| Step | Hyp | Ref
| Expression |
| 1 | | ackbij.f |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| 2 | 1 | ackbij1lem17 10275 |
. . . . 5
⊢ 𝐹:(𝒫 ω ∩
Fin)–1-1→ω |
| 3 | | ackbij2lem1 10258 |
. . . . 5
⊢ (𝐴 ∈ ω → 𝒫
𝐴 ⊆ (𝒫
ω ∩ Fin)) |
| 4 | | pwexg 5378 |
. . . . 5
⊢ (𝐴 ∈ ω → 𝒫
𝐴 ∈
V) |
| 5 | | f1imaeng 9054 |
. . . . 5
⊢ ((𝐹:(𝒫 ω ∩
Fin)–1-1→ω ∧
𝒫 𝐴 ⊆
(𝒫 ω ∩ Fin) ∧ 𝒫 𝐴 ∈ V) → (𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴) |
| 6 | 2, 3, 4, 5 | mp3an2i 1468 |
. . . 4
⊢ (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴) |
| 7 | | nnfi 9207 |
. . . . . 6
⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| 8 | | pwfi 9357 |
. . . . . 6
⊢ (𝐴 ∈ Fin ↔ 𝒫
𝐴 ∈
Fin) |
| 9 | 7, 8 | sylib 218 |
. . . . 5
⊢ (𝐴 ∈ ω → 𝒫
𝐴 ∈
Fin) |
| 10 | | ficardid 10002 |
. . . . 5
⊢
(𝒫 𝐴 ∈
Fin → (card‘𝒫 𝐴) ≈ 𝒫 𝐴) |
| 11 | | ensym 9043 |
. . . . 5
⊢
((card‘𝒫 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (card‘𝒫 𝐴)) |
| 12 | 9, 10, 11 | 3syl 18 |
. . . 4
⊢ (𝐴 ∈ ω → 𝒫
𝐴 ≈
(card‘𝒫 𝐴)) |
| 13 | | entr 9046 |
. . . 4
⊢ (((𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ (card‘𝒫
𝐴)) → (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫
𝐴)) |
| 14 | 6, 12, 13 | syl2anc 584 |
. . 3
⊢ (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫
𝐴)) |
| 15 | | onfin2 9268 |
. . . . . . 7
⊢ ω =
(On ∩ Fin) |
| 16 | | inss2 4238 |
. . . . . . 7
⊢ (On ∩
Fin) ⊆ Fin |
| 17 | 15, 16 | eqsstri 4030 |
. . . . . 6
⊢ ω
⊆ Fin |
| 18 | | ficardom 10001 |
. . . . . . 7
⊢
(𝒫 𝐴 ∈
Fin → (card‘𝒫 𝐴) ∈ ω) |
| 19 | 9, 18 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ ω →
(card‘𝒫 𝐴)
∈ ω) |
| 20 | 17, 19 | sselid 3981 |
. . . . 5
⊢ (𝐴 ∈ ω →
(card‘𝒫 𝐴)
∈ Fin) |
| 21 | | php3 9249 |
. . . . . 6
⊢
(((card‘𝒫 𝐴) ∈ Fin ∧ (𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴)) |
| 22 | 21 | ex 412 |
. . . . 5
⊢
((card‘𝒫 𝐴) ∈ Fin → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴))) |
| 23 | 20, 22 | syl 17 |
. . . 4
⊢ (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫
𝐴) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫
𝐴))) |
| 24 | | sdomnen 9021 |
. . . 4
⊢ ((𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫
𝐴) → ¬ (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫
𝐴)) |
| 25 | 23, 24 | syl6 35 |
. . 3
⊢ (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫
𝐴) → ¬ (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫
𝐴))) |
| 26 | 14, 25 | mt2d 136 |
. 2
⊢ (𝐴 ∈ ω → ¬
(𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫
𝐴)) |
| 27 | | fvex 6919 |
. . . . . 6
⊢ (𝐹‘𝑎) ∈ V |
| 28 | | ackbij1lem3 10261 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → 𝐴 ∈ (𝒫 ω ∩
Fin)) |
| 29 | | elpwi 4607 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴) |
| 30 | 1 | ackbij1lem12 10270 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝑎 ⊆ 𝐴) → (𝐹‘𝑎) ⊆ (𝐹‘𝐴)) |
| 31 | 28, 29, 30 | syl2an 596 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → (𝐹‘𝑎) ⊆ (𝐹‘𝐴)) |
| 32 | 1 | ackbij1lem10 10268 |
