Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccatf1 Structured version   Visualization version   GIF version

Theorem ccatf1 32608
Description: Conditions for a concatenation to be injective. (Contributed by Thierry Arnoux, 11-Dec-2023.)
Hypotheses
Ref Expression
ccatf1.s (𝜑𝑆𝑉)
ccatf1.a (𝜑𝐴 ∈ Word 𝑆)
ccatf1.b (𝜑𝐵 ∈ Word 𝑆)
ccatf1.1 (𝜑𝐴:dom 𝐴1-1𝑆)
ccatf1.2 (𝜑𝐵:dom 𝐵1-1𝑆)
ccatf1.3 (𝜑 → (ran 𝐴 ∩ ran 𝐵) = ∅)
Assertion
Ref Expression
ccatf1 (𝜑 → (𝐴 ++ 𝐵):dom (𝐴 ++ 𝐵)–1-1𝑆)

Proof of Theorem ccatf1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ccatf1.a . . . . 5 (𝜑𝐴 ∈ Word 𝑆)
2 ccatf1.b . . . . 5 (𝜑𝐵 ∈ Word 𝑆)
3 ccatcl 14526 . . . . 5 ((𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆) → (𝐴 ++ 𝐵) ∈ Word 𝑆)
41, 2, 3syl2anc 583 . . . 4 (𝜑 → (𝐴 ++ 𝐵) ∈ Word 𝑆)
5 wrdf 14471 . . . 4 ((𝐴 ++ 𝐵) ∈ Word 𝑆 → (𝐴 ++ 𝐵):(0..^(♯‘(𝐴 ++ 𝐵)))⟶𝑆)
64, 5syl 17 . . 3 (𝜑 → (𝐴 ++ 𝐵):(0..^(♯‘(𝐴 ++ 𝐵)))⟶𝑆)
76ffdmd 6739 . 2 (𝜑 → (𝐴 ++ 𝐵):dom (𝐴 ++ 𝐵)⟶𝑆)
8 simpllr 773 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗))
9 id 22 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^(♯‘𝐴)) → 𝑖 ∈ (0..^(♯‘𝐴)))
10 ccatval1 14529 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆𝑖 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐴𝑖))
111, 2, 9, 10syl2an3an 1419 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐴𝑖))
1211ad4ant13 748 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐴𝑖))
13 id 22 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^(♯‘𝐴)) → 𝑗 ∈ (0..^(♯‘𝐴)))
14 ccatval1 14529 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆𝑗 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝑗) = (𝐴𝑗))
151, 2, 13, 14syl2an3an 1419 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝑗) = (𝐴𝑗))
1615ad4ant14 749 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝑗) = (𝐴𝑗))
178, 12, 163eqtr3d 2772 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → (𝐴𝑖) = (𝐴𝑗))
18 wrddm 14473 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Word 𝑆 → dom 𝐴 = (0..^(♯‘𝐴)))
191, 18syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐴 = (0..^(♯‘𝐴)))
20 ccatf1.1 . . . . . . . . . . . . . . . 16 (𝜑𝐴:dom 𝐴1-1𝑆)
21 f1eq2 6774 . . . . . . . . . . . . . . . . 17 (dom 𝐴 = (0..^(♯‘𝐴)) → (𝐴:dom 𝐴1-1𝑆𝐴:(0..^(♯‘𝐴))–1-1𝑆))
2221biimpa 476 . . . . . . . . . . . . . . . 16 ((dom 𝐴 = (0..^(♯‘𝐴)) ∧ 𝐴:dom 𝐴1-1𝑆) → 𝐴:(0..^(♯‘𝐴))–1-1𝑆)
2319, 20, 22syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑𝐴:(0..^(♯‘𝐴))–1-1𝑆)
24 dff13 7247 . . . . . . . . . . . . . . . 16 (𝐴:(0..^(♯‘𝐴))–1-1𝑆 ↔ (𝐴:(0..^(♯‘𝐴))⟶𝑆 ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))∀𝑗 ∈ (0..^(♯‘𝐴))((𝐴𝑖) = (𝐴𝑗) → 𝑖 = 𝑗)))
2524simprbi 496 . . . . . . . . . . . . . . 15 (𝐴:(0..^(♯‘𝐴))–1-1𝑆 → ∀𝑖 ∈ (0..^(♯‘𝐴))∀𝑗 ∈ (0..^(♯‘𝐴))((𝐴𝑖) = (𝐴𝑗) → 𝑖 = 𝑗))
2623, 25syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝐴))∀𝑗 ∈ (0..^(♯‘𝐴))((𝐴𝑖) = (𝐴𝑗) → 𝑖 = 𝑗))
2726r19.21bi 3240 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^(♯‘𝐴))) → ∀𝑗 ∈ (0..^(♯‘𝐴))((𝐴𝑖) = (𝐴𝑗) → 𝑖 = 𝑗))
