MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashimarn Structured version   Visualization version   GIF version

Theorem hashimarn 14476
Description: The size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 equals the size of the function 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) (Proof shortened by AV, 4-May-2021.)
Assertion
Ref Expression
hashimarn ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹)))

Proof of Theorem hashimarn
StepHypRef Expression
1 f1f 6805 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸𝐹:(0..^(♯‘𝐹))⟶dom 𝐸)
21frnd 6745 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → ran 𝐹 ⊆ dom 𝐸)
32adantl 481 . . . . 5 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → ran 𝐹 ⊆ dom 𝐸)
4 ssdmres 6033 . . . . 5 (ran 𝐹 ⊆ dom 𝐸 ↔ dom (𝐸 ↾ ran 𝐹) = ran 𝐹)
53, 4sylib 218 . . . 4 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → dom (𝐸 ↾ ran 𝐹) = ran 𝐹)
65fveq2d 6911 . . 3 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘dom (𝐸 ↾ ran 𝐹)) = (♯‘ran 𝐹))
7 df-ima 5702 . . . . 5 (𝐸 “ ran 𝐹) = ran (𝐸 ↾ ran 𝐹)
87fveq2i 6910 . . . 4 (♯‘(𝐸 “ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹))
9 f1fun 6807 . . . . . . . 8 (𝐸:dom 𝐸1-1→ran 𝐸 → Fun 𝐸)
10 funres 6610 . . . . . . . . 9 (Fun 𝐸 → Fun (𝐸 ↾ ran 𝐹))
1110funfnd 6599 . . . . . . . 8 (Fun 𝐸 → (𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹))
129, 11syl 17 . . . . . . 7 (𝐸:dom 𝐸1-1→ran 𝐸 → (𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹))
1312ad2antrr 726 . . . . . 6 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹))
14 hashfn 14411 . . . . . 6 ((𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘dom (𝐸 ↾ ran 𝐹)))
1513, 14syl 17 . . . . 5 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘dom (𝐸 ↾ ran 𝐹)))
16 ovex 7464 . . . . . . . 8 (0..^(♯‘𝐹)) ∈ V
17 fex 7246 . . . . . . . 8 ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ (0..^(♯‘𝐹)) ∈ V) → 𝐹 ∈ V)
181, 16, 17sylancl 586 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸𝐹 ∈ V)
19 rnexg 7925 . . . . . . 7 (𝐹 ∈ V → ran 𝐹 ∈ V)
2018, 19syl 17 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → ran 𝐹 ∈ V)
21 simpll 767 . . . . . . 7 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → 𝐸:dom 𝐸1-1→ran 𝐸)
22 f1ssres 6812 . . . . . . 7 ((𝐸:dom 𝐸1-1→ran 𝐸 ∧ ran 𝐹 ⊆ dom 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹1-1→ran 𝐸)
2321, 3, 22syl2anc 584 . . . . . 6 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹1-1→ran 𝐸)
24 hashf1rn 14388 . . . . . 6 ((ran 𝐹 ∈ V ∧ (𝐸 ↾ ran 𝐹):ran 𝐹1-1→ran 𝐸) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹)))
2520, 23, 24syl2an2 686 . . . . 5 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹)))
2615, 25eqtr3d 2777 . . . 4 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘dom (𝐸 ↾ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹)))
278, 26eqtr4id 2794 . . 3 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 “ ran 𝐹)) = (♯‘dom (𝐸 ↾ ran 𝐹)))
28 hashf1rn 14388 . . . . 5 (((0..^(♯‘𝐹)) ∈ V ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘𝐹) = (♯‘ran 𝐹))
2916, 28mpan 690 . . . 4 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘𝐹) = (♯‘ran 𝐹))
3029adantl 481 . . 3 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘𝐹) = (♯‘ran 𝐹))
316, 27, 303eqtr4d 2785 . 2 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹))
3231ex 412 1 ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  dom cdm 5689  ran crn 5690  cres 5691  cima 5692  Fun wfun 6557   Fn wfn 6558  wf 6559  1-1wf1 6560  cfv 6563  (class class class)co 7431  0cc0 11153  ..^cfzo 13691  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-hash 14367
This theorem is referenced by:  hashimarni  14477
  Copyright terms: Public domain W3C validator