| Step | Hyp | Ref
| Expression |
| 1 | | fzofi 13997 |
. . . . 5
⊢
(0..^𝑁) ∈
Fin |
| 2 | | diffi 9194 |
. . . . 5
⊢
((0..^𝑁) ∈ Fin
→ ((0..^𝑁) ∖ dom
𝑢) ∈
Fin) |
| 3 | 1, 2 | mp1i 13 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → ((0..^𝑁) ∖ dom 𝑢) ∈ Fin) |
| 4 | | cycpmconjs.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ Fin) |
| 5 | | diffi 9194 |
. . . . . 6
⊢ (𝐷 ∈ Fin → (𝐷 ∖ ran 𝑢) ∈ Fin) |
| 6 | 4, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐷 ∖ ran 𝑢) ∈ Fin) |
| 7 | 6 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (𝐷 ∖ ran 𝑢) ∈ Fin) |
| 8 | | cycpmconjs.n |
. . . . . . . . . 10
⊢ 𝑁 = (♯‘𝐷) |
| 9 | | hashcl 14379 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ Fin →
(♯‘𝐷) ∈
ℕ0) |
| 10 | 4, 9 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐷) ∈
ℕ0) |
| 11 | 8, 10 | eqeltrid 2839 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 12 | | hashfzo0 14453 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (♯‘(0..^𝑁)) = 𝑁) |
| 13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (♯‘(0..^𝑁)) = 𝑁) |
| 14 | 13, 8 | eqtrdi 2787 |
. . . . . . 7
⊢ (𝜑 → (♯‘(0..^𝑁)) = (♯‘𝐷)) |
| 15 | 14 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘(0..^𝑁)) = (♯‘𝐷)) |
| 16 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) |
| 17 | 16 | elin1d 4184 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 18 | | elrabi 3671 |
. . . . . . . . 9
⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢 ∈ Word 𝐷) |
| 19 | | wrdfin 14555 |
. . . . . . . . 9
⊢ (𝑢 ∈ Word 𝐷 → 𝑢 ∈ Fin) |
| 20 | 17, 18, 19 | 3syl 18 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 ∈ Fin) |
| 21 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑢 → 𝑤 = 𝑢) |
| 22 | | dmeq 5888 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢) |
| 23 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑢 → 𝐷 = 𝐷) |
| 24 | 21, 22, 23 | f1eq123d 6815 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑢 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑢:dom 𝑢–1-1→𝐷)) |
| 25 | 24 | elrab 3676 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷)) |
| 26 | 25 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢:dom 𝑢–1-1→𝐷) |
| 27 | 17, 26 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢:dom 𝑢–1-1→𝐷) |
| 28 | | f1fun 6781 |
. . . . . . . . 9
⊢ (𝑢:dom 𝑢–1-1→𝐷 → Fun 𝑢) |
| 29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → Fun 𝑢) |
| 30 | | hashfun 14460 |
. . . . . . . . 9
⊢ (𝑢 ∈ Fin → (Fun 𝑢 ↔ (♯‘𝑢) = (♯‘dom 𝑢))) |
| 31 | 30 | biimpa 476 |
. . . . . . . 8
⊢ ((𝑢 ∈ Fin ∧ Fun 𝑢) → (♯‘𝑢) = (♯‘dom 𝑢)) |
| 32 | 20, 29, 31 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘𝑢) = (♯‘dom 𝑢)) |
| 33 | 16 | dmexd 7904 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → dom 𝑢 ∈ V) |
| 34 | | hashf1rn 14375 |
. . . . . . . 8
⊢ ((dom
𝑢 ∈ V ∧ 𝑢:dom 𝑢–1-1→𝐷) → (♯‘𝑢) = (♯‘ran 𝑢)) |
| 35 | 33, 27, 34 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘𝑢) = (♯‘ran 𝑢)) |
| 36 | 32, 35 | eqtr3d 2773 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘dom 𝑢) = (♯‘ran 𝑢)) |
| 37 | 15, 36 | oveq12d 7428 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → ((♯‘(0..^𝑁)) − (♯‘dom
𝑢)) = ((♯‘𝐷) − (♯‘ran
𝑢))) |
| 38 | 1 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (0..^𝑁) ∈ Fin) |
| 39 | | wrddm 14544 |
. . . . . . . 8
⊢ (𝑢 ∈ Word 𝐷 → dom 𝑢 = (0..^(♯‘𝑢))) |
| 40 | 17, 18, 39 | 3syl 18 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → dom 𝑢 = (0..^(♯‘𝑢))) |
| 41 | | hashcl 14379 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ Fin →
(♯‘𝑢) ∈
ℕ0) |
| 42 | 17, 18, 19, 41 | 4syl 19 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘𝑢) ∈
ℕ0) |
| 43 | 42 | nn0zd 12619 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘𝑢) ∈ ℤ) |
| 44 | 10 | nn0zd 12619 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐷) ∈
ℤ) |
| 45 | 8, 44 | eqeltrid 2839 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑁 ∈ ℤ) |
| 47 | 4 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝐷 ∈ Fin) |
| 48 | | wrdf 14541 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ Word 𝐷 → 𝑢:(0..^(♯‘𝑢))⟶𝐷) |
| 49 | 48 | frnd 6719 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ Word 𝐷 → ran 𝑢 ⊆ 𝐷) |
| 50 | 17, 18, 49 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → ran 𝑢 ⊆ 𝐷) |
| 51 | | hashss 14432 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ Fin ∧ ran 𝑢 ⊆ 𝐷) → (♯‘ran 𝑢) ≤ (♯‘𝐷)) |
| 52 | 47, 50, 51 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘ran 𝑢) ≤ (♯‘𝐷)) |
| 53 | 8 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑁 = (♯‘𝐷)) |
| 54 | 52, 35, 53 | 3brtr4d 5156 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘𝑢) ≤ 𝑁) |
| 55 | | eluz1 12861 |
. . . . . . . . . 10
⊢
((♯‘𝑢)
∈ ℤ → (𝑁
∈ (ℤ≥‘(♯‘𝑢)) ↔ (𝑁 ∈ ℤ ∧ (♯‘𝑢) ≤ 𝑁))) |
| 56 | 55 | biimpar 477 |
. . . . . . . . 9
⊢
(((♯‘𝑢)
∈ ℤ ∧ (𝑁
∈ ℤ ∧ (♯‘𝑢) ≤ 𝑁)) → 𝑁 ∈
(ℤ≥‘(♯‘𝑢))) |
| 57 | 43, 46, 54, 56 | syl12anc 836 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑁 ∈
(ℤ≥‘(♯‘𝑢))) |
| 58 | | fzoss2 13709 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘(♯‘𝑢)) → (0..^(♯‘𝑢)) ⊆ (0..^𝑁)) |
| 59 | 57, 58 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (0..^(♯‘𝑢)) ⊆ (0..^𝑁)) |
| 60 | 40, 59 | eqsstrd 3998 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → dom 𝑢 ⊆ (0..^𝑁)) |
| 61 | | hashssdif 14435 |
. . . . . 6
⊢
(((0..^𝑁) ∈ Fin
∧ dom 𝑢 ⊆
(0..^𝑁)) →
(♯‘((0..^𝑁)
∖ dom 𝑢)) =
((♯‘(0..^𝑁))
− (♯‘dom 𝑢))) |
| 62 | 38, 60, 61 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘((0..^𝑁) ∖ dom 𝑢)) = ((♯‘(0..^𝑁)) − (♯‘dom 𝑢))) |
| 63 | | hashssdif 14435 |
. . . . . 6
⊢ ((𝐷 ∈ Fin ∧ ran 𝑢 ⊆ 𝐷) → (♯‘(𝐷 ∖ ran 𝑢)) = ((♯‘𝐷) − (♯‘ran 𝑢))) |
| 64 | 47, 50, 63 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘(𝐷 ∖ ran 𝑢)) = ((♯‘𝐷) − (♯‘ran 𝑢))) |
| 65 | 37, 62, 64 | 3eqtr4d 2781 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘((0..^𝑁) ∖ dom 𝑢)) = (♯‘(𝐷 ∖ ran 𝑢))) |
| 66 | | hasheqf1o 14372 |
. . . . 5
⊢
((((0..^𝑁) ∖
dom 𝑢) ∈ Fin ∧
(𝐷 ∖ ran 𝑢) ∈ Fin) →
((♯‘((0..^𝑁)
∖ dom 𝑢)) =
(♯‘(𝐷 ∖
ran 𝑢)) ↔ ∃𝑓 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢))) |
| 67 | 66 | biimpa 476 |
. . . 4
⊢
(((((0..^𝑁) ∖
dom 𝑢) ∈ Fin ∧
(𝐷 ∖ ran 𝑢) ∈ Fin) ∧
(♯‘((0..^𝑁)
∖ dom 𝑢)) =
(♯‘(𝐷 ∖
ran 𝑢))) →
∃𝑓 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) |
| 68 | 3, 7, 65, 67 | syl21anc 837 |
. . 3
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → ∃𝑓 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) |
| 69 | 27 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑢:dom 𝑢–1-1→𝐷) |
| 70 | | f1f1orn 6834 |
. . . . . . 7
⊢ (𝑢:dom 𝑢–1-1→𝐷 → 𝑢:dom 𝑢–1-1-onto→ran
𝑢) |
| 71 | 69, 70 | syl 17 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑢:dom 𝑢–1-1-onto→ran
𝑢) |
| 72 | | simpr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) |
| 73 | | disjdif 4452 |
. . . . . . 7
⊢ (dom
𝑢 ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅ |
| 74 | 73 | a1i 11 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (dom 𝑢 ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅) |
| 75 | | disjdif 4452 |
. . . . . . 7
⊢ (ran
𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅ |
| 76 | 75 | a1i 11 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (ran 𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅) |
| 77 | | f1oun 6842 |
. . . . . 6
⊢ (((𝑢:dom 𝑢–1-1-onto→ran
𝑢 ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) ∧ ((dom 𝑢 ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅ ∧ (ran 𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅)) → (𝑢 ∪ 𝑓):(dom 𝑢 ∪ ((0..^𝑁) ∖ dom 𝑢))–1-1-onto→(ran
𝑢 ∪ (𝐷 ∖ ran 𝑢))) |