2827r19.21bi 3240 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → ((𝐴𝑖) = (𝐴𝑗) → 𝑖 = 𝑗))
2928adantllr 716 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → ((𝐴𝑖) = (𝐴𝑗) → 𝑖 = 𝑗))
3017, 29mpd 15 . . . . . . . . . 10 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → 𝑖 = 𝑗)
3130ex 412 . . . . . . . . 9 (((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝑗 ∈ (0..^(♯‘𝐴)) → 𝑖 = 𝑗))
3231adantllr 716 . . . . . . . 8 ((((𝜑𝑗 ∈ dom (𝐴 ++ 𝐵)) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝑗 ∈ (0..^(♯‘𝐴)) → 𝑖 = 𝑗))
33 f1fun 6780 . . . . . . . . . . . . . . . 16 (𝐴:dom 𝐴1-1𝑆 → Fun 𝐴)
3420, 33syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐴)
35 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^(♯‘𝐴))) → 𝑖 ∈ (0..^(♯‘𝐴)))
3619adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^(♯‘𝐴))) → dom 𝐴 = (0..^(♯‘𝐴)))
3735, 36eleqtrrd 2828 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^(♯‘𝐴))) → 𝑖 ∈ dom 𝐴)
38 fvelrn 7069 . . . . . . . . . . . . . . 15 ((Fun 𝐴𝑖 ∈ dom 𝐴) → (𝐴𝑖) ∈ ran 𝐴)
3934, 37, 38syl2an2r 682 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^(♯‘𝐴))) → (𝐴𝑖) ∈ ran 𝐴)
4039ad4ant13 748 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝐴𝑖) ∈ ran 𝐴)
41 simpllr 773 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗))
4211ad4ant13 748 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐴𝑖))
431adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝐴 ∈ Word 𝑆)
442adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝐵 ∈ Word 𝑆)
45 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))))
46 ccatlen 14527 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
471, 2, 46syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
4847oveq2d 7418 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))) = ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
4948adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))) = ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
5045, 49eleqtrd 2827 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝑗 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
51 ccatval2 14530 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆𝑗 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘𝑗) = (𝐵‘(𝑗 − (♯‘𝐴))))
5243, 44, 50, 51syl3anc 1368 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵)‘𝑗) = (𝐵‘(𝑗 − (♯‘𝐴))))
5352ad4ant14 749 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵)‘𝑗) = (𝐵‘(𝑗 − (♯‘𝐴))))
5441, 42, 533eqtr3d 2772 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝐴𝑖) = (𝐵‘(𝑗 − (♯‘𝐴))))
55 ccatf1.2 . . . . . . . . . . . . . . . . 17 (𝜑𝐵:dom 𝐵1-1𝑆)
56 f1fun 6780 . . . . . . . . . . . . . . . . 17 (𝐵:dom 𝐵1-1𝑆 → Fun 𝐵)
5755, 56syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → Fun 𝐵)
58 lencl 14485 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ Word 𝑆 → (♯‘𝐵) ∈ ℕ0)
592, 58syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘𝐵) ∈ ℕ0)
