MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashimarn Structured version   Visualization version   GIF version

Theorem hashimarn 13476
Description: The size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 equals the size of the function 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) (Proof shortened by AV, 4-May-2021.)
Assertion
Ref Expression
hashimarn ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹)))

Proof of Theorem hashimarn
StepHypRef Expression
1 f1f 6316 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸𝐹:(0..^(♯‘𝐹))⟶dom 𝐸)
21frnd 6263 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → ran 𝐹 ⊆ dom 𝐸)
32adantl 474 . . . . 5 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → ran 𝐹 ⊆ dom 𝐸)
4 ssdmres 5630 . . . . 5 (ran 𝐹 ⊆ dom 𝐸 ↔ dom (𝐸 ↾ ran 𝐹) = ran 𝐹)
53, 4sylib 210 . . . 4 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → dom (𝐸 ↾ ran 𝐹) = ran 𝐹)
65fveq2d 6415 . . 3 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘dom (𝐸 ↾ ran 𝐹)) = (♯‘ran 𝐹))
7 f1fun 6318 . . . . . . . 8 (𝐸:dom 𝐸1-1→ran 𝐸 → Fun 𝐸)
8 funres 6143 . . . . . . . . 9 (Fun 𝐸 → Fun (𝐸 ↾ ran 𝐹))
9 funfn 6131 . . . . . . . . 9 (Fun (𝐸 ↾ ran 𝐹) ↔ (𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹))
108, 9sylib 210 . . . . . . . 8 (Fun 𝐸 → (𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹))
117, 10syl 17 . . . . . . 7 (𝐸:dom 𝐸1-1→ran 𝐸 → (𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹))
1211ad2antrr 718 . . . . . 6 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹))
13 hashfn 13414 . . . . . 6 ((𝐸 ↾ ran 𝐹) Fn dom (𝐸 ↾ ran 𝐹) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘dom (𝐸 ↾ ran 𝐹)))
1412, 13syl 17 . . . . 5 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘dom (𝐸 ↾ ran 𝐹)))
15 ovex 6910 . . . . . . . 8 (0..^(♯‘𝐹)) ∈ V
16 fex 6718 . . . . . . . 8 ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ (0..^(♯‘𝐹)) ∈ V) → 𝐹 ∈ V)
171, 15, 16sylancl 581 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸𝐹 ∈ V)
18 rnexg 7332 . . . . . . 7 (𝐹 ∈ V → ran 𝐹 ∈ V)
1917, 18syl 17 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → ran 𝐹 ∈ V)
20 simpll 784 . . . . . . 7 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → 𝐸:dom 𝐸1-1→ran 𝐸)
21 f1ssres 6323 . . . . . . 7 ((𝐸:dom 𝐸1-1→ran 𝐸 ∧ ran 𝐹 ⊆ dom 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹1-1→ran 𝐸)
2220, 3, 21syl2anc 580 . . . . . 6 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹1-1→ran 𝐸)
23 hashf1rn 13393 . . . . . 6 ((ran 𝐹 ∈ V ∧ (𝐸 ↾ ran 𝐹):ran 𝐹1-1→ran 𝐸) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹)))
2419, 22, 23syl2an2 678 . . . . 5 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 ↾ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹)))
2514, 24eqtr3d 2835 . . . 4 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘dom (𝐸 ↾ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹)))
26 df-ima 5325 . . . . 5 (𝐸 “ ran 𝐹) = ran (𝐸 ↾ ran 𝐹)
2726fveq2i 6414 . . . 4 (♯‘(𝐸 “ ran 𝐹)) = (♯‘ran (𝐸 ↾ ran 𝐹))
2825, 27syl6reqr 2852 . . 3 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 “ ran 𝐹)) = (♯‘dom (𝐸 ↾ ran 𝐹)))
29 hashf1rn 13393 . . . . 5 (((0..^(♯‘𝐹)) ∈ V ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘𝐹) = (♯‘ran 𝐹))
3015, 29mpan 682 . . . 4 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘𝐹) = (♯‘ran 𝐹))
3130adantl 474 . . 3 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘𝐹) = (♯‘ran 𝐹))
326, 28, 313eqtr4d 2843 . 2 (((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸) → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹))
3332ex 402 1 ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  Vcvv 3385  wss 3769  dom cdm 5312  ran crn 5313  cres 5314  cima 5315  Fun wfun 6095   Fn wfn 6096  wf 6097  1-1wf1 6098  cfv 6101  (class class class)co 6878  0cc0 10224  ..^cfzo 12720  chash 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-n0 11581  df-z 11667  df-uz 11931  df-hash 13371
This theorem is referenced by:  hashimarni  13477
  Copyright terms: Public domain W3C validator