| 78 | 71, 72, 74, 76, 77 | syl22anc 838 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑢 ∪ 𝑓):(dom 𝑢 ∪ ((0..^𝑁) ∖ dom 𝑢))–1-1-onto→(ran
𝑢 ∪ (𝐷 ∖ ran 𝑢))) |
| 79 | | eqidd 2737 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑢 ∪ 𝑓) = (𝑢 ∪ 𝑓)) |
| 80 | 60 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → dom 𝑢 ⊆ (0..^𝑁)) |
| 81 | | undif 4462 |
. . . . . . 7
⊢ (dom
𝑢 ⊆ (0..^𝑁) ↔ (dom 𝑢 ∪ ((0..^𝑁) ∖ dom 𝑢)) = (0..^𝑁)) |
| 82 | 80, 81 | sylib 218 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (dom 𝑢 ∪ ((0..^𝑁) ∖ dom 𝑢)) = (0..^𝑁)) |
| 83 | | undif 4462 |
. . . . . . . 8
⊢ (ran
𝑢 ⊆ 𝐷 ↔ (ran 𝑢 ∪ (𝐷 ∖ ran 𝑢)) = 𝐷) |
| 84 | 50, 83 | sylib 218 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (ran 𝑢 ∪ (𝐷 ∖ ran 𝑢)) = 𝐷) |
| 85 | 84 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (ran 𝑢 ∪ (𝐷 ∖ ran 𝑢)) = 𝐷) |
| 86 | 79, 82, 85 | f1oeq123d 6817 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑢 ∪ 𝑓):(dom 𝑢 ∪ ((0..^𝑁) ∖ dom 𝑢))–1-1-onto→(ran
𝑢 ∪ (𝐷 ∖ ran 𝑢)) ↔ (𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷)) |
| 87 | 78, 86 | mpbid 232 |
. . . 4
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷) |
| 88 | | f1ocnv 6835 |
. . . . . . . . . 10
⊢ ((𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷 → ◡(𝑢 ∪ 𝑓):𝐷–1-1-onto→(0..^𝑁)) |
| 89 | 87, 88 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ◡(𝑢 ∪ 𝑓):𝐷–1-1-onto→(0..^𝑁)) |
| 90 | | cycpmconjs.p |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ (0...𝑁)) |
| 91 | | cycpmconjs.c |
. . . . . . . . . . . . . 14
⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) |
| 92 | | cycpmconjs.s |
. . . . . . . . . . . . . 14
⊢ 𝑆 = (SymGrp‘𝐷) |
| 93 | | cycpmconjs.m |
. . . . . . . . . . . . . 14
⊢ 𝑀 = (toCyc‘𝐷) |
| 94 | | cycpmconjs.b |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (Base‘𝑆) |
| 95 | 91, 92, 8, 93, 94 | cycpmgcl 33169 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) |
| 96 | 4, 90, 95 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 97 | | cycpmconjs.q |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ 𝐶) |
| 98 | 96, 97 | sseldd 3964 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| 99 | 92, 94 | symgbasf1o 19361 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ 𝐵 → 𝑄:𝐷–1-1-onto→𝐷) |
| 100 | 98, 99 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄:𝐷–1-1-onto→𝐷) |
| 101 | 100 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑄:𝐷–1-1-onto→𝐷) |
| 102 | | f1oco 6846 |
. . . . . . . . 9
⊢ ((◡(𝑢 ∪ 𝑓):𝐷–1-1-onto→(0..^𝑁) ∧ 𝑄:𝐷–1-1-onto→𝐷) → (◡(𝑢 ∪ 𝑓) ∘ 𝑄):𝐷–1-1-onto→(0..^𝑁)) |
| 103 | 89, 101, 102 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡(𝑢 ∪ 𝑓) ∘ 𝑄):𝐷–1-1-onto→(0..^𝑁)) |
| 104 | | f1oco 6846 |
. . . . . . . 8
⊢ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄):𝐷–1-1-onto→(0..^𝑁) ∧ (𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)):(0..^𝑁)–1-1-onto→(0..^𝑁)) |
| 105 | 103, 87, 104 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)):(0..^𝑁)–1-1-onto→(0..^𝑁)) |
| 106 | | f1ofun 6825 |
. . . . . . 7
⊢ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)):(0..^𝑁)–1-1-onto→(0..^𝑁) → Fun ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓))) |
| 107 | | funrel 6558 |
. . . . . . 7
⊢ (Fun
((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) → Rel ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓))) |
| 108 | 105, 106,
107 | 3syl 18 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → Rel ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓))) |
| 109 | | f1odm 6827 |
. . . . . . . 8
⊢ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)):(0..^𝑁)–1-1-onto→(0..^𝑁) → dom ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = (0..^𝑁)) |
| 110 | 105, 109 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → dom ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = (0..^𝑁)) |
| 111 | | fzosplit 13714 |
