Step | Hyp | Ref
| Expression |
1 | | fzofi 13703 |
. . . . 5
⊢
(0..^𝑁) ∈
Fin |
2 | | diffi 8971 |
. . . . 5
⊢
((0..^𝑁) ∈ Fin
→ ((0..^𝑁) ∖ dom
𝑢) ∈
Fin) |
3 | 1, 2 | mp1i 13 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → ((0..^𝑁) ∖ dom 𝑢) ∈ Fin) |
4 | | cycpmconjs.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ Fin) |
5 | | diffi 8971 |
. . . . . 6
⊢ (𝐷 ∈ Fin → (𝐷 ∖ ran 𝑢) ∈ Fin) |
6 | 4, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐷 ∖ ran 𝑢) ∈ Fin) |
7 | 6 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (𝐷 ∖ ran 𝑢) ∈ Fin) |
8 | | cycpmconjs.n |
. . . . . . . . . 10
⊢ 𝑁 = (♯‘𝐷) |
9 | | hashcl 14080 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ Fin →
(♯‘𝐷) ∈
ℕ0) |
10 | 4, 9 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐷) ∈
ℕ0) |
11 | 8, 10 | eqeltrid 2844 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
12 | | hashfzo0 14154 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (♯‘(0..^𝑁)) = 𝑁) |
13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (♯‘(0..^𝑁)) = 𝑁) |
14 | 13, 8 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝜑 → (♯‘(0..^𝑁)) = (♯‘𝐷)) |
15 | 14 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘(0..^𝑁)) = (♯‘𝐷)) |
16 | | simplr 766 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) |
17 | 16 | elin1d 4133 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
18 | | elrabi 3619 |
. . . . . . . . 9
⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢 ∈ Word 𝐷) |
19 | | wrdfin 14244 |
. . . . . . . . 9
⊢ (𝑢 ∈ Word 𝐷 → 𝑢 ∈ Fin) |
20 | 17, 18, 19 | 3syl 18 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 ∈ Fin) |
21 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑢 → 𝑤 = 𝑢) |
22 | | dmeq 5815 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢) |
23 | | eqidd 2740 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑢 → 𝐷 = 𝐷) |
24 | 21, 22, 23 | f1eq123d 6717 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑢 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑢:dom 𝑢–1-1→𝐷)) |
25 | 24 | elrab 3625 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷)) |
26 | 25 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢:dom 𝑢–1-1→𝐷) |
27 | 17, 26 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢:dom 𝑢–1-1→𝐷) |
28 | | f1fun 6681 |
. . . . . . . . 9
⊢ (𝑢:dom 𝑢–1-1→𝐷 → Fun 𝑢) |
29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → Fun 𝑢) |
30 | | hashfun 14161 |
. . . . . . . . 9
⊢ (𝑢 ∈ Fin → (Fun 𝑢 ↔ (♯‘𝑢) = (♯‘dom 𝑢))) |
31 | 30 | biimpa 477 |
. . . . . . . 8
⊢ ((𝑢 ∈ Fin ∧ Fun 𝑢) → (♯‘𝑢) = (♯‘dom 𝑢)) |
32 | 20, 29, 31 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘𝑢) = (♯‘dom 𝑢)) |
33 | 16 | dmexd 7761 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → dom 𝑢 ∈ V) |
34 | | hashf1rn 14076 |
. . . . . . . 8
⊢ ((dom
𝑢 ∈ V ∧ 𝑢:dom 𝑢–1-1→𝐷) → (♯‘𝑢) = (♯‘ran 𝑢)) |
35 | 33, 27, 34 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘𝑢) = (♯‘ran 𝑢)) |
36 | 32, 35 | eqtr3d 2781 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘dom 𝑢) = (♯‘ran 𝑢)) |
37 | 15, 36 | oveq12d 7302 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → ((♯‘(0..^𝑁)) − (♯‘dom
𝑢)) = ((♯‘𝐷) − (♯‘ran
𝑢))) |
38 | 1 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (0..^𝑁) ∈ Fin) |
39 | | wrddm 14233 |
. . . . . . . 8
⊢ (𝑢 ∈ Word 𝐷 → dom 𝑢 = (0..^(♯‘𝑢))) |
40 | 17, 18, 39 | 3syl 18 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → dom 𝑢 = (0..^(♯‘𝑢))) |
41 | | hashcl 14080 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ Fin →
(♯‘𝑢) ∈
ℕ0) |
42 | 17, 18, 19, 41 | 4syl 19 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘𝑢) ∈
ℕ0) |
43 | 42 | nn0zd 12433 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘𝑢) ∈ ℤ) |
44 | 10 | nn0zd 12433 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐷) ∈
ℤ) |