6059nn0zd 12583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (♯‘𝐵) ∈ ℤ)
6160adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (♯‘𝐵) ∈ ℤ)
62 fzosubel3 13694 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ∧ (♯‘𝐵) ∈ ℤ) → (𝑗 − (♯‘𝐴)) ∈ (0..^(♯‘𝐵)))
6350, 61, 62syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝑗 − (♯‘𝐴)) ∈ (0..^(♯‘𝐵)))
64 wrddm 14473 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ Word 𝑆 → dom 𝐵 = (0..^(♯‘𝐵)))
652, 64syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom 𝐵 = (0..^(♯‘𝐵)))
6665adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → dom 𝐵 = (0..^(♯‘𝐵)))
6763, 66eleqtrrd 2828 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝑗 − (♯‘𝐴)) ∈ dom 𝐵)
68 fvelrn 7069 . . . . . . . . . . . . . . . 16 ((Fun 𝐵 ∧ (𝑗 − (♯‘𝐴)) ∈ dom 𝐵) → (𝐵‘(𝑗 − (♯‘𝐴))) ∈ ran 𝐵)
6957, 67, 68syl2an2r 682 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝐵‘(𝑗 − (♯‘𝐴))) ∈ ran 𝐵)
7069ad4ant14 749 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝐵‘(𝑗 − (♯‘𝐴))) ∈ ran 𝐵)
7154, 70eqeltrd 2825 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝐴𝑖) ∈ ran 𝐵)
7240, 71elind 4187 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝐴𝑖) ∈ (ran 𝐴 ∩ ran 𝐵))
73 ccatf1.3 . . . . . . . . . . . . 13 (𝜑 → (ran 𝐴 ∩ ran 𝐵) = ∅)
7473ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (ran 𝐴 ∩ ran 𝐵) = ∅)
7572, 74eleqtrd 2827 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝐴𝑖) ∈ ∅)
76 noel 4323 . . . . . . . . . . . 12 ¬ (𝐴𝑖) ∈ ∅
7776a1i 11 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → ¬ (𝐴𝑖) ∈ ∅)
7875, 77pm2.21dd 194 . . . . . . . . . 10 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝑖 = 𝑗)
7978ex 412 . . . . . . . . 9 (((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))) → 𝑖 = 𝑗))
8079adantllr 716 . . . . . . . 8 ((((𝜑𝑗 ∈ dom (𝐴 ++ 𝐵)) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))) → 𝑖 = 𝑗))
81 wrddm 14473 . . . . . . . . . . . . 13 ((𝐴 ++ 𝐵) ∈ Word 𝑆 → dom (𝐴 ++ 𝐵) = (0..^(♯‘(𝐴 ++ 𝐵))))
824, 81syl 17 . . . . . . . . . . . 12 (𝜑 → dom (𝐴 ++ 𝐵) = (0..^(♯‘(𝐴 ++ 𝐵))))
8382eleq2d 2811 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ dom (𝐴 ++ 𝐵) ↔ 𝑗 ∈ (0..^(♯‘(𝐴 ++ 𝐵)))))
8483biimpa 476 . . . . . . . . . 10 ((𝜑𝑗 ∈ dom (𝐴 ++ 𝐵)) → 𝑗 ∈ (0..^(♯‘(𝐴 ++ 𝐵))))
85 lencl 14485 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑆 → (♯‘𝐴) ∈ ℕ0)
861, 85syl 17 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐴) ∈ ℕ0)
8786nn0zd 12583 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℤ)
8887adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ dom (𝐴 ++ 𝐵)) → (♯‘𝐴) ∈ ℤ)
89 fzospliti 13665 . . . . . . . . . 10 ((𝑗 ∈ (0..^(♯‘(𝐴 ++ 𝐵))) ∧ (♯‘𝐴) ∈ ℤ) → (𝑗 ∈ (0..^(♯‘𝐴)) ∨ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))))
9084, 88, 89syl2anc 583 . . . . . . . . 9 ((𝜑𝑗 ∈ dom (𝐴 ++ 𝐵)) → (𝑗 ∈ (0..^(♯‘𝐴)) ∨ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))))
9190ad2antrr 723 . . . . . . . 8 ((((𝜑𝑗 ∈ dom (𝐴 ++ 𝐵)) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝑗 ∈ (0..^(♯‘𝐴)) ∨ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))))
