MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem31 Structured version   Visualization version   GIF version

Theorem fin23lem31 10234
Description: Lemma for fin23 10280. The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem31 ((𝑡:ω–1-1𝑉𝐺𝐹 ran 𝑡𝐺) → ran 𝑍 ran 𝑡)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧,𝑎   𝐹,𝑎,𝑡   𝑉,𝑎   𝑤,𝑎,𝑥,𝑧,𝑃   𝑣,𝑎,𝑅,𝑖,𝑢   𝑈,𝑎,𝑖,𝑢,𝑣,𝑧   𝑍,𝑎   𝑔,𝑎,𝐺,𝑡,𝑥
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖,𝑎)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑔,𝑖)   𝐺(𝑧,𝑤,𝑣,𝑢,𝑖)   𝑉(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem31
StepHypRef Expression
1 fin23lem17.f . . . 4 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
21ssfin3ds 10221 . . 3 ((𝐺𝐹 ran 𝑡𝐺) → ran 𝑡𝐹)
3 fin23lem.a . . . . . 6 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
4 fin23lem.b . . . . . 6 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
5 fin23lem.c . . . . . 6 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
6 fin23lem.d . . . . . 6 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
7 fin23lem.e . . . . . 6 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
83, 1, 4, 5, 6, 7fin23lem29 10232 . . . . 5 ran 𝑍 ran 𝑡
98a1i 11 . . . 4 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑍 ran 𝑡)
103, 1fin23lem21 10230 . . . . . . 7 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
1110ancoms 458 . . . . . 6 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑈 ≠ ∅)
12 n0 4300 . . . . . 6 ( ran 𝑈 ≠ ∅ ↔ ∃𝑎 𝑎 ran 𝑈)
1311, 12sylib 218 . . . . 5 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ∃𝑎 𝑎 ran 𝑈)
143fnseqom 8374 . . . . . . . . . . . . 13 𝑈 Fn ω
15 fndm 6584 . . . . . . . . . . . . 13 (𝑈 Fn ω → dom 𝑈 = ω)
1614, 15ax-mp 5 . . . . . . . . . . . 12 dom 𝑈 = ω
17 peano1 7819 . . . . . . . . . . . . 13 ∅ ∈ ω
1817ne0ii 4291 . . . . . . . . . . . 12 ω ≠ ∅
1916, 18eqnetri 2998 . . . . . . . . . . 11 dom 𝑈 ≠ ∅
20 dm0rn0 5863 . . . . . . . . . . . 12 (dom 𝑈 = ∅ ↔ ran 𝑈 = ∅)
2120necon3bii 2980 . . . . . . . . . . 11 (dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅)
2219, 21mpbi 230 . . . . . . . . . 10 ran 𝑈 ≠ ∅
23 intssuni 4918 . . . . . . . . . 10 (ran 𝑈 ≠ ∅ → ran 𝑈 ran 𝑈)
2422, 23ax-mp 5 . . . . . . . . 9 ran 𝑈 ran 𝑈
253fin23lem16 10226 . . . . . . . . 9 ran 𝑈 = ran 𝑡
2624, 25sseqtri 3978 . . . . . . . 8 ran 𝑈 ran 𝑡
2726sseli 3925 . . . . . . 7 (𝑎 ran 𝑈𝑎 ran 𝑡)
28 f1fun 6721 . . . . . . . . . . . . 13 (𝑡:ω–1-1𝑉 → Fun 𝑡)
2928adantr 480 . . . . . . . . . . . 12 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → Fun 𝑡)
303, 1, 4, 5, 6, 7fin23lem30 10233 . . . . . . . . . . . 12 (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅)
3129, 30syl 17 . . . . . . . . . . 11 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ( ran 𝑍 ran 𝑈) = ∅)
32 disj 4397 . . . . . . . . . . 11 (( ran 𝑍 ran 𝑈) = ∅ ↔ ∀𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈)
3331, 32sylib 218 . . . . . . . . . 10 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ∀𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈)
34 rsp 3220 . . . . . . . . . 10 (∀𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈 → (𝑎 ran 𝑍 → ¬ 𝑎 ran 𝑈))
3533, 34syl 17 . . . . . . . . 9 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → (𝑎 ran 𝑍 → ¬ 𝑎 ran 𝑈))
3635con2d 134 . . . . . . . 8 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → (𝑎 ran 𝑈 → ¬ 𝑎 ran 𝑍))
3736imp 406 . . . . . . 7 (((𝑡:ω–1-1𝑉 ran 𝑡𝐹) ∧ 𝑎 ran 𝑈) → ¬ 𝑎 ran 𝑍)
38 nelne1 3025 . . . . . . 7 ((𝑎 ran 𝑡 ∧ ¬ 𝑎 ran 𝑍) → ran 𝑡 ran 𝑍)
3927, 37, 38syl2an2 686 . . . . . 6 (((𝑡:ω–1-1𝑉 ran 𝑡𝐹) ∧ 𝑎 ran 𝑈) → ran 𝑡 ran 𝑍)
4039necomd 2983 . . . . 5 (((𝑡:ω–1-1𝑉 ran 𝑡𝐹) ∧ 𝑎 ran 𝑈) → ran 𝑍 ran 𝑡)
4113, 40exlimddv 1936 . . . 4 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑍 ran 𝑡)
42 df-pss 3917 . . . 4 ( ran 𝑍 ran 𝑡 ↔ ( ran 𝑍 ran 𝑡 ran 𝑍 ran 𝑡))
439, 41, 42sylanbrc 583 . . 3 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑍 ran 𝑡)
442, 43sylan2 593 . 2 ((𝑡:ω–1-1𝑉 ∧ (𝐺𝐹 ran 𝑡𝐺)) → ran 𝑍 ran 𝑡)
45443impb 1114 1 ((𝑡:ω–1-1𝑉𝐺𝐹 ran 𝑡𝐺) → ran 𝑍 ran 𝑡)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  cin 3896  wss 3897  wpss 3898  c0 4280  ifcif 4472  𝒫 cpw 4547   cuni 4856   cint 4895   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  ccom 5618  suc csuc 6308  Fun wfun 6475   Fn wfn 6476  1-1wf1 6478  cfv 6481  crio 7302  (class class class)co 7346  cmpo 7348  ωcom 7796  seqωcseqom 8366  m cmap 8750  cen 8866  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seqom 8367  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832
This theorem is referenced by:  fin23lem32  10235
  Copyright terms: Public domain W3C validator