. . . . . . . . 9
⊢ (𝑃 ∈ (0...𝑁) → (0..^𝑁) = ((0..^𝑃) ∪ (𝑃..^𝑁))) |
| 112 | 90, 111 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0..^𝑁) = ((0..^𝑃) ∪ (𝑃..^𝑁))) |
| 113 | 112 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (0..^𝑁) = ((0..^𝑃) ∪ (𝑃..^𝑁))) |
| 114 | 110, 113 | eqtrd 2771 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → dom ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((0..^𝑃) ∪ (𝑃..^𝑁))) |
| 115 | | fzodisj 13715 |
. . . . . . 7
⊢
((0..^𝑃) ∩
(𝑃..^𝑁)) = ∅ |
| 116 | | reldisjun 6024 |
. . . . . . 7
⊢ ((Rel
((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ∧ dom ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((0..^𝑃) ∪ (𝑃..^𝑁)) ∧ ((0..^𝑃) ∩ (𝑃..^𝑁)) = ∅) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) ∪ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁)))) |
| 117 | 115, 116 | mp3an3 1452 |
. . . . . 6
⊢ ((Rel
((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ∧ dom ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((0..^𝑃) ∪ (𝑃..^𝑁))) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) ∪ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁)))) |
| 118 | 108, 114,
117 | syl2anc 584 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) ∪ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁)))) |
| 119 | | resco 6244 |
. . . . . . . 8
⊢ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ ((𝑢 ∪ 𝑓) ↾ (0..^𝑃))) |
| 120 | 119 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ ((𝑢 ∪ 𝑓) ↾ (0..^𝑃)))) |
| 121 | 17, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 ∈ Word 𝐷) |
| 122 | | wrdfn 14551 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ Word 𝐷 → 𝑢 Fn (0..^(♯‘𝑢))) |
| 123 | 121, 122 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 Fn (0..^(♯‘𝑢))) |
| 124 | 16 | elin2d 4185 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 ∈ (◡♯ “ {𝑃})) |
| 125 | | hashf 14361 |
. . . . . . . . . . . . . . . 16
⊢
♯:V⟶(ℕ0 ∪ {+∞}) |
| 126 | | ffn 6711 |
. . . . . . . . . . . . . . . 16
⊢
(♯:V⟶(ℕ0 ∪ {+∞}) → ♯
Fn V) |
| 127 | | fniniseg 7055 |
. . . . . . . . . . . . . . . 16
⊢ (♯
Fn V → (𝑢 ∈
(◡♯ “ {𝑃}) ↔ (𝑢 ∈ V ∧ (♯‘𝑢) = 𝑃))) |
| 128 | 125, 126,
127 | mp2b 10 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ (◡♯ “ {𝑃}) ↔ (𝑢 ∈ V ∧ (♯‘𝑢) = 𝑃)) |
| 129 | 128 | simprbi 496 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ (◡♯ “ {𝑃}) → (♯‘𝑢) = 𝑃) |
| 130 | 124, 129 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘𝑢) = 𝑃) |
| 131 | 130 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (0..^(♯‘𝑢)) = (0..^𝑃)) |
| 132 | 131 | fneq2d 6637 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (𝑢 Fn (0..^(♯‘𝑢)) ↔ 𝑢 Fn (0..^𝑃))) |
| 133 | 123, 132 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 Fn (0..^𝑃)) |
| 134 | 133 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑢 Fn (0..^𝑃)) |
| 135 | | f1ofn 6824 |
. . . . . . . . . 10
⊢ (𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢) → 𝑓 Fn ((0..^𝑁) ∖ dom 𝑢)) |
| 136 | 72, 135 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑓 Fn ((0..^𝑁) ∖ dom 𝑢)) |
| 137 | 40, 131 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → dom 𝑢 = (0..^𝑃)) |
| 138 | 137 | ineq1d 4199 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (dom 𝑢 ∩ ((0..^𝑁) ∖ dom 𝑢)) = ((0..^𝑃) ∩ ((0..^𝑁) ∖ dom 𝑢))) |
| 139 | 73 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (dom 𝑢 ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅) |
| 140 | 138, 139 | eqtr3d 2773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → ((0..^𝑃) ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅) |
| 141 | 140 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((0..^𝑃) ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅) |
| 142 | | fnunres1 6655 |
. . . . . . . . 9