9232, 80, 91mpjaod 857 . . . . . . 7 ((((𝜑𝑗 ∈ dom (𝐴 ++ 𝐵)) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝑖 = 𝑗)
9392ex 412 . . . . . 6 (((𝜑𝑗 ∈ dom (𝐴 ++ 𝐵)) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) → (𝑖 ∈ (0..^(♯‘𝐴)) → 𝑖 = 𝑗))
9493adantlrl 717 . . . . 5 (((𝜑 ∧ (𝑖 ∈ dom (𝐴 ++ 𝐵) ∧ 𝑗 ∈ dom (𝐴 ++ 𝐵))) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) → (𝑖 ∈ (0..^(♯‘𝐴)) → 𝑖 = 𝑗))
95 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0..^(♯‘𝐴))) → 𝑗 ∈ (0..^(♯‘𝐴)))
9619adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0..^(♯‘𝐴))) → dom 𝐴 = (0..^(♯‘𝐴)))
9795, 96eleqtrrd 2828 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^(♯‘𝐴))) → 𝑗 ∈ dom 𝐴)
98 fvelrn 7069 . . . . . . . . . . . . . . 15 ((Fun 𝐴𝑗 ∈ dom 𝐴) → (𝐴𝑗) ∈ ran 𝐴)
9934, 97, 98syl2an2r 682 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^(♯‘𝐴))) → (𝐴𝑗) ∈ ran 𝐴)
10099ad4ant14 749 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → (𝐴𝑗) ∈ ran 𝐴)
101 simpllr 773 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗))
1021adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝐴 ∈ Word 𝑆)
1032adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝐵 ∈ Word 𝑆)
104 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))))
10548adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))) = ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
106104, 105eleqtrd 2827 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
107 ccatval2 14530 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐵‘(𝑖 − (♯‘𝐴))))
108102, 103, 106, 107syl3anc 1368 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐵‘(𝑖 − (♯‘𝐴))))
109108ad4ant13 748 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐵‘(𝑖 − (♯‘𝐴))))
11015ad4ant14 749 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝑗) = (𝐴𝑗))
111101, 109, 1103eqtr3rd 2773 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → (𝐴𝑗) = (𝐵‘(𝑖 − (♯‘𝐴))))
11260adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (♯‘𝐵) ∈ ℤ)
113 fzosubel3 13694 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ∧ (♯‘𝐵) ∈ ℤ) → (𝑖 − (♯‘𝐴)) ∈ (0..^(♯‘𝐵)))
114106, 112, 113syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝑖 − (♯‘𝐴)) ∈ (0..^(♯‘𝐵)))
11565adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → dom 𝐵 = (0..^(♯‘𝐵)))
116114, 115eleqtrrd 2828 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝑖 − (♯‘𝐴)) ∈ dom 𝐵)
117 fvelrn 7069 . . . . . . . . . . . . . . . 16 ((Fun 𝐵 ∧ (𝑖 − (♯‘𝐴)) ∈ dom 𝐵) → (𝐵‘(𝑖 − (♯‘𝐴))) ∈ ran 𝐵)
11857, 116, 117syl2an2r 682 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝐵‘(𝑖 − (♯‘𝐴))) ∈ ran 𝐵)
119118ad4ant13 748 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → (𝐵‘(𝑖 − (♯‘𝐴))) ∈ ran 𝐵)
120111, 119eqeltrd 2825 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → (𝐴𝑗) ∈ ran 𝐵)
121100, 120elind 4187 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → (𝐴𝑗) ∈ (ran 𝐴 ∩ ran 𝐵))
