Step | Hyp | Ref
| Expression |
1 | | f1f 6654 |
. . 3
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
2 | | fo2ndf 7933 |
. . 3
⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹–onto→ran 𝐹) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–onto→ran 𝐹) |
4 | | f2ndf 7932 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
5 | 1, 4 | syl 17 |
. . . 4
⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
6 | | fssxp 6612 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
7 | 1, 6 | syl 17 |
. . . . . 6
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
8 | | ssel2 3912 |
. . . . . . . . . . 11
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ (𝐴 × 𝐵)) |
9 | | elxp2 5604 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑎 ∈ 𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉) |
10 | 8, 9 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑥 ∈ 𝐹) → ∃𝑎 ∈ 𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉) |
11 | | ssel2 3912 |
. . . . . . . . . . 11
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑦 ∈ 𝐹) → 𝑦 ∈ (𝐴 × 𝐵)) |
12 | | elxp2 5604 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐴 × 𝐵) ↔ ∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉) |
13 | 11, 12 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑦 ∈ 𝐹) → ∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉) |
14 | 10, 13 | anim12dan 618 |
. . . . . . . . 9
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (∃𝑎 ∈ 𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉 ∧ ∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉)) |
15 | | fvres 6775 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(〈𝑎, 𝑣〉 ∈ 𝐹 → ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = (2nd ‘〈𝑎, 𝑣〉)) |
16 | 15 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = (2nd ‘〈𝑎, 𝑣〉)) |
17 | | fvres 6775 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(〈𝑏, 𝑤〉 ∈ 𝐹 → ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) = (2nd ‘〈𝑏, 𝑤〉)) |
18 | 17 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) = (2nd ‘〈𝑏, 𝑤〉)) |
19 | 16, 18 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) ↔ (2nd
‘〈𝑎, 𝑣〉) = (2nd
‘〈𝑏, 𝑤〉))) |
20 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑎 ∈ V |
21 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑣 ∈ V |
22 | 20, 21 | op2nd 7813 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(2nd ‘〈𝑎, 𝑣〉) = 𝑣 |
23 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑏 ∈ V |
24 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑤 ∈ V |
25 | 23, 24 | op2nd 7813 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(2nd ‘〈𝑏, 𝑤〉) = 𝑤 |
26 | 22, 25 | eqeq12i 2756 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((2nd ‘〈𝑎, 𝑣〉) = (2nd ‘〈𝑏, 𝑤〉) ↔ 𝑣 = 𝑤) |
27 | | f1fun 6656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
28 | | funopfv 6803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (Fun
𝐹 → (〈𝑎, 𝑣〉 ∈ 𝐹 → (𝐹‘𝑎) = 𝑣)) |
29 | | funopfv 6803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (Fun
𝐹 → (〈𝑏, 𝑤〉 ∈ 𝐹 → (𝐹‘𝑏) = 𝑤)) |
30 | 28, 29 | anim12d 608 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (Fun
𝐹 → ((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → ((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤))) |
31 | 27, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹:𝐴–1-1→𝐵 → ((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → ((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤))) |
32 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐹‘𝑎) = 𝑣 ↔ 𝑣 = (𝐹‘𝑎)) |
33 | 32 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐹‘𝑎) = 𝑣 → 𝑣 = (𝐹‘𝑎)) |
34 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐹‘𝑏) = 𝑤 ↔ 𝑤 = (𝐹‘𝑏)) |
35 | 34 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐹‘𝑏) = 𝑤 → 𝑤 = (𝐹‘𝑏)) |
36 | 33, 35 | eqeqan12d 2752 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝑣 = 𝑤 ↔ (𝐹‘𝑎) = (𝐹‘𝑏))) |
37 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) → 𝑎 ∈ 𝐴) |
38 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) → 𝑏 ∈ 𝐴) |
39 | 37, 38 | anim12i 612 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) |
40 | | f1veqaeq 7111 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
41 | 39, 40 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
42 | | opeq12 4803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑎 = 𝑏 ∧ 𝑣 = 𝑤) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉) |
43 | 42 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑎 = 𝑏 → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)) |
44 | 41, 43 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((𝐹‘𝑎) = (𝐹‘𝑏) → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
45 | 44 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (𝑣 = 𝑤 → ((𝐹‘𝑎) = (𝐹‘𝑏) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
46 | 45 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝐹:𝐴–1-1→𝐵 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → ((𝐹‘𝑎) = (𝐹‘𝑏) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
47 | 46 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐹‘𝑎) = (𝐹‘𝑏) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
48 | 36, 47 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝑣 = 𝑤 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))))) |
49 | 48 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑣 = 𝑤 → (𝑣 = 𝑤 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))))) |
50 | 49 | pm2.43i 52 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑣 = 𝑤 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