⊢ ((𝑢 Fn (0..^𝑃) ∧ 𝑓 Fn ((0..^𝑁) ∖ dom 𝑢) ∧ ((0..^𝑃) ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅) → ((𝑢 ∪ 𝑓) ↾ (0..^𝑃)) = 𝑢) |
| 143 | 134, 136,
141, 142 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑢 ∪ 𝑓) ↾ (0..^𝑃)) = 𝑢) |
| 144 | 143 | coeq2d 5847 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ ((𝑢 ∪ 𝑓) ↾ (0..^𝑃))) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑢)) |
| 145 | | resco 6244 |
. . . . . . . . . . 11
⊢ ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ ran 𝑢) = (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ ran 𝑢)) |
| 146 | | resco 6244 |
. . . . . . . . . . . . 13
⊢ ((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢) = (◡𝑢 ∘ ((𝑀‘𝑢) ↾ ran 𝑢)) |
| 147 | 146 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢) = (◡𝑢 ∘ ((𝑀‘𝑢) ↾ ran 𝑢))) |
| 148 | | cnvun 6136 |
. . . . . . . . . . . . . . 15
⊢ ◡(𝑢 ∪ 𝑓) = (◡𝑢 ∪ ◡𝑓) |
| 149 | 148 | reseq1i 5967 |
. . . . . . . . . . . . . 14
⊢ (◡(𝑢 ∪ 𝑓) ↾ ran 𝑢) = ((◡𝑢 ∪ ◡𝑓) ↾ ran 𝑢) |
| 150 | | f1ocnv 6835 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢:dom 𝑢–1-1-onto→ran
𝑢 → ◡𝑢:ran 𝑢–1-1-onto→dom
𝑢) |
| 151 | | f1ofn 6824 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝑢:ran 𝑢–1-1-onto→dom
𝑢 → ◡𝑢 Fn ran 𝑢) |
| 152 | 69, 70, 150, 151 | 4syl 19 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ◡𝑢 Fn ran 𝑢) |
| 153 | | f1ocnv 6835 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢) → ◡𝑓:(𝐷 ∖ ran 𝑢)–1-1-onto→((0..^𝑁) ∖ dom 𝑢)) |
| 154 | | f1ofn 6824 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝑓:(𝐷 ∖ ran 𝑢)–1-1-onto→((0..^𝑁) ∖ dom 𝑢) → ◡𝑓 Fn (𝐷 ∖ ran 𝑢)) |
| 155 | 72, 153, 154 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ◡𝑓 Fn (𝐷 ∖ ran 𝑢)) |
| 156 | | fnunres1 6655 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑢 Fn ran 𝑢 ∧ ◡𝑓 Fn (𝐷 ∖ ran 𝑢) ∧ (ran 𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅) → ((◡𝑢 ∪ ◡𝑓) ↾ ran 𝑢) = ◡𝑢) |
| 157 | 152, 155,
76, 156 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑢 ∪ ◡𝑓) ↾ ran 𝑢) = ◡𝑢) |
| 158 | 149, 157 | eqtr2id 2784 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ◡𝑢 = (◡(𝑢 ∪ 𝑓) ↾ ran 𝑢)) |
| 159 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑀‘𝑢) = 𝑄) |
| 160 | 159 | reseq1d 5970 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑀‘𝑢) ↾ ran 𝑢) = (𝑄 ↾ ran 𝑢)) |
| 161 | 158, 160 | coeq12d 5849 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡𝑢 ∘ ((𝑀‘𝑢) ↾ ran 𝑢)) = ((◡(𝑢 ∪ 𝑓) ↾ ran 𝑢) ∘ (𝑄 ↾ ran 𝑢))) |
| 162 | 47 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝐷 ∈ Fin) |
| 163 | 121 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑢 ∈ Word 𝐷) |
| 164 | 93, 162, 163, 69 | tocycfvres1 33126 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑀‘𝑢) ↾ ran 𝑢) = ((𝑢 cyclShift 1) ∘ ◡𝑢)) |
| 165 | 160, 164 | eqtr3d 2773 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑄 ↾ ran 𝑢) = ((𝑢 cyclShift 1) ∘ ◡𝑢)) |
| 166 | 165 | rneqd 5923 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ran (𝑄 ↾ ran 𝑢) = ran ((𝑢 cyclShift 1) ∘ ◡𝑢)) |
| 167 | | 1zzd 12628 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 1 ∈ ℤ) |
| 168 | | cshf1o 32943 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷 ∧ 1 ∈ ℤ) → (𝑢 cyclShift 1):dom 𝑢–1-1-onto→ran
𝑢) |
| 169 | 163, 69, 167, 168 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑢 cyclShift 1):dom 𝑢–1-1-onto→ran
𝑢) |
| 170 | 71, 150 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ◡𝑢:ran 𝑢–1-1-onto→dom
𝑢) |
| 171 | | f1oco 6846 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑢 cyclShift 1):dom 𝑢–1-1-onto→ran
𝑢 ∧ ◡𝑢:ran 𝑢–1-1-onto→dom
𝑢) → ((𝑢 cyclShift 1) ∘ ◡𝑢):ran 𝑢–1-1-onto→ran
𝑢) |
| 172 | 169, 170,
171 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑢 cyclShift 1) ∘ ◡𝑢):ran 𝑢–1-1-onto→ran
𝑢) |
| 173 | | f1ofo 6830 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑢 cyclShift 1) ∘ ◡𝑢):ran 𝑢–1-1-onto→ran