12273ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → (ran 𝐴 ∩ ran 𝐵) = ∅)
123121, 122eleqtrd 2827 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → (𝐴𝑗) ∈ ∅)
124 noel 4323 . . . . . . . . . . . 12 ¬ (𝐴𝑗) ∈ ∅
125124a1i 11 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → ¬ (𝐴𝑗) ∈ ∅)
126123, 125pm2.21dd 194 . . . . . . . . . 10 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ (0..^(♯‘𝐴))) → 𝑖 = 𝑗)
127126ex 412 . . . . . . . . 9 (((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝑗 ∈ (0..^(♯‘𝐴)) → 𝑖 = 𝑗))
128127adantllr 716 . . . . . . . 8 ((((𝜑𝑗 ∈ dom (𝐴 ++ 𝐵)) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝑗 ∈ (0..^(♯‘𝐴)) → 𝑖 = 𝑗))
129 elfzoelz 13633 . . . . . . . . . . . . 13 (𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))) → 𝑖 ∈ ℤ)
130129zcnd 12666 . . . . . . . . . . . 12 (𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))) → 𝑖 ∈ ℂ)
131130ad2antlr 724 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝑖 ∈ ℂ)
132 elfzoelz 13633 . . . . . . . . . . . . 13 (𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))) → 𝑗 ∈ ℤ)
133132zcnd 12666 . . . . . . . . . . . 12 (𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))) → 𝑗 ∈ ℂ)
134133adantl 481 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝑗 ∈ ℂ)
13586nn0cnd 12533 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐴) ∈ ℂ)
136135ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (♯‘𝐴) ∈ ℂ)
13755ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝐵:dom 𝐵1-1𝑆)
138116ad4ant13 748 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝑖 − (♯‘𝐴)) ∈ dom 𝐵)
13967ad4ant14 749 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝑗 − (♯‘𝐴)) ∈ dom 𝐵)
140138, 139jca 511 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → ((𝑖 − (♯‘𝐴)) ∈ dom 𝐵 ∧ (𝑗 − (♯‘𝐴)) ∈ dom 𝐵))
141 simpllr 773 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗))
142108ad4ant13 748 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐵‘(𝑖 − (♯‘𝐴))))
14352ad4ant14 749 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵)‘𝑗) = (𝐵‘(𝑗 − (♯‘𝐴))))
144141, 142, 1433eqtr3d 2772 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝐵‘(𝑖 − (♯‘𝐴))) = (𝐵‘(𝑗 − (♯‘𝐴))))
145 f1veqaeq 7249 . . . . . . . . . . . . 13 ((𝐵:dom 𝐵1-1𝑆 ∧ ((𝑖 − (♯‘𝐴)) ∈ dom 𝐵 ∧ (𝑗 − (♯‘𝐴)) ∈ dom 𝐵)) → ((𝐵‘(𝑖 − (♯‘𝐴))) = (𝐵‘(𝑗 − (♯‘𝐴))) → (𝑖 − (♯‘𝐴)) = (𝑗 − (♯‘𝐴))))
146145imp 406 . . . . . . . . . . . 12 (((𝐵:dom 𝐵1-1𝑆 ∧ ((𝑖 − (♯‘𝐴)) ∈ dom 𝐵 ∧ (𝑗 − (♯‘𝐴)) ∈ dom 𝐵)) ∧ (𝐵‘(𝑖 − (♯‘𝐴))) = (𝐵‘(𝑗 − (♯‘𝐴)))) → (𝑖 − (♯‘𝐴)) = (𝑗 − (♯‘𝐴)))
147137, 140, 144, 146syl21anc 835 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝑖 − (♯‘𝐴)) = (𝑗 − (♯‘𝐴)))
148131, 134, 136, 147subcan2d 11612 . . . . . . . . . 10 ((((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝑖 = 𝑗)
149148ex 412 . . . . . . . . 9 (((𝜑 ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))) → 𝑖 = 𝑗))
150149adantllr 716 . . . . . . . 8 ((((𝜑𝑗 ∈ dom (𝐴 ++ 𝐵)) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))) → 𝑖 = 𝑗))
