| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashf1dmrn | Structured version Visualization version GIF version | ||
| Description: The size of the domain of a one-to-one set function is equal to the size of its range. (Contributed by BTernaryTau, 1-Oct-2023.) |
| Ref | Expression |
|---|---|
| hashf1dmrn | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐴) = (♯‘ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fun 6727 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) | |
| 2 | hashfundm 14355 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (♯‘𝐹) = (♯‘dom 𝐹)) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘dom 𝐹)) |
| 4 | f1dm 6729 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → dom 𝐹 = 𝐴) |
| 6 | dmexg 7837 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → dom 𝐹 ∈ V) |
| 8 | 5, 7 | eqeltrrd 2832 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ V) |
| 9 | hashf1rn 14265 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) | |
| 10 | 8, 9 | sylancom 588 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) |
| 11 | 5 | fveq2d 6832 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘dom 𝐹) = (♯‘𝐴)) |
| 12 | 3, 10, 11 | 3eqtr3rd 2775 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐴) = (♯‘ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 dom cdm 5619 ran crn 5620 Fun wfun 6481 –1-1→wf1 6484 ‘cfv 6487 ♯chash 14243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9800 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-n0 12388 df-xnn0 12461 df-z 12475 df-uz 12739 df-fz 13414 df-hash 14244 |
| This theorem is referenced by: hashf1dmcdm 14357 lmimdim 33623 |
| Copyright terms: Public domain | W3C validator |