45 | 8, 44 | eqeltrid 2844 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
46 | 45 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑁 ∈ ℤ) |
47 | 4 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝐷 ∈ Fin) |
48 | | wrdf 14231 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ Word 𝐷 → 𝑢:(0..^(♯‘𝑢))⟶𝐷) |
49 | 48 | frnd 6617 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ Word 𝐷 → ran 𝑢 ⊆ 𝐷) |
50 | 17, 18, 49 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → ran 𝑢 ⊆ 𝐷) |
51 | | hashss 14133 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ Fin ∧ ran 𝑢 ⊆ 𝐷) → (♯‘ran 𝑢) ≤ (♯‘𝐷)) |
52 | 47, 50, 51 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘ran 𝑢) ≤ (♯‘𝐷)) |
53 | 8 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑁 = (♯‘𝐷)) |
54 | 52, 35, 53 | 3brtr4d 5107 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘𝑢) ≤ 𝑁) |
55 | | eluz1 12595 |
. . . . . . . . . 10
⊢
((♯‘𝑢)
∈ ℤ → (𝑁
∈ (ℤ≥‘(♯‘𝑢)) ↔ (𝑁 ∈ ℤ ∧ (♯‘𝑢) ≤ 𝑁))) |
56 | 55 | biimpar 478 |
. . . . . . . . 9
⊢
(((♯‘𝑢)
∈ ℤ ∧ (𝑁
∈ ℤ ∧ (♯‘𝑢) ≤ 𝑁)) → 𝑁 ∈
(ℤ≥‘(♯‘𝑢))) |
57 | 43, 46, 54, 56 | syl12anc 834 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑁 ∈
(ℤ≥‘(♯‘𝑢))) |
58 | | fzoss2 13424 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘(♯‘𝑢)) → (0..^(♯‘𝑢)) ⊆ (0..^𝑁)) |
59 | 57, 58 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (0..^(♯‘𝑢)) ⊆ (0..^𝑁)) |
60 | 40, 59 | eqsstrd 3960 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → dom 𝑢 ⊆ (0..^𝑁)) |
61 | | hashssdif 14136 |
. . . . . 6
⊢
(((0..^𝑁) ∈ Fin
∧ dom 𝑢 ⊆
(0..^𝑁)) →
(♯‘((0..^𝑁)
∖ dom 𝑢)) =
((♯‘(0..^𝑁))
− (♯‘dom 𝑢))) |
62 | 38, 60, 61 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘((0..^𝑁) ∖ dom 𝑢)) = ((♯‘(0..^𝑁)) − (♯‘dom 𝑢))) |
63 | | hashssdif 14136 |
. . . . . 6
⊢ ((𝐷 ∈ Fin ∧ ran 𝑢 ⊆ 𝐷) → (♯‘(𝐷 ∖ ran 𝑢)) = ((♯‘𝐷) − (♯‘ran 𝑢))) |
64 | 47, 50, 63 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘(𝐷 ∖ ran 𝑢)) = ((♯‘𝐷) − (♯‘ran 𝑢))) |
65 | 37, 62, 64 | 3eqtr4d 2789 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘((0..^𝑁) ∖ dom 𝑢)) = (♯‘(𝐷 ∖ ran 𝑢))) |
66 | | hasheqf1o 14072 |
. . . . 5
⊢
((((0..^𝑁) ∖
dom 𝑢) ∈ Fin ∧
(𝐷 ∖ ran 𝑢) ∈ Fin) →
((♯‘((0..^𝑁)
∖ dom 𝑢)) =
(♯‘(𝐷 ∖
ran 𝑢)) ↔ ∃𝑓 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢))) |
67 | 66 | biimpa 477 |
. . . 4
⊢
(((((0..^𝑁) ∖
dom 𝑢) ∈ Fin ∧
(𝐷 ∖ ran 𝑢) ∈ Fin) ∧
(♯‘((0..^𝑁)
∖ dom 𝑢)) =
(♯‘(𝐷 ∖
ran 𝑢))) →
∃𝑓 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) |
68 | 3, 7, 65, 67 | syl21anc 835 |
. . 3
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → ∃𝑓 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) |
69 | 27 | adantr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑢:dom 𝑢–1-1→𝐷) |
70 | | f1f1orn 6736 |
. . . . . . 7
⊢ (𝑢:dom 𝑢–1-1→𝐷 → 𝑢:dom 𝑢–1-1-onto→ran
𝑢) |
71 | 69, 70 | syl 17 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑢:dom 𝑢–1-1-onto→ran
𝑢) |
72 | | simpr 485 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) |
73 | | disjdif 4406 |
. . . . . . 7
⊢ (dom
𝑢 ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅ |
74 | 73 | a1i 11 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (dom 𝑢 ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅) |
75 | | disjdif 4406 |
. . . . . . 7
⊢ (ran
𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅ |
76 | 75 | a1i 11 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (ran 𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅) |
77 | | f1oun 6744 |
. . . . . 6
⊢ (((𝑢:dom 𝑢–1-1-onto→ran
𝑢 ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) ∧ ((dom 𝑢 ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅ ∧ (ran 𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅)) → (𝑢 ∪ 𝑓):(dom 𝑢 ∪ ((0..^𝑁) ∖ dom 𝑢))–1-1-onto→(ran
𝑢 ∪ (𝐷 ∖ ran 𝑢))) |