15190ad2antrr 723 . . . . . . . 8 ((((𝜑𝑗 ∈ dom (𝐴 ++ 𝐵)) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → (𝑗 ∈ (0..^(♯‘𝐴)) ∨ 𝑗 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))))
152128, 150, 151mpjaod 857 . . . . . . 7 ((((𝜑𝑗 ∈ dom (𝐴 ++ 𝐵)) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) ∧ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))) → 𝑖 = 𝑗)
153152ex 412 . . . . . 6 (((𝜑𝑗 ∈ dom (𝐴 ++ 𝐵)) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) → (𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))) → 𝑖 = 𝑗))
154153adantlrl 717 . . . . 5 (((𝜑 ∧ (𝑖 ∈ dom (𝐴 ++ 𝐵) ∧ 𝑗 ∈ dom (𝐴 ++ 𝐵))) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) → (𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵))) → 𝑖 = 𝑗))
15582eleq2d 2811 . . . . . . . . 9 (𝜑 → (𝑖 ∈ dom (𝐴 ++ 𝐵) ↔ 𝑖 ∈ (0..^(♯‘(𝐴 ++ 𝐵)))))
156155biimpa 476 . . . . . . . 8 ((𝜑𝑖 ∈ dom (𝐴 ++ 𝐵)) → 𝑖 ∈ (0..^(♯‘(𝐴 ++ 𝐵))))
15787adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ dom (𝐴 ++ 𝐵)) → (♯‘𝐴) ∈ ℤ)
158 fzospliti 13665 . . . . . . . 8 ((𝑖 ∈ (0..^(♯‘(𝐴 ++ 𝐵))) ∧ (♯‘𝐴) ∈ ℤ) → (𝑖 ∈ (0..^(♯‘𝐴)) ∨ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))))
159156, 157, 158syl2anc 583 . . . . . . 7 ((𝜑𝑖 ∈ dom (𝐴 ++ 𝐵)) → (𝑖 ∈ (0..^(♯‘𝐴)) ∨ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))))
160159adantrr 714 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ dom (𝐴 ++ 𝐵) ∧ 𝑗 ∈ dom (𝐴 ++ 𝐵))) → (𝑖 ∈ (0..^(♯‘𝐴)) ∨ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))))
161160adantr 480 . . . . 5 (((𝜑 ∧ (𝑖 ∈ dom (𝐴 ++ 𝐵) ∧ 𝑗 ∈ dom (𝐴 ++ 𝐵))) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) → (𝑖 ∈ (0..^(♯‘𝐴)) ∨ 𝑖 ∈ ((♯‘𝐴)..^(♯‘(𝐴 ++ 𝐵)))))
16294, 154, 161mpjaod 857 . . . 4 (((𝜑 ∧ (𝑖 ∈ dom (𝐴 ++ 𝐵) ∧ 𝑗 ∈ dom (𝐴 ++ 𝐵))) ∧ ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗)) → 𝑖 = 𝑗)
163162ex 412 . . 3 ((𝜑 ∧ (𝑖 ∈ dom (𝐴 ++ 𝐵) ∧ 𝑗 ∈ dom (𝐴 ++ 𝐵))) → (((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗) → 𝑖 = 𝑗))
164163ralrimivva 3192 . 2 (𝜑 → ∀𝑖 ∈ dom (𝐴 ++ 𝐵)∀𝑗 ∈ dom (𝐴 ++ 𝐵)(((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗) → 𝑖 = 𝑗))
165 dff13 7247 . 2 ((𝐴 ++ 𝐵):dom (𝐴 ++ 𝐵)–1-1𝑆 ↔ ((𝐴 ++ 𝐵):dom (𝐴 ++ 𝐵)⟶𝑆 ∧ ∀𝑖 ∈ dom (𝐴 ++ 𝐵)∀𝑗 ∈ dom (𝐴 ++ 𝐵)(((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘𝑗) → 𝑖 = 𝑗)))
1667, 164, 165sylanbrc 582 1 (𝜑 → (𝐴 ++ 𝐵):dom (𝐴 ++ 𝐵)–1-1𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844   = wceq 1533  wcel 2098  wral 3053  cin 3940  c0 4315  dom cdm 5667  ran crn 5668  Fun wfun 6528  wf 6530  1-1wf1 6531  cfv 6534  (class class class)co 7402  cc 11105  0cc0 11107   + caddc 11110  cmin 11443  0cn0 12471  cz 12557  ..^cfzo 13628  chash 14291  Word cword 14466   ++ cconcat 14522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-card 9931  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13486  df-fzo 13629  df-hash 14292  df-word 14467  df-concat 14523
This theorem is referenced by:  cycpmco2f1  32777
  Copyright terms: Public domain W3C validator