𝑢 → ((𝑢 cyclShift 1) ∘ ◡𝑢):ran 𝑢–onto→ran 𝑢) |
| 174 | | forn 6798 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑢 cyclShift 1) ∘ ◡𝑢):ran 𝑢–onto→ran 𝑢 → ran ((𝑢 cyclShift 1) ∘ ◡𝑢) = ran 𝑢) |
| 175 | 172, 173,
174 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ran ((𝑢 cyclShift 1) ∘ ◡𝑢) = ran 𝑢) |
| 176 | 166, 175 | eqtrd 2771 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ran (𝑄 ↾ ran 𝑢) = ran 𝑢) |
| 177 | | ssid 3986 |
. . . . . . . . . . . . . 14
⊢ ran 𝑢 ⊆ ran 𝑢 |
| 178 | 176, 177 | eqsstrdi 4008 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ran (𝑄 ↾ ran 𝑢) ⊆ ran 𝑢) |
| 179 | | cores 6243 |
. . . . . . . . . . . . 13
⊢ (ran
(𝑄 ↾ ran 𝑢) ⊆ ran 𝑢 → ((◡(𝑢 ∪ 𝑓) ↾ ran 𝑢) ∘ (𝑄 ↾ ran 𝑢)) = (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ ran 𝑢))) |
| 180 | 178, 179 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ↾ ran 𝑢) ∘ (𝑄 ↾ ran 𝑢)) = (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ ran 𝑢))) |
| 181 | 147, 161,
180 | 3eqtrrd 2776 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ ran 𝑢)) = ((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢)) |
| 182 | 145, 181 | eqtrid 2783 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ ran 𝑢) = ((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢)) |
| 183 | 182 | coeq1d 5846 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ ran 𝑢) ∘ 𝑢) = (((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢) ∘ 𝑢)) |
| 184 | | cores 6243 |
. . . . . . . . . 10
⊢ (ran
𝑢 ⊆ ran 𝑢 → (((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢) ∘ 𝑢) = ((◡𝑢 ∘ (𝑀‘𝑢)) ∘ 𝑢)) |
| 185 | 177, 184 | mp1i 13 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢) ∘ 𝑢) = ((◡𝑢 ∘ (𝑀‘𝑢)) ∘ 𝑢)) |
| 186 | 183, 185 | eqtrd 2771 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ ran 𝑢) ∘ 𝑢) = ((◡𝑢 ∘ (𝑀‘𝑢)) ∘ 𝑢)) |
| 187 | | cores 6243 |
. . . . . . . . 9
⊢ (ran
𝑢 ⊆ ran 𝑢 → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ ran 𝑢) ∘ 𝑢) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑢)) |
| 188 | 177, 187 | mp1i 13 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ ran 𝑢) ∘ 𝑢) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑢)) |
| 189 | 130 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (♯‘𝑢) = 𝑃) |
| 190 | 91, 92, 8, 93, 162, 163, 69, 189 | cycpmconjslem1 33170 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑢 ∘ (𝑀‘𝑢)) ∘ 𝑢) = (( I ↾ (0..^𝑃)) cyclShift 1)) |
| 191 | 186, 188,
190 | 3eqtr3d 2779 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑢) = (( I ↾ (0..^𝑃)) cyclShift 1)) |
| 192 | 120, 144,
191 | 3eqtrd 2775 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) = (( I ↾ (0..^𝑃)) cyclShift 1)) |
| 193 | | resco 6244 |
. . . . . . . 8
⊢ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁)) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ ((𝑢 ∪ 𝑓) ↾ (𝑃..^𝑁))) |
| 194 | 137 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → dom 𝑢 = (0..^𝑃)) |
| 195 | 194 | difeq2d 4106 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((0..^𝑁) ∖ dom 𝑢) = ((0..^𝑁) ∖ (0..^𝑃))) |
| 196 | | fzodif1 32774 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ (0...𝑁) → ((0..^𝑁) ∖ (0..^𝑃)) = (𝑃..^𝑁)) |
| 197 | 90, 196 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((0..^𝑁) ∖ (0..^𝑃)) = (𝑃..^𝑁)) |
| 198 | 197 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((0..^𝑁) ∖ (0..^𝑃)) = (𝑃..^𝑁)) |
| 199 | 195, 198 | eqtrd 2771 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((0..^𝑁) ∖ dom 𝑢) = (𝑃..^𝑁)) |
| 200 | 199 | reseq2d 5971 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑢 ∪ 𝑓) ↾ ((0..^𝑁) ∖ dom 𝑢)) = ((𝑢 ∪ 𝑓) ↾ (𝑃..^𝑁))) |
| 201 | | fnunres2 6656 |
. . . . . . . . . . 11
⊢ ((𝑢 Fn (0..^𝑃) ∧ 𝑓 Fn ((0..^𝑁) ∖ dom 𝑢) ∧ ((0..^𝑃) ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅) → ((𝑢 ∪ 𝑓) ↾ ((0..^𝑁) ∖ dom 𝑢)) = 𝑓) |
