MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1b Structured version   Visualization version   GIF version

Theorem ackbij1b 10307
Description: The Ackermann bijection, part 1b: the bijection from ackbij1 10306 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1b (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij1b
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ackbij.f . . . . . 6 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem17 10304 . . . . 5 𝐹:(𝒫 ω ∩ Fin)–1-1→ω
3 ackbij2lem1 10287 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin))
4 pwexg 5396 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ∈ V)
5 f1imaeng 9074 . . . . 5 ((𝐹:(𝒫 ω ∩ Fin)–1-1→ω ∧ 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin) ∧ 𝒫 𝐴 ∈ V) → (𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴)
62, 3, 4, 5mp3an2i 1466 . . . 4 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴)
7 nnfi 9233 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ Fin)
8 pwfi 9385 . . . . . 6 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
97, 8sylib 218 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin)
10 ficardid 10031 . . . . 5 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
11 ensym 9063 . . . . 5 ((card‘𝒫 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (card‘𝒫 𝐴))
129, 10, 113syl 18 . . . 4 (𝐴 ∈ ω → 𝒫 𝐴 ≈ (card‘𝒫 𝐴))
13 entr 9066 . . . 4 (((𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴))
146, 12, 13syl2anc 583 . . 3 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴))
15 onfin2 9294 . . . . . . 7 ω = (On ∩ Fin)
16 inss2 4259 . . . . . . 7 (On ∩ Fin) ⊆ Fin
1715, 16eqsstri 4043 . . . . . 6 ω ⊆ Fin
18 ficardom 10030 . . . . . . 7 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ∈ ω)
199, 18syl 17 . . . . . 6 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ ω)
2017, 19sselid 4006 . . . . 5 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ Fin)
21 php3 9275 . . . . . 6 (((card‘𝒫 𝐴) ∈ Fin ∧ (𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴))
2221ex 412 . . . . 5 ((card‘𝒫 𝐴) ∈ Fin → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴)))
2320, 22syl 17 . . . 4 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴)))
24 sdomnen 9041 . . . 4 ((𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴) → ¬ (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴))
2523, 24syl6 35 . . 3 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → ¬ (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴)))
2614, 25mt2d 136 . 2 (𝐴 ∈ ω → ¬ (𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴))
27 fvex 6933 . . . . . 6 (𝐹𝑎) ∈ V
28 ackbij1lem3 10290 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 ∈ (𝒫 ω ∩ Fin))
29 elpwi 4629 . . . . . . . . 9 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
301ackbij1lem12 10299 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎𝐴) → (𝐹𝑎) ⊆ (𝐹𝐴))
3128, 29, 30syl2an 595 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → (𝐹𝑎) ⊆ (𝐹𝐴))
321ackbij1lem10 10297 . . . . . . . . . . 11 𝐹:(𝒫 ω ∩ Fin)⟶ω
33 peano1 7927 . . . . . . . . . . 11 ∅ ∈ ω
3432, 33f0cli 7132 . . . . . . . . . 10 (𝐹𝑎) ∈ ω
35 nnord 7911 . . . . . . . . . 10 ((𝐹𝑎) ∈ ω → Ord (𝐹𝑎))
3634, 35ax-mp 5 . . . . . . . . 9 Ord (𝐹𝑎)
3732, 33f0cli 7132 . . . . . . . . . 10 (𝐹𝐴) ∈ ω
38 nnord 7911 . . . . . . . . . 10 ((𝐹𝐴) ∈ ω → Ord (𝐹𝐴))
3937, 38ax-mp 5 . . . . . . . . 9 Ord (𝐹𝐴)
40 ordsucsssuc 7859 . . . . . . . . 9 ((Ord (𝐹𝑎) ∧ Ord (𝐹𝐴)) → ((𝐹𝑎) ⊆ (𝐹𝐴) ↔ suc (𝐹𝑎) ⊆ suc (𝐹𝐴)))
4136, 39, 40mp2an 691 . . . . . . . 8 ((𝐹𝑎) ⊆ (𝐹𝐴) ↔ suc (𝐹𝑎) ⊆ suc (𝐹𝐴))
4231, 41sylib 218 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹𝑎) ⊆ suc (𝐹𝐴))
431ackbij1lem14 10301 . . . . . . . . 9 (𝐴 ∈ ω → (𝐹‘{𝐴}) = suc (𝐹𝐴))
441ackbij1lem8 10295 . . . . . . . . 9 (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴))
4543, 44eqtr3d 2782 . . . . . . . 8 (𝐴 ∈ ω → suc (𝐹𝐴) = (card‘𝒫 𝐴))
4645adantr 480 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹𝐴) = (card‘𝒫 𝐴))
4742, 46sseqtrd 4049 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹𝑎) ⊆ (card‘𝒫 𝐴))
48 sucssel 6490 . . . . . 6 ((𝐹𝑎) ∈ V → (suc (𝐹𝑎) ⊆ (card‘𝒫 𝐴) → (𝐹𝑎) ∈ (card‘𝒫 𝐴)))
4927, 47, 48mpsyl 68 . . . . 5 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → (𝐹𝑎) ∈ (card‘𝒫 𝐴))
5049ralrimiva 3152 . . . 4 (𝐴 ∈ ω → ∀𝑎 ∈ 𝒫 𝐴(𝐹𝑎) ∈ (card‘𝒫 𝐴))
51 f1fun 6819 . . . . . 6 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → Fun 𝐹)
522, 51ax-mp 5 . . . . 5 Fun 𝐹
53 f1dm 6821 . . . . . . 7 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → dom 𝐹 = (𝒫 ω ∩ Fin))
542, 53ax-mp 5 . . . . . 6 dom 𝐹 = (𝒫 ω ∩ Fin)
553, 54sseqtrrdi 4060 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ⊆ dom 𝐹)
56 funimass4 6986 . . . . 5 ((Fun 𝐹 ∧ 𝒫 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴) ↔ ∀𝑎 ∈ 𝒫 𝐴(𝐹𝑎) ∈ (card‘𝒫 𝐴)))
5752, 55, 56sylancr 586 . . . 4 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴) ↔ ∀𝑎 ∈ 𝒫 𝐴(𝐹𝑎) ∈ (card‘𝒫 𝐴)))
5850, 57mpbird 257 . . 3 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴))
59 sspss 4125 . . 3 ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴) ↔ ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)))
6058, 59sylib 218 . 2 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)))
61 orel1 887 . 2 (¬ (𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → (((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)))
6226, 60, 61sylc 65 1 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cin 3975  wss 3976  wpss 3977  𝒫 cpw 4622  {csn 4648   ciun 5015   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700  cima 5703  Ord word 6394  Oncon0 6395  suc csuc 6397  Fun wfun 6567  1-1wf1 6570  cfv 6573  ωcom 7903  cen 9000  csdm 9002  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008
This theorem is referenced by:  ackbij2lem2  10308
  Copyright terms: Public domain W3C validator