51 | 50 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹:𝐴–1-1→𝐵 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
52 | 51 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹:𝐴–1-1→𝐵 → (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
53 | 31, 52 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐹:𝐴–1-1→𝐵 → ((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
54 | 53 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → ((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → (𝐹:𝐴–1-1→𝐵 → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
55 | 54 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (𝐹:𝐴–1-1→𝐵 → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
56 | 55 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (𝑣 = 𝑤 → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
57 | 26, 56 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((2nd
‘〈𝑎, 𝑣〉) = (2nd
‘〈𝑏, 𝑤〉) → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
58 | 19, 57 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
59 | 58 | com23 86 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
60 | 59 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢
((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
61 | 60 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
62 | 61 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
63 | 62 | ad4ant13 747 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
64 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 〈𝑎, 𝑣〉 → (𝑥 ∈ 𝐹 ↔ 〈𝑎, 𝑣〉 ∈ 𝐹)) |
65 | 64 | ad2antlr 723 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑥 ∈ 𝐹 ↔ 〈𝑎, 𝑣〉 ∈ 𝐹)) |
66 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈𝑏, 𝑤〉 → (𝑦 ∈ 𝐹 ↔ 〈𝑏, 𝑤〉 ∈ 𝐹)) |
67 | 65, 66 | bi2anan9 635 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) ↔ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹))) |
68 | 67 | anbi2d 628 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)))) |
69 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈𝑎, 𝑣〉 → ((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉)) |
70 | 69 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → ((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉)) |
71 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 〈𝑏, 𝑤〉 → ((2nd ↾ 𝐹)‘𝑦) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉)) |
72 | 70, 71 | eqeqan12d 2752 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → (((2nd ↾
𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) ↔ ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉))) |
73 | | simpllr 772 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → 𝑥 = 〈𝑎, 𝑣〉) |
74 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → 𝑦 = 〈𝑏, 𝑤〉) |
75 | 73, 74 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → (𝑥 = 𝑦 ↔ 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)) |
76 | 72, 75 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((((2nd ↾
𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦) ↔ (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
77 | 76 | imbi2d 340 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
78 | 63, 68, 77 | 3imtr4d 293 |
. . . . . . . . . . . . . 14
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))) |
79 | 78 | ex 412 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑦 = 〈𝑏, 𝑤〉 → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))))) |
80 | 79 | rexlimdvva 3222 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) → (∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉 → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))))) |
81 | 80 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) → (𝑥 = 〈𝑎, 𝑣〉 → (∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉 → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))))) |
82 | 81 | rexlimivv 3220 |
. . . . . . . . . 10
⊢
(∃𝑎 ∈
𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉 → (∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉 → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))))) |
83 | 82 | imp 406 |
. . . . . . . . 9
⊢
((∃𝑎 ∈
𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉 ∧ ∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))) |
84 | 14, 83 | mpcom 38 |
. . . . . . . 8
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))) |
85 | 84 | ex 412 |
. . . . . . 7
⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))) |
86 | 85 | com23 86 |
. . . . . 6
⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (𝐹:𝐴–1-1→𝐵 → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))) |
87 | 7, 86 | mpcom 38 |
. . . . 5
⊢ (𝐹:𝐴–1-1→𝐵 → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))) |
88 | 87 | ralrimivv 3113 |
. . . 4
⊢ (𝐹:𝐴–1-1→𝐵 → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)) |
89 | | dff13 7109 |
. . . 4
⊢
((2nd ↾ 𝐹):𝐹–1-1→𝐵 ↔ ((2nd ↾ 𝐹):𝐹⟶𝐵 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))) |
90 | 5, 88, 89 | sylanbrc 582 |
. . 3
⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1→𝐵) |
91 | | df-f1 6423 |
. . . 4
⊢
((2nd ↾ 𝐹):𝐹–1-1→𝐵 ↔ ((2nd ↾ 𝐹):𝐹⟶𝐵 ∧ Fun ◡(2nd ↾ 𝐹))) |
92 | 91 | simprbi 496 |
. . 3
⊢
((2nd ↾ 𝐹):𝐹–1-1→𝐵 → Fun ◡(2nd ↾ 𝐹)) |
93 | 90, 92 | syl 17 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡(2nd ↾ 𝐹)) |
94 | | dff1o3 6706 |
. 2
⊢
((2nd ↾ 𝐹):𝐹–1-1-onto→ran
𝐹 ↔ ((2nd
↾ 𝐹):𝐹–onto→ran 𝐹 ∧ Fun ◡(2nd ↾ 𝐹))) |
95 | 3, 93, 94 | sylanbrc 582 |
1
⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1-onto→ran
𝐹) |