78 | 71, 72, 74, 76, 77 | syl22anc 836 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑢 ∪ 𝑓):(dom 𝑢 ∪ ((0..^𝑁) ∖ dom 𝑢))–1-1-onto→(ran
𝑢 ∪ (𝐷 ∖ ran 𝑢))) |
79 | | eqidd 2740 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑢 ∪ 𝑓) = (𝑢 ∪ 𝑓)) |
80 | 60 | adantr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → dom 𝑢 ⊆ (0..^𝑁)) |
81 | | undif 4416 |
. . . . . . 7
⊢ (dom
𝑢 ⊆ (0..^𝑁) ↔ (dom 𝑢 ∪ ((0..^𝑁) ∖ dom 𝑢)) = (0..^𝑁)) |
82 | 80, 81 | sylib 217 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (dom 𝑢 ∪ ((0..^𝑁) ∖ dom 𝑢)) = (0..^𝑁)) |
83 | | undif 4416 |
. . . . . . . 8
⊢ (ran
𝑢 ⊆ 𝐷 ↔ (ran 𝑢 ∪ (𝐷 ∖ ran 𝑢)) = 𝐷) |
84 | 50, 83 | sylib 217 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (ran 𝑢 ∪ (𝐷 ∖ ran 𝑢)) = 𝐷) |
85 | 84 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (ran 𝑢 ∪ (𝐷 ∖ ran 𝑢)) = 𝐷) |
86 | 79, 82, 85 | f1oeq123d 6719 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑢 ∪ 𝑓):(dom 𝑢 ∪ ((0..^𝑁) ∖ dom 𝑢))–1-1-onto→(ran
𝑢 ∪ (𝐷 ∖ ran 𝑢)) ↔ (𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷)) |
87 | 78, 86 | mpbid 231 |
. . . 4
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷) |
88 | | f1ocnv 6737 |
. . . . . . . . . 10
⊢ ((𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷 → ◡(𝑢 ∪ 𝑓):𝐷–1-1-onto→(0..^𝑁)) |
89 | 87, 88 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ◡(𝑢 ∪ 𝑓):𝐷–1-1-onto→(0..^𝑁)) |
90 | | cycpmconjs.p |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ (0...𝑁)) |
91 | | cycpmconjs.c |
. . . . . . . . . . . . . 14
⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) |
92 | | cycpmconjs.s |
. . . . . . . . . . . . . 14
⊢ 𝑆 = (SymGrp‘𝐷) |
93 | | cycpmconjs.m |
. . . . . . . . . . . . . 14
⊢ 𝑀 = (toCyc‘𝐷) |
94 | | cycpmconjs.b |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (Base‘𝑆) |
95 | 91, 92, 8, 93, 94 | cycpmgcl 31429 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) |
96 | 4, 90, 95 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
97 | | cycpmconjs.q |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ 𝐶) |
98 | 96, 97 | sseldd 3923 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ 𝐵) |
99 | 92, 94 | symgbasf1o 18991 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ 𝐵 → 𝑄:𝐷–1-1-onto→𝐷) |
100 | 98, 99 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄:𝐷–1-1-onto→𝐷) |
101 | 100 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑄:𝐷–1-1-onto→𝐷) |
102 | | f1oco 6748 |
. . . . . . . . 9
⊢ ((◡(𝑢 ∪ 𝑓):𝐷–1-1-onto→(0..^𝑁) ∧ 𝑄:𝐷–1-1-onto→𝐷) → (◡(𝑢 ∪ 𝑓) ∘ 𝑄):𝐷–1-1-onto→(0..^𝑁)) |
103 | 89, 101, 102 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡(𝑢 ∪ 𝑓) ∘ 𝑄):𝐷–1-1-onto→(0..^𝑁)) |
104 | | f1oco 6748 |
. . . . . . . 8
⊢ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄):𝐷–1-1-onto→(0..^𝑁) ∧ (𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)):(0..^𝑁)–1-1-onto→(0..^𝑁)) |
105 | 103, 87, 104 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)):(0..^𝑁)–1-1-onto→(0..^𝑁)) |
106 | | f1ofun 6727 |
. . . . . . 7
⊢ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)):(0..^𝑁)–1-1-onto→(0..^𝑁) → Fun ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓))) |
107 | | funrel 6458 |
. . . . . . 7
⊢ (Fun
((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) → Rel ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓))) |
108 | 105, 106,
107 | 3syl 18 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → Rel ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓))) |
109 | | f1odm 6729 |
. . . . . . . 8
⊢ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)):(0..^𝑁)–1-1-onto→(0..^𝑁) → dom ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = (0..^𝑁)) |
110 | 105, 109 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → dom ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = (0..^𝑁)) |
111 | | fzosplit 13429 |
. . . . . . . . 9
