MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1b Structured version   Visualization version   GIF version

Theorem ackbij1b 9396
Description: The Ackermann bijection, part 1b: the bijection from ackbij1 9395 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1b (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij1b
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ackbij.f . . . . . 6 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem17 9393 . . . . 5 𝐹:(𝒫 ω ∩ Fin)–1-1→ω
3 ackbij2lem1 9376 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin))
4 pwexg 5090 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ∈ V)
5 f1imaeng 8301 . . . . 5 ((𝐹:(𝒫 ω ∩ Fin)–1-1→ω ∧ 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin) ∧ 𝒫 𝐴 ∈ V) → (𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴)
62, 3, 4, 5mp3an2i 1539 . . . 4 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴)
7 nnfi 8441 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ Fin)
8 pwfi 8549 . . . . . 6 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
97, 8sylib 210 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin)
10 ficardid 9121 . . . . 5 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
11 ensym 8290 . . . . 5 ((card‘𝒫 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (card‘𝒫 𝐴))
129, 10, 113syl 18 . . . 4 (𝐴 ∈ ω → 𝒫 𝐴 ≈ (card‘𝒫 𝐴))
13 entr 8293 . . . 4 (((𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴))
146, 12, 13syl2anc 579 . . 3 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴))
15 onfin2 8440 . . . . . . 7 ω = (On ∩ Fin)
16 inss2 4054 . . . . . . 7 (On ∩ Fin) ⊆ Fin
1715, 16eqsstri 3854 . . . . . 6 ω ⊆ Fin
18 ficardom 9120 . . . . . . 7 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ∈ ω)
199, 18syl 17 . . . . . 6 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ ω)
2017, 19sseldi 3819 . . . . 5 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ Fin)
21 php3 8434 . . . . . 6 (((card‘𝒫 𝐴) ∈ Fin ∧ (𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴))
2221ex 403 . . . . 5 ((card‘𝒫 𝐴) ∈ Fin → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴)))
2320, 22syl 17 . . . 4 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴)))
24 sdomnen 8270 . . . 4 ((𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴) → ¬ (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴))
2523, 24syl6 35 . . 3 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → ¬ (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴)))
2614, 25mt2d 134 . 2 (𝐴 ∈ ω → ¬ (𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴))
27 fvex 6459 . . . . . 6 (𝐹𝑎) ∈ V
28 ackbij1lem3 9379 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 ∈ (𝒫 ω ∩ Fin))
29 elpwi 4389 . . . . . . . . 9 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
301ackbij1lem12 9388 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎𝐴) → (𝐹𝑎) ⊆ (𝐹𝐴))
3128, 29, 30syl2an 589 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → (𝐹𝑎) ⊆ (𝐹𝐴))
321ackbij1lem10 9386 . . . . . . . . . . 11 𝐹:(𝒫 ω ∩ Fin)⟶ω
33 peano1 7363 . . . . . . . . . . 11 ∅ ∈ ω
3432, 33f0cli 6634 . . . . . . . . . 10 (𝐹𝑎) ∈ ω
35 nnord 7351 . . . . . . . . . 10 ((𝐹𝑎) ∈ ω → Ord (𝐹𝑎))
3634, 35ax-mp 5 . . . . . . . . 9 Ord (𝐹𝑎)
3732, 33f0cli 6634 . . . . . . . . . 10 (𝐹𝐴) ∈ ω
38 nnord 7351 . . . . . . . . . 10 ((𝐹𝐴) ∈ ω → Ord (𝐹𝐴))
3937, 38ax-mp 5 . . . . . . . . 9 Ord (𝐹𝐴)
40 ordsucsssuc 7301 . . . . . . . . 9 ((Ord (𝐹𝑎) ∧ Ord (𝐹𝐴)) → ((𝐹𝑎) ⊆ (𝐹𝐴) ↔ suc (𝐹𝑎) ⊆ suc (𝐹𝐴)))
4136, 39, 40mp2an 682 . . . . . . . 8 ((𝐹𝑎) ⊆ (𝐹𝐴) ↔ suc (𝐹𝑎) ⊆ suc (𝐹𝐴))
4231, 41sylib 210 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹𝑎) ⊆ suc (𝐹𝐴))
431ackbij1lem14 9390 . . . . . . . . 9 (𝐴 ∈ ω → (𝐹‘{𝐴}) = suc (𝐹𝐴))
441ackbij1lem8 9384 . . . . . . . . 9 (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴))
4543, 44eqtr3d 2816 . . . . . . . 8 (𝐴 ∈ ω → suc (𝐹𝐴) = (card‘𝒫 𝐴))
4645adantr 474 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹𝐴) = (card‘𝒫 𝐴))
4742, 46sseqtrd 3860 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹𝑎) ⊆ (card‘𝒫 𝐴))
48 sucssel 6068 . . . . . 6 ((𝐹𝑎) ∈ V → (suc (𝐹𝑎) ⊆ (card‘𝒫 𝐴) → (𝐹𝑎) ∈ (card‘𝒫 𝐴)))
4927, 47, 48mpsyl 68 . . . . 5 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → (𝐹𝑎) ∈ (card‘𝒫 𝐴))
5049ralrimiva 3148 . . . 4 (𝐴 ∈ ω → ∀𝑎 ∈ 𝒫 𝐴(𝐹𝑎) ∈ (card‘𝒫 𝐴))
51 f1fun 6353 . . . . . 6 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → Fun 𝐹)
522, 51ax-mp 5 . . . . 5 Fun 𝐹
53 f1dm 6355 . . . . . . 7 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → dom 𝐹 = (𝒫 ω ∩ Fin))
542, 53ax-mp 5 . . . . . 6 dom 𝐹 = (𝒫 ω ∩ Fin)
553, 54syl6sseqr 3871 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ⊆ dom 𝐹)
56 funimass4 6507 . . . . 5 ((Fun 𝐹 ∧ 𝒫 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴) ↔ ∀𝑎 ∈ 𝒫 𝐴(𝐹𝑎) ∈ (card‘𝒫 𝐴)))
5752, 55, 56sylancr 581 . . . 4 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴) ↔ ∀𝑎 ∈ 𝒫 𝐴(𝐹𝑎) ∈ (card‘𝒫 𝐴)))
5850, 57mpbird 249 . . 3 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴))
59 sspss 3928 . . 3 ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴) ↔ ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)))
6058, 59sylib 210 . 2 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)))
61 orel1 875 . 2 (¬ (𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → (((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)))
6226, 60, 61sylc 65 1 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107  wral 3090  Vcvv 3398  cin 3791  wss 3792  wpss 3793  𝒫 cpw 4379  {csn 4398   ciun 4753   class class class wbr 4886  cmpt 4965   × cxp 5353  dom cdm 5355  cima 5358  Ord word 5975  Oncon0 5976  suc csuc 5978  Fun wfun 6129  1-1wf1 6132  cfv 6135  ωcom 7343  cen 8238  csdm 8240  Fincfn 8241  cardccrd 9094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-cda 9325
This theorem is referenced by:  ackbij2lem2  9397
  Copyright terms: Public domain W3C validator