MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashimarn Structured version   Visualization version   GIF version

Theorem hashimarn 14479
Description: The size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 equals the size of the function 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) (Proof shortened by AV, 4-May-2021.)
Assertion
Ref Expression
hashimarn ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹)))

Proof of Theorem hashimarn
StepHypRef Expression
1 f1f 6804 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸𝐹:(0..^(♯‘𝐹))⟶dom 𝐸)
21frnd 6744 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → ran 𝐹 ⊆ dom 𝐸)
32adantl 481 . . . . 5 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → ran 𝐹 ⊆ dom 𝐸)
4 ssdmres 6031 . . . . 5 (ran 𝐹 ⊆ dom 𝐸 ↔ dom (𝐸 ↾ ran 𝐹) = ran 𝐹)
53, 4sylib 218 . . . 4 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → dom (𝐸 ↾ ran 𝐹) = ran 𝐹)
65fveq2d 6910 . . 3 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘dom (𝐸 ↾ ran 𝐹)) = (♯‘ran 𝐹))
7 df-ima 5698 . . . . 5 (𝐸 “ ran 𝐹) = ran (𝐸 ↾ ran 𝐹)
87fveq2i 6909 . . . 4 (♯‘(𝐸 “ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹))
9 f1fun 6806 . . . . . . . 8 (𝐸:dom 𝐸1-1→ran 𝐸 → Fun 𝐸)
10 funres 6608 . . . . . . . . 9 (Fun 𝐸 → Fun (𝐸 ↾ ran 𝐹))
1110funfnd 6597 . . . . . . . 8 (Fun 𝐸 → (𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹))
129, 11syl 17 . . . . . . 7 (𝐸:dom 𝐸1-1→ran 𝐸 → (𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹))
1312ad2antrr 726 . . . . . 6 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹))
14 hashfn 14414 . . . . . 6 ((𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘dom (𝐸 ↾ ran 𝐹)))
1513, 14syl 17 . . . . 5 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘dom (𝐸 ↾ ran 𝐹)))
16 ovex 7464 . . . . . . . 8 (0..^(♯‘𝐹)) ∈ V
17 fex 7246 . . . . . . . 8 ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ (0..^(♯‘𝐹)) ∈ V) → 𝐹 ∈ V)
181, 16, 17sylancl 586 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸𝐹 ∈ V)
19 rnexg 7924 . . . . . . 7 (𝐹 ∈ V → ran 𝐹 ∈ V)
2018, 19syl 17 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → ran 𝐹 ∈ V)
21 simpll 767 . . . . . . 7 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → 𝐸:dom 𝐸1-1→ran 𝐸)
22 f1ssres 6811 . . . . . . 7 ((𝐸:dom 𝐸1-1→ran 𝐸 ∧ ran 𝐹 ⊆ dom 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹1-1→ran 𝐸)
2321, 3, 22syl2anc 584 . . . . . 6 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹1-1→ran 𝐸)
24 hashf1rn 14391 . . . . . 6 ((ran 𝐹 ∈ V ∧ (𝐸 ↾ ran 𝐹):ran 𝐹1-1→ran 𝐸) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹)))
2520, 23, 24syl2an2 686 . . . . 5 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹)))
2615, 25eqtr3d 2779 . . . 4 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘dom (𝐸 ↾ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹)))
278, 26eqtr4id 2796 . . 3 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 “ ran 𝐹)) = (♯‘dom (𝐸 ↾ ran 𝐹)))
28 hashf1rn 14391 . . . . 5 (((0..^(♯‘𝐹)) ∈ V ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘𝐹) = (♯‘ran 𝐹))
2916, 28mpan 690 . . . 4 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘𝐹) = (♯‘ran 𝐹))
3029adantl 481 . . 3 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘𝐹) = (♯‘ran 𝐹))
316, 27, 303eqtr4d 2787 . 2 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹))
3231ex 412 1 ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  dom cdm 5685  ran crn 5686  cres 5687  cima 5688  Fun wfun 6555   Fn wfn 6556  wf 6557  1-1wf1 6558  cfv 6561  (class class class)co 7431  0cc0 11155  ..^cfzo 13694  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-hash 14370
This theorem is referenced by:  hashimarni  14480
  Copyright terms: Public domain W3C validator