⊢ (𝑃 ∈ (0...𝑁) → (0..^𝑁) = ((0..^𝑃) ∪ (𝑃..^𝑁))) |
112 | 90, 111 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0..^𝑁) = ((0..^𝑃) ∪ (𝑃..^𝑁))) |
113 | 112 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (0..^𝑁) = ((0..^𝑃) ∪ (𝑃..^𝑁))) |
114 | 110, 113 | eqtrd 2779 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → dom ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((0..^𝑃) ∪ (𝑃..^𝑁))) |
115 | | fzodisj 13430 |
. . . . . . 7
⊢
((0..^𝑃) ∩
(𝑃..^𝑁)) = ∅ |
116 | | reldisjun 30951 |
. . . . . . 7
⊢ ((Rel
((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ∧ dom ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((0..^𝑃) ∪ (𝑃..^𝑁)) ∧ ((0..^𝑃) ∩ (𝑃..^𝑁)) = ∅) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) ∪ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁)))) |
117 | 115, 116 | mp3an3 1449 |
. . . . . 6
⊢ ((Rel
((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ∧ dom ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((0..^𝑃) ∪ (𝑃..^𝑁))) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) ∪ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁)))) |
118 | 108, 114,
117 | syl2anc 584 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) ∪ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁)))) |
119 | | resco 6158 |
. . . . . . . 8
⊢ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ ((𝑢 ∪ 𝑓) ↾ (0..^𝑃))) |
120 | 119 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ ((𝑢 ∪ 𝑓) ↾ (0..^𝑃)))) |
121 | 17, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 ∈ Word 𝐷) |
122 | | wrdfn 14240 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ Word 𝐷 → 𝑢 Fn (0..^(♯‘𝑢))) |
123 | 121, 122 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 Fn (0..^(♯‘𝑢))) |
124 | 16 | elin2d 4134 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 ∈ (◡♯ “ {𝑃})) |
125 | | hashf 14061 |
. . . . . . . . . . . . . . . 16
⊢
♯:V⟶(ℕ0 ∪ {+∞}) |
126 | | ffn 6609 |
. . . . . . . . . . . . . . . 16
⊢
(♯:V⟶(ℕ0 ∪ {+∞}) → ♯
Fn V) |
127 | | fniniseg 6946 |
. . . . . . . . . . . . . . . 16
⊢ (♯
Fn V → (𝑢 ∈
(◡♯ “ {𝑃}) ↔ (𝑢 ∈ V ∧ (♯‘𝑢) = 𝑃))) |
128 | 125, 126,
127 | mp2b 10 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ (◡♯ “ {𝑃}) ↔ (𝑢 ∈ V ∧ (♯‘𝑢) = 𝑃)) |
129 | 128 | simprbi 497 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ (◡♯ “ {𝑃}) → (♯‘𝑢) = 𝑃) |
130 | 124, 129 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (♯‘𝑢) = 𝑃) |
131 | 130 | oveq2d 7300 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (0..^(♯‘𝑢)) = (0..^𝑃)) |
132 | 131 | fneq2d 6536 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (𝑢 Fn (0..^(♯‘𝑢)) ↔ 𝑢 Fn (0..^𝑃))) |
133 | 123, 132 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → 𝑢 Fn (0..^𝑃)) |
134 | 133 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑢 Fn (0..^𝑃)) |
135 | | f1ofn 6726 |
. . . . . . . . . 10
⊢ (𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢) → 𝑓 Fn ((0..^𝑁) ∖ dom 𝑢)) |
136 | 72, 135 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑓 Fn ((0..^𝑁) ∖ dom 𝑢)) |
137 | 40, 131 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → dom 𝑢 = (0..^𝑃)) |
138 | 137 | ineq1d 4146 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (dom 𝑢 ∩ ((0..^𝑁) ∖ dom 𝑢)) = ((0..^𝑃) ∩ ((0..^𝑁) ∖ dom 𝑢))) |
139 | 73 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → (dom 𝑢 ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅) |
140 | 138, 139 | eqtr3d 2781 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → ((0..^𝑃) ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅) |
141 | 140 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((0..^𝑃) ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅) |
142 | | fnunres1 30954 |
. . . . . . . . 9
⊢ ((𝑢 Fn (0..^𝑃) ∧ 𝑓 Fn ((0..^𝑁) ∖ dom 𝑢) ∧ ((0..^𝑃) ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅) → ((𝑢 ∪ 𝑓) ↾ (0..^𝑃)) = 𝑢) |
