𝐹) | |
| 16 | 6, 14, 15 | 3syl 18 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
| 17 | fzofi 13946 | . . . 4 ⊢ (0..^𝑁) ∈ Fin | |
| 18 | imafi 9271 | . . . 4 ⊢ ((Fun 𝐹 ∧ (0..^𝑁) ∈ Fin) → (𝐹 “ (0..^𝑁)) ∈ Fin) | |
| 19 | 16, 17, 18 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐹 “ (0..^𝑁)) ∈ Fin) |
| 20 | infi 9220 | . . 3 ⊢ ((𝐹 “ (0..^𝑁)) ∈ Fin → ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∈ Fin) | |
| 21 | 19, 20 | syl 17 | . 2 ⊢ (𝜑 → ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∈ Fin) |
| 22 | 13, 21 | eqeltrd 2829 | 1 ⊢ (𝜑 → dom (iEdg‘𝑋) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 {csn 4592 〈cop 4598 class class class wbr 5110 dom cdm 5641 ↾ cres 5643 “ cima 5644 Fun wfun 6508 –1-1→wf1 6511 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 0cc0 11075 ...cfz 13475 ..^cfzo 13622 ♯chash 14302 Vtxcvtx 28930 iEdgciedg 28931 Trailsctrls 29625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-wlks 29534 df-trls 29627 |
| This theorem is referenced by: trlsegvdeg 30163 eupth2lem3lem1 30164 |
| Copyright terms: Public domain | W3C validator |