MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1b Structured version   Visualization version   GIF version

Theorem ackbij1b 10278
Description: The Ackermann bijection, part 1b: the bijection from ackbij1 10277 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1b (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij1b
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ackbij.f . . . . . 6 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem17 10275 . . . . 5 𝐹:(𝒫 ω ∩ Fin)–1-1→ω
3 ackbij2lem1 10258 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin))
4 pwexg 5378 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ∈ V)
5 f1imaeng 9054 . . . . 5 ((𝐹:(𝒫 ω ∩ Fin)–1-1→ω ∧ 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin) ∧ 𝒫 𝐴 ∈ V) → (𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴)
62, 3, 4, 5mp3an2i 1468 . . . 4 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴)
7 nnfi 9207 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ Fin)
8 pwfi 9357 . . . . . 6 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
97, 8sylib 218 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin)
10 ficardid 10002 . . . . 5 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
11 ensym 9043 . . . . 5 ((card‘𝒫 𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (card‘𝒫 𝐴))
129, 10, 113syl 18 . . . 4 (𝐴 ∈ ω → 𝒫 𝐴 ≈ (card‘𝒫 𝐴))
13 entr 9046 . . . 4 (((𝐹 “ 𝒫 𝐴) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴))
146, 12, 13syl2anc 584 . . 3 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴))
15 onfin2 9268 . . . . . . 7 ω = (On ∩ Fin)
16 inss2 4238 . . . . . . 7 (On ∩ Fin) ⊆ Fin
1715, 16eqsstri 4030 . . . . . 6 ω ⊆ Fin
18 ficardom 10001 . . . . . . 7 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ∈ ω)
199, 18syl 17 . . . . . 6 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ ω)
2017, 19sselid 3981 . . . . 5 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ Fin)
21 php3 9249 . . . . . 6 (((card‘𝒫 𝐴) ∈ Fin ∧ (𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴))
2221ex 412 . . . . 5 ((card‘𝒫 𝐴) ∈ Fin → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴)))
2320, 22syl 17 . . . 4 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → (𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴)))
24 sdomnen 9021 . . . 4 ((𝐹 “ 𝒫 𝐴) ≺ (card‘𝒫 𝐴) → ¬ (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴))
2523, 24syl6 35 . . 3 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → ¬ (𝐹 “ 𝒫 𝐴) ≈ (card‘𝒫 𝐴)))
2614, 25mt2d 136 . 2 (𝐴 ∈ ω → ¬ (𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴))
27 fvex 6919 . . . . . 6 (𝐹𝑎) ∈ V
28 ackbij1lem3 10261 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 ∈ (𝒫 ω ∩ Fin))
29 elpwi 4607 . . . . . . . . 9 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
301ackbij1lem12 10270 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎𝐴) → (𝐹𝑎) ⊆ (𝐹𝐴))
3128, 29, 30syl2an 596 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → (𝐹𝑎) ⊆ (𝐹𝐴))
321ackbij1lem10 10268 . . . . . . . . . . 11 𝐹:(𝒫 ω ∩ Fin)⟶ω
33 peano1 7910 . . . . . . . . . . 11 ∅ ∈ ω
3432, 33f0cli 7118 . . . . . . . . . 10 (𝐹𝑎) ∈ ω
35 nnord 7895 . . . . . . . . . 10 ((𝐹𝑎) ∈ ω → Ord (𝐹𝑎))
3634, 35ax-mp 5 . . . . . . . . 9 Ord (𝐹𝑎)
3732, 33f0cli 7118 . . . . . . . . . 10 (𝐹𝐴) ∈ ω
38 nnord 7895 . . . . . . . . . 10 ((𝐹𝐴) ∈ ω → Ord (𝐹𝐴))
3937, 38ax-mp 5 . . . . . . . . 9 Ord (𝐹𝐴)
40 ordsucsssuc 7843 . . . . . . . . 9 ((Ord (𝐹𝑎) ∧ Ord (𝐹𝐴)) → ((𝐹𝑎) ⊆ (𝐹𝐴) ↔ suc (𝐹𝑎) ⊆ suc (𝐹𝐴)))
4136, 39, 40mp2an 692 . . . . . . . 8 ((𝐹𝑎) ⊆ (𝐹𝐴) ↔ suc (𝐹𝑎) ⊆ suc (𝐹𝐴))
4231, 41sylib 218 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹𝑎) ⊆ suc (𝐹𝐴))
431ackbij1lem14 10272 . . . . . . . . 9 (𝐴 ∈ ω → (𝐹‘{𝐴}) = suc (𝐹𝐴))
441ackbij1lem8 10266 . . . . . . . . 9 (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴))
4543, 44eqtr3d 2779 . . . . . . . 8 (𝐴 ∈ ω → suc (𝐹𝐴) = (card‘𝒫 𝐴))
4645adantr 480 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹𝐴) = (card‘𝒫 𝐴))
4742, 46sseqtrd 4020 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → suc (𝐹𝑎) ⊆ (card‘𝒫 𝐴))
48 sucssel 6479 . . . . . 6 ((𝐹𝑎) ∈ V → (suc (𝐹𝑎) ⊆ (card‘𝒫 𝐴) → (𝐹𝑎) ∈ (card‘𝒫 𝐴)))
4927, 47, 48mpsyl 68 . . . . 5 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → (𝐹𝑎) ∈ (card‘𝒫 𝐴))
5049ralrimiva 3146 . . . 4 (𝐴 ∈ ω → ∀𝑎 ∈ 𝒫 𝐴(𝐹𝑎) ∈ (card‘𝒫 𝐴))
51 f1fun 6806 . . . . . 6 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → Fun 𝐹)
522, 51ax-mp 5 . . . . 5 Fun 𝐹
53 f1dm 6808 . . . . . . 7 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → dom 𝐹 = (𝒫 ω ∩ Fin))
542, 53ax-mp 5 . . . . . 6 dom 𝐹 = (𝒫 ω ∩ Fin)
553, 54sseqtrrdi 4025 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ⊆ dom 𝐹)
56 funimass4 6973 . . . . 5 ((Fun 𝐹 ∧ 𝒫 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴) ↔ ∀𝑎 ∈ 𝒫 𝐴(𝐹𝑎) ∈ (card‘𝒫 𝐴)))
5752, 55, 56sylancr 587 . . . 4 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴) ↔ ∀𝑎 ∈ 𝒫 𝐴(𝐹𝑎) ∈ (card‘𝒫 𝐴)))
5850, 57mpbird 257 . . 3 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴))
59 sspss 4102 . . 3 ((𝐹 “ 𝒫 𝐴) ⊆ (card‘𝒫 𝐴) ↔ ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)))
6058, 59sylib 218 . 2 (𝐴 ∈ ω → ((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)))
61 orel1 889 . 2 (¬ (𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) → (((𝐹 “ 𝒫 𝐴) ⊊ (card‘𝒫 𝐴) ∨ (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)) → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)))
6226, 60, 61sylc 65 1 (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cin 3950  wss 3951  wpss 3952  𝒫 cpw 4600  {csn 4626   ciun 4991   class class class wbr 5143  cmpt 5225   × cxp 5683  dom cdm 5685  cima 5688  Ord word 6383  Oncon0 6384  suc csuc 6386  Fun wfun 6555  1-1wf1 6558  cfv 6561  ωcom 7887  cen 8982  csdm 8984  Fincfn 8985  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979
This theorem is referenced by:  ackbij2lem2  10279
  Copyright terms: Public domain W3C validator