143 | 134, 136,
141, 142 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑢 ∪ 𝑓) ↾ (0..^𝑃)) = 𝑢) |
144 | 143 | coeq2d 5774 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ ((𝑢 ∪ 𝑓) ↾ (0..^𝑃))) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑢)) |
145 | | resco 6158 |
. . . . . . . . . . 11
⊢ ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ ran 𝑢) = (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ ran 𝑢)) |
146 | | resco 6158 |
. . . . . . . . . . . . 13
⊢ ((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢) = (◡𝑢 ∘ ((𝑀‘𝑢) ↾ ran 𝑢)) |
147 | 146 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢) = (◡𝑢 ∘ ((𝑀‘𝑢) ↾ ran 𝑢))) |
148 | | cnvun 6051 |
. . . . . . . . . . . . . . 15
⊢ ◡(𝑢 ∪ 𝑓) = (◡𝑢 ∪ ◡𝑓) |
149 | 148 | reseq1i 5890 |
. . . . . . . . . . . . . 14
⊢ (◡(𝑢 ∪ 𝑓) ↾ ran 𝑢) = ((◡𝑢 ∪ ◡𝑓) ↾ ran 𝑢) |
150 | | f1ocnv 6737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢:dom 𝑢–1-1-onto→ran
𝑢 → ◡𝑢:ran 𝑢–1-1-onto→dom
𝑢) |
151 | | f1ofn 6726 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝑢:ran 𝑢–1-1-onto→dom
𝑢 → ◡𝑢 Fn ran 𝑢) |
152 | 71, 150, 151 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ◡𝑢 Fn ran 𝑢) |
153 | | f1ocnv 6737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢) → ◡𝑓:(𝐷 ∖ ran 𝑢)–1-1-onto→((0..^𝑁) ∖ dom 𝑢)) |
154 | | f1ofn 6726 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝑓:(𝐷 ∖ ran 𝑢)–1-1-onto→((0..^𝑁) ∖ dom 𝑢) → ◡𝑓 Fn (𝐷 ∖ ran 𝑢)) |
155 | 72, 153, 154 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ◡𝑓 Fn (𝐷 ∖ ran 𝑢)) |
156 | | fnunres1 30954 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑢 Fn ran 𝑢 ∧ ◡𝑓 Fn (𝐷 ∖ ran 𝑢) ∧ (ran 𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅) → ((◡𝑢 ∪ ◡𝑓) ↾ ran 𝑢) = ◡𝑢) |
157 | 152, 155,
76, 156 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑢 ∪ ◡𝑓) ↾ ran 𝑢) = ◡𝑢) |
158 | 149, 157 | eqtr2id 2792 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ◡𝑢 = (◡(𝑢 ∪ 𝑓) ↾ ran 𝑢)) |
159 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑀‘𝑢) = 𝑄) |
160 | 159 | reseq1d 5893 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑀‘𝑢) ↾ ran 𝑢) = (𝑄 ↾ ran 𝑢)) |
161 | 158, 160 | coeq12d 5776 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡𝑢 ∘ ((𝑀‘𝑢) ↾ ran 𝑢)) = ((◡(𝑢 ∪ 𝑓) ↾ ran 𝑢) ∘ (𝑄 ↾ ran 𝑢))) |
162 | 47 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝐷 ∈ Fin) |
163 | 121 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 𝑢 ∈ Word 𝐷) |
164 | 93, 162, 163, 69 | tocycfvres1 31386 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑀‘𝑢) ↾ ran 𝑢) = ((𝑢 cyclShift 1) ∘ ◡𝑢)) |
165 | 160, 164 | eqtr3d 2781 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑄 ↾ ran 𝑢) = ((𝑢 cyclShift 1) ∘ ◡𝑢)) |
166 | 165 | rneqd 5850 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ran (𝑄 ↾ ran 𝑢) = ran ((𝑢 cyclShift 1) ∘ ◡𝑢)) |
167 | | 1zzd 12360 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → 1 ∈ ℤ) |
168 | | cshf1o 31243 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷 ∧ 1 ∈ ℤ) → (𝑢 cyclShift 1):dom 𝑢–1-1-onto→ran
𝑢) |
169 | 163, 69, 167, 168 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑢 cyclShift 1):dom 𝑢–1-1-onto→ran
𝑢) |
170 | 71, 150 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ◡𝑢:ran 𝑢–1-1-onto→dom
𝑢) |
171 | | f1oco 6748 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑢 cyclShift 1):dom 𝑢–1-1-onto→ran
𝑢 ∧ ◡𝑢:ran 𝑢–1-1-onto→dom
𝑢) → ((𝑢 cyclShift 1) ∘ ◡𝑢):ran 𝑢–1-1-onto→ran
𝑢) |
172 | 169, 170,
171 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑢 cyclShift 1) ∘ ◡𝑢):ran 𝑢–1-1-onto→ran
𝑢) |
173 | | f1ofo 6732 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑢 cyclShift 1) ∘ ◡𝑢):ran 𝑢–1-1-onto→ran
𝑢 → ((𝑢 cyclShift 1) ∘ ◡𝑢):ran 𝑢–onto→ran 𝑢) |
174 | | forn 6700 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑢 cyclShift 1) ∘ ◡𝑢):ran 𝑢–onto→ran 𝑢 → ran ((𝑢 cyclShift 1) ∘ ◡𝑢) = ran 𝑢) |