| 202 | 134, 136,
141, 201 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑢 ∪ 𝑓) ↾ ((0..^𝑁) ∖ dom 𝑢)) = 𝑓) |
| 203 | 200, 202 | eqtr3d 2773 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑢 ∪ 𝑓) ↾ (𝑃..^𝑁)) = 𝑓) |
| 204 | 203 | coeq2d 5847 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ ((𝑢 ∪ 𝑓) ↾ (𝑃..^𝑁))) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑓)) |
| 205 | 193, 204 | eqtrid 2783 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁)) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑓)) |
| 206 | 148 | reseq1i 5967 |
. . . . . . . . . . . 12
⊢ (◡(𝑢 ∪ 𝑓) ↾ (𝐷 ∖ ran 𝑢)) = ((◡𝑢 ∪ ◡𝑓) ↾ (𝐷 ∖ ran 𝑢)) |
| 207 | | fnunres2 6656 |
. . . . . . . . . . . . 13
⊢ ((◡𝑢 Fn ran 𝑢 ∧ ◡𝑓 Fn (𝐷 ∖ ran 𝑢) ∧ (ran 𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅) → ((◡𝑢 ∪ ◡𝑓) ↾ (𝐷 ∖ ran 𝑢)) = ◡𝑓) |
| 208 | 152, 155,
76, 207 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑢 ∪ ◡𝑓) ↾ (𝐷 ∖ ran 𝑢)) = ◡𝑓) |
| 209 | 206, 208 | eqtrid 2783 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡(𝑢 ∪ 𝑓) ↾ (𝐷 ∖ ran 𝑢)) = ◡𝑓) |
| 210 | 159 | reseq1d 5970 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑀‘𝑢) ↾ (𝐷 ∖ ran 𝑢)) = (𝑄 ↾ (𝐷 ∖ ran 𝑢))) |
| 211 | 93, 162, 163, 69 | tocycfvres2 33127 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑀‘𝑢) ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ (𝐷 ∖ ran 𝑢))) |
| 212 | 210, 211 | eqtr3d 2773 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑄 ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ (𝐷 ∖ ran 𝑢))) |
| 213 | 209, 212 | coeq12d 5849 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ↾ (𝐷 ∖ ran 𝑢)) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢))) = (◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢)))) |
| 214 | 212 | rneqd 5923 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ran (𝑄 ↾ (𝐷 ∖ ran 𝑢)) = ran ( I ↾ (𝐷 ∖ ran 𝑢))) |
| 215 | | rnresi 6067 |
. . . . . . . . . . . . . 14
⊢ ran ( I
↾ (𝐷 ∖ ran
𝑢)) = (𝐷 ∖ ran 𝑢) |
| 216 | 215 | eqimssi 4024 |
. . . . . . . . . . . . 13
⊢ ran ( I
↾ (𝐷 ∖ ran
𝑢)) ⊆ (𝐷 ∖ ran 𝑢) |
| 217 | 214, 216 | eqsstrdi 4008 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ran (𝑄 ↾ (𝐷 ∖ ran 𝑢)) ⊆ (𝐷 ∖ ran 𝑢)) |
| 218 | | cores 6243 |
. . . . . . . . . . . 12
⊢ (ran
(𝑄 ↾ (𝐷 ∖ ran 𝑢)) ⊆ (𝐷 ∖ ran 𝑢) → ((◡(𝑢 ∪ 𝑓) ↾ (𝐷 ∖ ran 𝑢)) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢))) = (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢)))) |
| 219 | 217, 218 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ↾ (𝐷 ∖ ran 𝑢)) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢))) = (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢)))) |
| 220 | | resco 6244 |
. . . . . . . . . . 11
⊢ ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ (𝐷 ∖ ran 𝑢)) = (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢))) |
| 221 | 219, 220 | eqtr4di 2789 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ↾ (𝐷 ∖ ran 𝑢)) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢))) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ (𝐷 ∖ ran 𝑢))) |
| 222 | 213, 221 | eqtr3d 2773 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢))) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ (𝐷 ∖ ran 𝑢))) |
| 223 | 222 | coeq1d 5846 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢))) ∘ 𝑓) = (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ (𝐷 ∖ ran 𝑢)) ∘ 𝑓)) |
| 224 | | f1of 6823 |
. . . . . . . . . . 11
⊢ (◡𝑓:(𝐷 ∖ ran 𝑢)–1-1-onto→((0..^𝑁) ∖ dom 𝑢) → ◡𝑓:(𝐷 ∖ ran 𝑢)⟶((0..^𝑁) ∖ dom 𝑢)) |
| 225 | | fcoi1 6757 |
. . . . . . . . . . 11
⊢ (◡𝑓:(𝐷 ∖ ran 𝑢)⟶((0..^𝑁) ∖ dom 𝑢) → (◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢))) = ◡𝑓) |
| 226 | 72, 153, 224, 225 | 4syl 19 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢))) = ◡𝑓) |
| 227 | 226 | coeq1d 5846 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢))) ∘ 𝑓) = (◡𝑓 ∘ 𝑓)) |