. . . . . . . . . . 11
⊢ 𝐹:(𝒫 ω ∩
Fin)⟶ω |
| 33 | | peano1 7910 |
. . . . . . . . . . 11
⊢ ∅
∈ ω |
| 34 | 32, 33 | f0cli 7118 |
. . . . . . . . . 10
⊢ (𝐹‘𝑎) ∈ ω |
| 35 | | nnord 7895 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑎) ∈ ω → Ord (𝐹‘𝑎)) |
| 36 | 34, 35 | ax-mp 5 |
. . . . . . . . 9
⊢ Ord
(𝐹‘𝑎) |
| 37 | 32, 33 | f0cli 7118 |
. . . . . . . . . 10
⊢ (𝐹‘𝐴) ∈ ω |
| 38 | | nnord 7895 |
. . . . . . . . . 10
⊢ ((𝐹‘𝐴) ∈ ω → Ord (𝐹‘𝐴)) |
| 39 | 37, 38 | ax-mp 5 |
. . . . . . . . 9
⊢ Ord
(𝐹‘𝐴) |
| 40 | | ordsucsssuc 7843 |
. . . . . . . . 9
⊢ ((Ord
(𝐹‘𝑎) ∧ Ord (𝐹‘𝐴)) → ((𝐹‘𝑎) ⊆ (𝐹‘𝐴) ↔ suc (𝐹‘𝑎) ⊆ suc (𝐹‘𝐴))) |
| 41 | 36, 39, 40 | mp2an 692 |
. . . . . . . 8
⊢ ((𝐹‘𝑎) ⊆ (𝐹‘𝐴) ↔ suc (𝐹‘𝑎) ⊆ suc (𝐹‘𝐴)) |
| 42 | 31, 41 | sylib 218 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹‘𝑎) ⊆ suc (𝐹‘𝐴)) |
| 43 | 1 | ackbij1lem14 10272 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = suc (𝐹‘𝐴)) |
| 44 | 1 | ackbij1lem8 10266 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) |
| 45 | 43, 44 | eqtr3d 2779 |
. . . . . . . 8
⊢ (𝐴 ∈ ω → suc
(𝐹‘𝐴) = (card‘𝒫 𝐴)) |
| 46 | 45 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹‘𝐴) = (card‘𝒫 𝐴)) |
| 47 | 42, 46 | sseqtrd 4020 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹‘𝑎) ⊆ (card‘𝒫 𝐴)) |
| 48 | | sucssel 6479 |
. . . . . 6
⊢ ((𝐹‘𝑎) ∈ V → (suc (𝐹‘𝑎) ⊆ (card‘𝒫 𝐴) → (𝐹‘𝑎) ∈ (card‘𝒫 𝐴))) |
| 49 | 27, 47, 48 | mpsyl 68 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → (𝐹‘𝑎) ∈ (card‘𝒫 𝐴)) |
| 50 | 49 | ralrimiva 3146 |
. . . 4
⊢ (𝐴 ∈ ω →
∀𝑎 ∈ 𝒫
𝐴(𝐹‘𝑎) ∈ (card‘𝒫 𝐴)) |
| 51 | | f1fun 6806 |
. . . . . 6
⊢ (𝐹:(𝒫 ω ∩
Fin)–1-1→ω → Fun
𝐹) |
| 52 | 2, 51 | ax-mp 5 |
. . . . 5
⊢ Fun 𝐹 |
| 53 | | f1dm 6808 |
. . . . . . 7
⊢ (𝐹:(𝒫 ω ∩
Fin)–1-1→ω → dom
𝐹 = (𝒫 ω
∩ Fin)) |
| 54 | 2, 53 | ax-mp 5 |
. . . . . 6
⊢ dom 𝐹 = (𝒫 ω ∩
Fin) |
| 55 | 3, 54 | sseqtrrdi 4025 |
. . . . 5
⊢ (𝐴 ∈ ω → 𝒫
𝐴 ⊆ dom 𝐹) |
| 56 | | funimass4 6973 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝒫 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴) ↔ ∀𝑎 ∈ 𝒫 𝐴(𝐹‘𝑎) ∈ (card‘𝒫 𝐴))) |
| 57 | 52, 55, 56 | sylancr 587 |
. . . 4
⊢ (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫
𝐴) ↔ ∀𝑎 ∈ 𝒫 𝐴(𝐹‘𝑎) ∈ (card‘𝒫 𝐴))) |
| 58 | 50, 57 | mpbird 257 |
. . 3
⊢ (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫
𝐴)) |
| 59 | | sspss 4102 |
. . 3
⊢ ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫
𝐴) ↔ ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫
𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴))) |
| 60 | 58, 59 | sylib 218 |
. 2
⊢ (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫
𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴))) |
| 61 | | orel1 889 |
. 2
⊢ (¬
(𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫
𝐴) → (((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫
𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴))) |
| 62 | 26, 60, 61 | sylc 65 |
1
⊢ (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)) |