175 | 172, 173,
174 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ran ((𝑢 cyclShift 1) ∘ ◡𝑢) = ran 𝑢) |
176 | 166, 175 | eqtrd 2779 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ran (𝑄 ↾ ran 𝑢) = ran 𝑢) |
177 | | ssid 3944 |
. . . . . . . . . . . . . 14
⊢ ran 𝑢 ⊆ ran 𝑢 |
178 | 176, 177 | eqsstrdi 3976 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ran (𝑄 ↾ ran 𝑢) ⊆ ran 𝑢) |
179 | | cores 6157 |
. . . . . . . . . . . . 13
⊢ (ran
(𝑄 ↾ ran 𝑢) ⊆ ran 𝑢 → ((◡(𝑢 ∪ 𝑓) ↾ ran 𝑢) ∘ (𝑄 ↾ ran 𝑢)) = (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ ran 𝑢))) |
180 | 178, 179 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ↾ ran 𝑢) ∘ (𝑄 ↾ ran 𝑢)) = (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ ran 𝑢))) |
181 | 147, 161,
180 | 3eqtrrd 2784 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ ran 𝑢)) = ((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢)) |
182 | 145, 181 | eqtrid 2791 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ ran 𝑢) = ((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢)) |
183 | 182 | coeq1d 5773 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ ran 𝑢) ∘ 𝑢) = (((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢) ∘ 𝑢)) |
184 | | cores 6157 |
. . . . . . . . . 10
⊢ (ran
𝑢 ⊆ ran 𝑢 → (((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢) ∘ 𝑢) = ((◡𝑢 ∘ (𝑀‘𝑢)) ∘ 𝑢)) |
185 | 177, 184 | mp1i 13 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡𝑢 ∘ (𝑀‘𝑢)) ↾ ran 𝑢) ∘ 𝑢) = ((◡𝑢 ∘ (𝑀‘𝑢)) ∘ 𝑢)) |
186 | 183, 185 | eqtrd 2779 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ ran 𝑢) ∘ 𝑢) = ((◡𝑢 ∘ (𝑀‘𝑢)) ∘ 𝑢)) |
187 | | cores 6157 |
. . . . . . . . 9
⊢ (ran
𝑢 ⊆ ran 𝑢 → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ ran 𝑢) ∘ 𝑢) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑢)) |
188 | 177, 187 | mp1i 13 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ ran 𝑢) ∘ 𝑢) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑢)) |
189 | 130 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (♯‘𝑢) = 𝑃) |
190 | 91, 92, 8, 93, 162, 163, 69, 189 | cycpmconjslem1 31430 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑢 ∘ (𝑀‘𝑢)) ∘ 𝑢) = (( I ↾ (0..^𝑃)) cyclShift 1)) |
191 | 186, 188,
190 | 3eqtr3d 2787 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑢) = (( I ↾ (0..^𝑃)) cyclShift 1)) |
192 | 120, 144,
191 | 3eqtrd 2783 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) = (( I ↾ (0..^𝑃)) cyclShift 1)) |
193 | | resco 6158 |
. . . . . . . 8
⊢ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁)) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ ((𝑢 ∪ 𝑓) ↾ (𝑃..^𝑁))) |
194 | 137 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → dom 𝑢 = (0..^𝑃)) |
195 | 194 | difeq2d 4058 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((0..^𝑁) ∖ dom 𝑢) = ((0..^𝑁) ∖ (0..^𝑃))) |
196 | | fzodif1 31123 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ (0...𝑁) → ((0..^𝑁) ∖ (0..^𝑃)) = (𝑃..^𝑁)) |
197 | 90, 196 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((0..^𝑁) ∖ (0..^𝑃)) = (𝑃..^𝑁)) |
198 | 197 | ad3antrrr 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((0..^𝑁) ∖ (0..^𝑃)) = (𝑃..^𝑁)) |
199 | 195, 198 | eqtrd 2779 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((0..^𝑁) ∖ dom 𝑢) = (𝑃..^𝑁)) |
200 | 199 | reseq2d 5894 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑢 ∪ 𝑓) ↾ ((0..^𝑁) ∖ dom 𝑢)) = ((𝑢 ∪ 𝑓) ↾ (𝑃..^𝑁))) |
201 | | fnunres2 31024 |
. . . . . . . . . . 11
⊢ ((𝑢 Fn (0..^𝑃) ∧ 𝑓 Fn ((0..^𝑁) ∖ dom 𝑢) ∧ ((0..^𝑃) ∩ ((0..^𝑁) ∖ dom 𝑢)) = ∅) → ((𝑢 ∪ 𝑓) ↾ ((0..^𝑁) ∖ dom 𝑢)) = 𝑓) |
202 | 134, 136,
141, 201 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑢 ∪ 𝑓) ↾ ((0..^𝑁) ∖ dom 𝑢)) = 𝑓) |
