MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashimarn Structured version   Visualization version   GIF version

Theorem hashimarn 14396
Description: The size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 equals the size of the function 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) (Proof shortened by AV, 4-May-2021.)
Assertion
Ref Expression
hashimarn ((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) β†’ (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ (β™―β€˜(𝐸 β€œ ran 𝐹)) = (β™―β€˜πΉ)))

Proof of Theorem hashimarn
StepHypRef Expression
1 f1f 6784 . . . . . . 7 (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ 𝐹:(0..^(β™―β€˜πΉ))⟢dom 𝐸)
21frnd 6722 . . . . . 6 (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ ran 𝐹 βŠ† dom 𝐸)
32adantl 482 . . . . 5 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ ran 𝐹 βŠ† dom 𝐸)
4 ssdmres 6002 . . . . 5 (ran 𝐹 βŠ† dom 𝐸 ↔ dom (𝐸 β†Ύ ran 𝐹) = ran 𝐹)
53, 4sylib 217 . . . 4 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ dom (𝐸 β†Ύ ran 𝐹) = ran 𝐹)
65fveq2d 6892 . . 3 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜dom (𝐸 β†Ύ ran 𝐹)) = (β™―β€˜ran 𝐹))
7 df-ima 5688 . . . . 5 (𝐸 β€œ ran 𝐹) = ran (𝐸 β†Ύ ran 𝐹)
87fveq2i 6891 . . . 4 (β™―β€˜(𝐸 β€œ ran 𝐹)) = (β™―β€˜ran (𝐸 β†Ύ ran 𝐹))
9 f1fun 6786 . . . . . . . 8 (𝐸:dom 𝐸–1-1β†’ran 𝐸 β†’ Fun 𝐸)
10 funres 6587 . . . . . . . . 9 (Fun 𝐸 β†’ Fun (𝐸 β†Ύ ran 𝐹))
1110funfnd 6576 . . . . . . . 8 (Fun 𝐸 β†’ (𝐸 β†Ύ ran 𝐹) Fn dom (𝐸 β†Ύ ran 𝐹))
129, 11syl 17 . . . . . . 7 (𝐸:dom 𝐸–1-1β†’ran 𝐸 β†’ (𝐸 β†Ύ ran 𝐹) Fn dom (𝐸 β†Ύ ran 𝐹))
1312ad2antrr 724 . . . . . 6 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (𝐸 β†Ύ ran 𝐹) Fn dom (𝐸 β†Ύ ran 𝐹))
14 hashfn 14331 . . . . . 6 ((𝐸 β†Ύ ran 𝐹) Fn dom (𝐸 β†Ύ ran 𝐹) β†’ (β™―β€˜(𝐸 β†Ύ ran 𝐹)) = (β™―β€˜dom (𝐸 β†Ύ ran 𝐹)))
1513, 14syl 17 . . . . 5 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜(𝐸 β†Ύ ran 𝐹)) = (β™―β€˜dom (𝐸 β†Ύ ran 𝐹)))
16 ovex 7438 . . . . . . . 8 (0..^(β™―β€˜πΉ)) ∈ V
17 fex 7224 . . . . . . . 8 ((𝐹:(0..^(β™―β€˜πΉ))⟢dom 𝐸 ∧ (0..^(β™―β€˜πΉ)) ∈ V) β†’ 𝐹 ∈ V)
181, 16, 17sylancl 586 . . . . . . 7 (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ 𝐹 ∈ V)
19 rnexg 7891 . . . . . . 7 (𝐹 ∈ V β†’ ran 𝐹 ∈ V)
2018, 19syl 17 . . . . . 6 (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ ran 𝐹 ∈ V)
21 simpll 765 . . . . . . 7 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ 𝐸:dom 𝐸–1-1β†’ran 𝐸)
22 f1ssres 6792 . . . . . . 7 ((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ ran 𝐹 βŠ† dom 𝐸) β†’ (𝐸 β†Ύ ran 𝐹):ran 𝐹–1-1β†’ran 𝐸)
2321, 3, 22syl2anc 584 . . . . . 6 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (𝐸 β†Ύ ran 𝐹):ran 𝐹–1-1β†’ran 𝐸)
24 hashf1rn 14308 . . . . . 6 ((ran 𝐹 ∈ V ∧ (𝐸 β†Ύ ran 𝐹):ran 𝐹–1-1β†’ran 𝐸) β†’ (β™―β€˜(𝐸 β†Ύ ran 𝐹)) = (β™―β€˜ran (𝐸 β†Ύ ran 𝐹)))
2520, 23, 24syl2an2 684 . . . . 5 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜(𝐸 β†Ύ ran 𝐹)) = (β™―β€˜ran (𝐸 β†Ύ ran 𝐹)))
2615, 25eqtr3d 2774 . . . 4 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜dom (𝐸 β†Ύ ran 𝐹)) = (β™―β€˜ran (𝐸 β†Ύ ran 𝐹)))
278, 26eqtr4id 2791 . . 3 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜(𝐸 β€œ ran 𝐹)) = (β™―β€˜dom (𝐸 β†Ύ ran 𝐹)))
28 hashf1rn 14308 . . . . 5 (((0..^(β™―β€˜πΉ)) ∈ V ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜πΉ) = (β™―β€˜ran 𝐹))
2916, 28mpan 688 . . . 4 (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ (β™―β€˜πΉ) = (β™―β€˜ran 𝐹))
3029adantl 482 . . 3 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜πΉ) = (β™―β€˜ran 𝐹))
316, 27, 303eqtr4d 2782 . 2 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜(𝐸 β€œ ran 𝐹)) = (β™―β€˜πΉ))
3231ex 413 1 ((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) β†’ (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ (β™―β€˜(𝐸 β€œ ran 𝐹)) = (β™―β€˜πΉ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βŠ† wss 3947  dom cdm 5675  ran crn 5676   β†Ύ cres 5677   β€œ cima 5678  Fun wfun 6534   Fn wfn 6535  βŸΆwf 6536  β€“1-1β†’wf1 6537  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  ..^cfzo 13623  β™―chash 14286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-hash 14287
This theorem is referenced by:  hashimarni  14397
  Copyright terms: Public domain W3C validator