| 228 | | f1ococnv1 6852 |
. . . . . . . . . 10
⊢ (𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢) → (◡𝑓 ∘ 𝑓) = ( I ↾ ((0..^𝑁) ∖ dom 𝑢))) |
| 229 | 72, 228 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡𝑓 ∘ 𝑓) = ( I ↾ ((0..^𝑁) ∖ dom 𝑢))) |
| 230 | 199 | reseq2d 5971 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ( I ↾ ((0..^𝑁) ∖ dom 𝑢)) = ( I ↾ (𝑃..^𝑁))) |
| 231 | 227, 229,
230 | 3eqtrd 2775 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢))) ∘ 𝑓) = ( I ↾ (𝑃..^𝑁))) |
| 232 | | f1of 6823 |
. . . . . . . . 9
⊢ (𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢) → 𝑓:((0..^𝑁) ∖ dom 𝑢)⟶(𝐷 ∖ ran 𝑢)) |
| 233 | | frn 6718 |
. . . . . . . . 9
⊢ (𝑓:((0..^𝑁) ∖ dom 𝑢)⟶(𝐷 ∖ ran 𝑢) → ran 𝑓 ⊆ (𝐷 ∖ ran 𝑢)) |
| 234 | | cores 6243 |
. . . . . . . . 9
⊢ (ran
𝑓 ⊆ (𝐷 ∖ ran 𝑢) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ (𝐷 ∖ ran 𝑢)) ∘ 𝑓) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑓)) |
| 235 | 72, 232, 233, 234 | 4syl 19 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ (𝐷 ∖ ran 𝑢)) ∘ 𝑓) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑓)) |
| 236 | 223, 231,
235 | 3eqtr3rd 2780 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑓) = ( I ↾ (𝑃..^𝑁))) |
| 237 | 205, 236 | eqtrd 2771 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁)) = ( I ↾ (𝑃..^𝑁))) |
| 238 | 192, 237 | uneq12d 4149 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) ∪ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁))) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) |
| 239 | 118, 238 | eqtrd 2771 |
. . . 4
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) |
| 240 | | vex 3468 |
. . . . . 6
⊢ 𝑢 ∈ V |
| 241 | | vex 3468 |
. . . . . 6
⊢ 𝑓 ∈ V |
| 242 | 240, 241 | unex 7743 |
. . . . 5
⊢ (𝑢 ∪ 𝑓) ∈ V |
| 243 | | f1oeq1 6811 |
. . . . . 6
⊢ (𝑞 = (𝑢 ∪ 𝑓) → (𝑞:(0..^𝑁)–1-1-onto→𝐷 ↔ (𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷)) |
| 244 | | cnveq 5858 |
. . . . . . . . 9
⊢ (𝑞 = (𝑢 ∪ 𝑓) → ◡𝑞 = ◡(𝑢 ∪ 𝑓)) |
| 245 | 244 | coeq1d 5846 |
. . . . . . . 8
⊢ (𝑞 = (𝑢 ∪ 𝑓) → (◡𝑞 ∘ 𝑄) = (◡(𝑢 ∪ 𝑓) ∘ 𝑄)) |
| 246 | | id 22 |
. . . . . . . 8
⊢ (𝑞 = (𝑢 ∪ 𝑓) → 𝑞 = (𝑢 ∪ 𝑓)) |
| 247 | 245, 246 | coeq12d 5849 |
. . . . . . 7
⊢ (𝑞 = (𝑢 ∪ 𝑓) → ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓))) |
| 248 | 247 | eqeq1d 2738 |
. . . . . 6
⊢ (𝑞 = (𝑢 ∪ 𝑓) → (((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))) ↔ ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) |
| 249 | 243, 248 | anbi12d 632 |
. . . . 5
⊢ (𝑞 = (𝑢 ∪ 𝑓) → ((𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ↔ ((𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))))) |
| 250 | 242, 249 | spcev 3590 |
. . . 4
⊢ (((𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑞(𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) |
| 251 | 87, 239, 250 | syl2anc 584 |
. . 3
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ∃𝑞(𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) |
| 252 | 68, 251 | exlimddv 1935 |
. 2
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → ∃𝑞(𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) |
| 253 | | nfcv 2899 |
. . 3
⊢
Ⅎ𝑢𝑀 |
| 254 | 93, 92, 94 | tocycf 33133 |
. . . 4
⊢ (𝐷 ∈ Fin → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵) |
| 255 | | ffn 6711 |
. . . 4
⊢ (𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵 → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 256 | 4, 254, 255 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 257 | 97, 91 | eleqtrdi 2845 |
. . 3
⊢ (𝜑 → 𝑄 ∈ (𝑀 “ (◡♯ “ {𝑃}))) |
| 258 | 253, 256,
257 | fvelimad 6951 |
. 2
⊢ (𝜑 → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))(𝑀‘𝑢) = 𝑄) |
| 259 | 252, 258 | r19.29a 3149 |
1
⊢ (𝜑 → ∃𝑞(𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) |