MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashimarn Structured version   Visualization version   GIF version

Theorem hashimarn 14402
Description: The size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 equals the size of the function 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) (Proof shortened by AV, 4-May-2021.)
Assertion
Ref Expression
hashimarn ((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) β†’ (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ (β™―β€˜(𝐸 β€œ ran 𝐹)) = (β™―β€˜πΉ)))

Proof of Theorem hashimarn
StepHypRef Expression
1 f1f 6787 . . . . . . 7 (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ 𝐹:(0..^(β™―β€˜πΉ))⟢dom 𝐸)
21frnd 6725 . . . . . 6 (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ ran 𝐹 βŠ† dom 𝐸)
32adantl 482 . . . . 5 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ ran 𝐹 βŠ† dom 𝐸)
4 ssdmres 6004 . . . . 5 (ran 𝐹 βŠ† dom 𝐸 ↔ dom (𝐸 β†Ύ ran 𝐹) = ran 𝐹)
53, 4sylib 217 . . . 4 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ dom (𝐸 β†Ύ ran 𝐹) = ran 𝐹)
65fveq2d 6895 . . 3 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜dom (𝐸 β†Ύ ran 𝐹)) = (β™―β€˜ran 𝐹))
7 df-ima 5689 . . . . 5 (𝐸 β€œ ran 𝐹) = ran (𝐸 β†Ύ ran 𝐹)
87fveq2i 6894 . . . 4 (β™―β€˜(𝐸 β€œ ran 𝐹)) = (β™―β€˜ran (𝐸 β†Ύ ran 𝐹))
9 f1fun 6789 . . . . . . . 8 (𝐸:dom 𝐸–1-1β†’ran 𝐸 β†’ Fun 𝐸)
10 funres 6590 . . . . . . . . 9 (Fun 𝐸 β†’ Fun (𝐸 β†Ύ ran 𝐹))
1110funfnd 6579 . . . . . . . 8 (Fun 𝐸 β†’ (𝐸 β†Ύ ran 𝐹) Fn dom (𝐸 β†Ύ ran 𝐹))
129, 11syl 17 . . . . . . 7 (𝐸:dom 𝐸–1-1β†’ran 𝐸 β†’ (𝐸 β†Ύ ran 𝐹) Fn dom (𝐸 β†Ύ ran 𝐹))
1312ad2antrr 724 . . . . . 6 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (𝐸 β†Ύ ran 𝐹) Fn dom (𝐸 β†Ύ ran 𝐹))
14 hashfn 14337 . . . . . 6 ((𝐸 β†Ύ ran 𝐹) Fn dom (𝐸 β†Ύ ran 𝐹) β†’ (β™―β€˜(𝐸 β†Ύ ran 𝐹)) = (β™―β€˜dom (𝐸 β†Ύ ran 𝐹)))
1513, 14syl 17 . . . . 5 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜(𝐸 β†Ύ ran 𝐹)) = (β™―β€˜dom (𝐸 β†Ύ ran 𝐹)))
16 ovex 7444 . . . . . . . 8 (0..^(β™―β€˜πΉ)) ∈ V
17 fex 7230 . . . . . . . 8 ((𝐹:(0..^(β™―β€˜πΉ))⟢dom 𝐸 ∧ (0..^(β™―β€˜πΉ)) ∈ V) β†’ 𝐹 ∈ V)
181, 16, 17sylancl 586 . . . . . . 7 (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ 𝐹 ∈ V)
19 rnexg 7897 . . . . . . 7 (𝐹 ∈ V β†’ ran 𝐹 ∈ V)
2018, 19syl 17 . . . . . 6 (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ ran 𝐹 ∈ V)
21 simpll 765 . . . . . . 7 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ 𝐸:dom 𝐸–1-1β†’ran 𝐸)
22 f1ssres 6795 . . . . . . 7 ((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ ran 𝐹 βŠ† dom 𝐸) β†’ (𝐸 β†Ύ ran 𝐹):ran 𝐹–1-1β†’ran 𝐸)
2321, 3, 22syl2anc 584 . . . . . 6 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (𝐸 β†Ύ ran 𝐹):ran 𝐹–1-1β†’ran 𝐸)
24 hashf1rn 14314 . . . . . 6 ((ran 𝐹 ∈ V ∧ (𝐸 β†Ύ ran 𝐹):ran 𝐹–1-1β†’ran 𝐸) β†’ (β™―β€˜(𝐸 β†Ύ ran 𝐹)) = (β™―β€˜ran (𝐸 β†Ύ ran 𝐹)))
2520, 23, 24syl2an2 684 . . . . 5 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜(𝐸 β†Ύ ran 𝐹)) = (β™―β€˜ran (𝐸 β†Ύ ran 𝐹)))
2615, 25eqtr3d 2774 . . . 4 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜dom (𝐸 β†Ύ ran 𝐹)) = (β™―β€˜ran (𝐸 β†Ύ ran 𝐹)))
278, 26eqtr4id 2791 . . 3 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜(𝐸 β€œ ran 𝐹)) = (β™―β€˜dom (𝐸 β†Ύ ran 𝐹)))
28 hashf1rn 14314 . . . . 5 (((0..^(β™―β€˜πΉ)) ∈ V ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜πΉ) = (β™―β€˜ran 𝐹))
2916, 28mpan 688 . . . 4 (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ (β™―β€˜πΉ) = (β™―β€˜ran 𝐹))
3029adantl 482 . . 3 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜πΉ) = (β™―β€˜ran 𝐹))
316, 27, 303eqtr4d 2782 . 2 (((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸) β†’ (β™―β€˜(𝐸 β€œ ran 𝐹)) = (β™―β€˜πΉ))
3231ex 413 1 ((𝐸:dom 𝐸–1-1β†’ran 𝐸 ∧ 𝐸 ∈ 𝑉) β†’ (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐸 β†’ (β™―β€˜(𝐸 β€œ ran 𝐹)) = (β™―β€˜πΉ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βŠ† wss 3948  dom cdm 5676  ran crn 5677   β†Ύ cres 5678   β€œ cima 5679  Fun wfun 6537   Fn wfn 6538  βŸΆwf 6539  β€“1-1β†’wf1 6540  β€˜cfv 6543  (class class class)co 7411  0cc0 11112  ..^cfzo 13629  β™―chash 14292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-n0 12475  df-z 12561  df-uz 12825  df-hash 14293
This theorem is referenced by:  hashimarni  14403
  Copyright terms: Public domain W3C validator