MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1b Structured version   Visualization version   GIF version

Theorem ackbij1b 10129
Description: The Ackermann bijection, part 1b: the bijection from ackbij1 10128 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1b (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij1b
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ackbij.f . . . . . 6 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem17 10126 . . . . 5 𝐹:(𝒫 ω ∩ Fin)–1-1→ω
3 ackbij2lem1 10109 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin))
4 pwexg 5314 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ∈ V)
5 f1imaeng 8936 . . . . 5 ((𝐹:(𝒫 ω ∩ Fin)–1-1→ω ∧ 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin) ∧ 𝒫 𝐴 ∈ V) → (𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴)
62, 3, 4, 5mp3an2i 1468 . . . 4 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴)
7 nnfi 9077 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ Fin)
8 pwfi 9203 . . . . . 6 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
97, 8sylib 218 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin)
10 ficardid 9855 . . . . 5 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
11 ensym 8925 . . . . 5 ((card‘𝒫 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (card‘𝒫 𝐴))
129, 10, 113syl 18 . . . 4 (𝐴 ∈ ω → 𝒫 𝐴 ≈ (card‘𝒫 𝐴))
13 entr 8928 . . . 4 (((𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴))
146, 12, 13syl2anc 584 . . 3 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴))
15 onfin2 9125 . . . . . . 7 ω = (On ∩ Fin)
16 inss2 4185 . . . . . . 7 (On ∩ Fin) ⊆ Fin
1715, 16eqsstri 3976 . . . . . 6 ω ⊆ Fin
18 ficardom 9854 . . . . . . 7 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ∈ ω)
199, 18syl 17 . . . . . 6 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ ω)
2017, 19sselid 3927 . . . . 5 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ Fin)
21 php3 9118 . . . . . 6 (((card‘𝒫 𝐴) ∈ Fin ∧ (𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴))
2221ex 412 . . . . 5 ((card‘𝒫 𝐴) ∈ Fin → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴)))
2320, 22syl 17 . . . 4 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴)))
24 sdomnen 8903 . . . 4 ((𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴) → ¬ (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴))
2523, 24syl6 35 . . 3 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → ¬ (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴)))
2614, 25mt2d 136 . 2 (𝐴 ∈ ω → ¬ (𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴))
27 fvex 6835 . . . . . 6 (𝐹𝑎) ∈ V
28 ackbij1lem3 10112 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 ∈ (𝒫 ω ∩ Fin))
29 elpwi 4554 . . . . . . . . 9 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
301ackbij1lem12 10121 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎𝐴) → (𝐹𝑎) ⊆ (𝐹𝐴))
3128, 29, 30syl2an 596 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → (𝐹𝑎) ⊆ (𝐹𝐴))
321ackbij1lem10 10119 . . . . . . . . . . 11 𝐹:(𝒫 ω ∩ Fin)⟶ω
33 peano1 7819 . . . . . . . . . . 11 ∅ ∈ ω
3432, 33f0cli 7031 . . . . . . . . . 10 (𝐹𝑎) ∈ ω
35 nnord 7804 . . . . . . . . . 10 ((𝐹𝑎) ∈ ω → Ord (𝐹𝑎))
3634, 35ax-mp 5 . . . . . . . . 9 Ord (𝐹𝑎)
3732, 33f0cli 7031 . . . . . . . . . 10 (𝐹𝐴) ∈ ω
38 nnord 7804 . . . . . . . . . 10 ((𝐹𝐴) ∈ ω → Ord (𝐹𝐴))
3937, 38ax-mp 5 . . . . . . . . 9 Ord (𝐹𝐴)
40 ordsucsssuc 7753 . . . . . . . . 9 ((Ord (𝐹𝑎) ∧ Ord (𝐹𝐴)) → ((𝐹𝑎) ⊆ (𝐹𝐴) ↔ suc (𝐹𝑎) ⊆ suc (𝐹𝐴)))
4136, 39, 40mp2an 692 . . . . . . . 8 ((𝐹𝑎) ⊆ (𝐹𝐴) ↔ suc (𝐹𝑎) ⊆ suc (𝐹𝐴))
4231, 41sylib 218 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹𝑎) ⊆ suc (𝐹𝐴))
431ackbij1lem14 10123 . . . . . . . . 9 (𝐴 ∈ ω → (𝐹‘{𝐴}) = suc (𝐹𝐴))
441ackbij1lem8 10117 . . . . . . . . 9 (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴))
4543, 44eqtr3d 2768 . . . . . . . 8 (𝐴 ∈ ω → suc (𝐹𝐴) = (card‘𝒫 𝐴))
4645adantr 480 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹𝐴) = (card‘𝒫 𝐴))
4742, 46sseqtrd 3966 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹𝑎) ⊆ (card‘𝒫 𝐴))
48 sucssel 6403 . . . . . 6 ((𝐹𝑎) ∈ V → (suc (𝐹𝑎) ⊆ (card‘𝒫 𝐴) → (𝐹𝑎) ∈ (card‘𝒫 𝐴)))
4927, 47, 48mpsyl 68 . . . . 5 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → (𝐹𝑎) ∈ (card‘𝒫 𝐴))
5049ralrimiva 3124 . . . 4 (𝐴 ∈ ω → ∀𝑎 ∈ 𝒫 𝐴(𝐹𝑎) ∈ (card‘𝒫 𝐴))
51 f1fun 6721 . . . . . 6 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → Fun 𝐹)
522, 51ax-mp 5 . . . . 5 Fun 𝐹
53 f1dm 6723 . . . . . . 7 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → dom 𝐹 = (𝒫 ω ∩ Fin))
542, 53ax-mp 5 . . . . . 6 dom 𝐹 = (𝒫 ω ∩ Fin)
553, 54sseqtrrdi 3971 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ⊆ dom 𝐹)
56 funimass4 6886 . . . . 5 ((Fun 𝐹 ∧ 𝒫 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴) ↔ ∀𝑎 ∈ 𝒫 𝐴(𝐹𝑎) ∈ (card‘𝒫 𝐴)))
5752, 55, 56sylancr 587 . . . 4 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴) ↔ ∀𝑎 ∈ 𝒫 𝐴(𝐹𝑎) ∈ (card‘𝒫 𝐴)))
5850, 57mpbird 257 . . 3 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴))
59 sspss 4049 . . 3 ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴) ↔ ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)))
6058, 59sylib 218 . 2 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)))
61 orel1 888 . 2 (¬ (𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → (((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)))
6226, 60, 61sylc 65 1 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cin 3896  wss 3897  wpss 3898  𝒫 cpw 4547  {csn 4573   ciun 4939   class class class wbr 5089  cmpt 5170   × cxp 5612  dom cdm 5614  cima 5617  Ord word 6305  Oncon0 6306  suc csuc 6308  Fun wfun 6475  1-1wf1 6478  cfv 6481  ωcom 7796  cen 8866  csdm 8868  Fincfn 8869  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832
This theorem is referenced by:  ackbij2lem2  10130
  Copyright terms: Public domain W3C validator