203 | 200, 202 | eqtr3d 2781 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑢 ∪ 𝑓) ↾ (𝑃..^𝑁)) = 𝑓) |
204 | 203 | coeq2d 5774 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ ((𝑢 ∪ 𝑓) ↾ (𝑃..^𝑁))) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑓)) |
205 | 193, 204 | eqtrid 2791 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁)) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑓)) |
206 | 148 | reseq1i 5890 |
. . . . . . . . . . . 12
⊢ (◡(𝑢 ∪ 𝑓) ↾ (𝐷 ∖ ran 𝑢)) = ((◡𝑢 ∪ ◡𝑓) ↾ (𝐷 ∖ ran 𝑢)) |
207 | | fnunres2 31024 |
. . . . . . . . . . . . 13
⊢ ((◡𝑢 Fn ran 𝑢 ∧ ◡𝑓 Fn (𝐷 ∖ ran 𝑢) ∧ (ran 𝑢 ∩ (𝐷 ∖ ran 𝑢)) = ∅) → ((◡𝑢 ∪ ◡𝑓) ↾ (𝐷 ∖ ran 𝑢)) = ◡𝑓) |
208 | 152, 155,
76, 207 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑢 ∪ ◡𝑓) ↾ (𝐷 ∖ ran 𝑢)) = ◡𝑓) |
209 | 206, 208 | eqtrid 2791 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡(𝑢 ∪ 𝑓) ↾ (𝐷 ∖ ran 𝑢)) = ◡𝑓) |
210 | 159 | reseq1d 5893 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑀‘𝑢) ↾ (𝐷 ∖ ran 𝑢)) = (𝑄 ↾ (𝐷 ∖ ran 𝑢))) |
211 | 93, 162, 163, 69 | tocycfvres2 31387 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((𝑀‘𝑢) ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ (𝐷 ∖ ran 𝑢))) |
212 | 210, 211 | eqtr3d 2781 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (𝑄 ↾ (𝐷 ∖ ran 𝑢)) = ( I ↾ (𝐷 ∖ ran 𝑢))) |
213 | 209, 212 | coeq12d 5776 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ↾ (𝐷 ∖ ran 𝑢)) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢))) = (◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢)))) |
214 | 212 | rneqd 5850 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ran (𝑄 ↾ (𝐷 ∖ ran 𝑢)) = ran ( I ↾ (𝐷 ∖ ran 𝑢))) |
215 | | rnresi 5986 |
. . . . . . . . . . . . . 14
⊢ ran ( I
↾ (𝐷 ∖ ran
𝑢)) = (𝐷 ∖ ran 𝑢) |
216 | 215 | eqimssi 3980 |
. . . . . . . . . . . . 13
⊢ ran ( I
↾ (𝐷 ∖ ran
𝑢)) ⊆ (𝐷 ∖ ran 𝑢) |
217 | 214, 216 | eqsstrdi 3976 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ran (𝑄 ↾ (𝐷 ∖ ran 𝑢)) ⊆ (𝐷 ∖ ran 𝑢)) |
218 | | cores 6157 |
. . . . . . . . . . . 12
⊢ (ran
(𝑄 ↾ (𝐷 ∖ ran 𝑢)) ⊆ (𝐷 ∖ ran 𝑢) → ((◡(𝑢 ∪ 𝑓) ↾ (𝐷 ∖ ran 𝑢)) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢))) = (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢)))) |
219 | 217, 218 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ↾ (𝐷 ∖ ran 𝑢)) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢))) = (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢)))) |
220 | | resco 6158 |
. . . . . . . . . . 11
⊢ ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ (𝐷 ∖ ran 𝑢)) = (◡(𝑢 ∪ 𝑓) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢))) |
221 | 219, 220 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ↾ (𝐷 ∖ ran 𝑢)) ∘ (𝑄 ↾ (𝐷 ∖ ran 𝑢))) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ (𝐷 ∖ ran 𝑢))) |
222 | 213, 221 | eqtr3d 2781 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢))) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ (𝐷 ∖ ran 𝑢))) |
223 | 222 | coeq1d 5773 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢))) ∘ 𝑓) = (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ (𝐷 ∖ ran 𝑢)) ∘ 𝑓)) |
224 | | f1of 6725 |
. . . . . . . . . . . 12
⊢ (◡𝑓:(𝐷 ∖ ran 𝑢)–1-1-onto→((0..^𝑁) ∖ dom 𝑢) → ◡𝑓:(𝐷 ∖ ran 𝑢)⟶((0..^𝑁) ∖ dom 𝑢)) |
225 | 72, 153, 224 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ◡𝑓:(𝐷 ∖ ran 𝑢)⟶((0..^𝑁) ∖ dom 𝑢)) |
226 | | fcoi1 6657 |
. . . . . . . . . . 11
⊢ (◡𝑓:(𝐷 ∖ ran 𝑢)⟶((0..^𝑁) ∖ dom 𝑢) → (◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢))) = ◡𝑓) |
227 | 225, 226 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢))) = ◡𝑓) |
228 | 227 | coeq1d 5773 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢))) ∘ 𝑓) = (◡𝑓 ∘ 𝑓)) |
229 | | f1ococnv1 6754 |
. . . . . . . . . 10
⊢ (𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢) → (◡𝑓 ∘ 𝑓) = ( I ↾ ((0..^𝑁) ∖ dom 𝑢))) |
230 | 72, 229 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (◡𝑓 ∘ 𝑓) = ( I ↾ ((0..^𝑁) ∖ dom 𝑢))) |
231 | 199 | reseq2d 5894 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ( I ↾ ((0..^𝑁) ∖ dom 𝑢)) = ( I ↾ (𝑃..^𝑁))) |
232 | 228, 230,
231 | 3eqtrd 2783 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡𝑓 ∘ ( I ↾ (𝐷 ∖ ran 𝑢))) ∘ 𝑓) = ( I ↾ (𝑃..^𝑁))) |
233 | | f1of 6725 |
. . . . . . . . . 10
⊢ (𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢) → 𝑓:((0..^𝑁) ∖ dom 𝑢)⟶(𝐷 ∖ ran 𝑢)) |
234 | | frn 6616 |
. . . . . . . . . 10
⊢ (𝑓:((0..^𝑁) ∖ dom 𝑢)⟶(𝐷 ∖ ran 𝑢) → ran 𝑓 ⊆ (𝐷 ∖ ran 𝑢)) |
235 | 72, 233, 234 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ran 𝑓 ⊆ (𝐷 ∖ ran 𝑢)) |
236 | | cores 6157 |
. . . . . . . . 9
⊢ (ran
𝑓 ⊆ (𝐷 ∖ ran 𝑢) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ (𝐷 ∖ ran 𝑢)) ∘ 𝑓) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑓)) |
237 | 235, 236 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ↾ (𝐷 ∖ ran 𝑢)) ∘ 𝑓) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑓)) |
238 | 223, 232,
237 | 3eqtr3rd 2788 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ 𝑓) = ( I ↾ (𝑃..^𝑁))) |
239 | 205, 238 | eqtrd 2779 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁)) = ( I ↾ (𝑃..^𝑁))) |
240 | 192, 239 | uneq12d 4099 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (0..^𝑃)) ∪ (((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) ↾ (𝑃..^𝑁))) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) |
241 | 118, 240 | eqtrd 2779 |
. . . 4
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) |
242 | | vex 3437 |
. . . . . 6
⊢ 𝑢 ∈ V |
243 | | vex 3437 |
. . . . . 6
⊢ 𝑓 ∈ V |
244 | 242, 243 | unex 7605 |
. . . . 5
⊢ (𝑢 ∪ 𝑓) ∈ V |
245 | | f1oeq1 6713 |
. . . . . 6
⊢ (𝑞 = (𝑢 ∪ 𝑓) → (𝑞:(0..^𝑁)–1-1-onto→𝐷 ↔ (𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷)) |
246 | | cnveq 5785 |
. . . . . . . . 9
⊢ (𝑞 = (𝑢 ∪ 𝑓) → ◡𝑞 = ◡(𝑢 ∪ 𝑓)) |
247 | 246 | coeq1d 5773 |
. . . . . . . 8
⊢ (𝑞 = (𝑢 ∪ 𝑓) → (◡𝑞 ∘ 𝑄) = (◡(𝑢 ∪ 𝑓) ∘ 𝑄)) |
248 | | id 22 |
. . . . . . . 8
⊢ (𝑞 = (𝑢 ∪ 𝑓) → 𝑞 = (𝑢 ∪ 𝑓)) |
249 | 247, 248 | coeq12d 5776 |
. . . . . . 7
⊢ (𝑞 = (𝑢 ∪ 𝑓) → ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓))) |
250 | 249 | eqeq1d 2741 |
. . . . . 6
⊢ (𝑞 = (𝑢 ∪ 𝑓) → (((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))) ↔ ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) |
251 | 245, 250 | anbi12d 631 |
. . . . 5
⊢ (𝑞 = (𝑢 ∪ 𝑓) → ((𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ↔ ((𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))))) |
252 | 244, 251 | spcev 3546 |
. . . 4
⊢ (((𝑢 ∪ 𝑓):(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡(𝑢 ∪ 𝑓) ∘ 𝑄) ∘ (𝑢 ∪ 𝑓)) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑞(𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) |
253 | 87, 241, 252 | syl2anc 584 |
. . 3
⊢ ((((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) ∧ 𝑓:((0..^𝑁) ∖ dom 𝑢)–1-1-onto→(𝐷 ∖ ran 𝑢)) → ∃𝑞(𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) |
254 | 68, 253 | exlimddv 1939 |
. 2
⊢ (((𝜑 ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑄) → ∃𝑞(𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) |
255 | | nfcv 2908 |
. . 3
⊢
Ⅎ𝑢𝑀 |
256 | 93, 92, 94 | tocycf 31393 |
. . . 4
⊢ (𝐷 ∈ Fin → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵) |
257 | | ffn 6609 |
. . . 4
⊢ (𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵 → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
258 | 4, 256, 257 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
259 | 97, 91 | eleqtrdi 2850 |
. . 3
⊢ (𝜑 → 𝑄 ∈ (𝑀 “ (◡♯ “ {𝑃}))) |
260 | 255, 258,
259 | fvelimad 6845 |
. 2
⊢ (𝜑 → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))(𝑀‘𝑢) = 𝑄) |
261 | 254, 260 | r19.29a 3219 |
1
⊢ (𝜑 → ∃𝑞(𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) |