MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem31 Structured version   Visualization version   GIF version

Theorem fin23lem31 9418
Description: Lemma for fin23 9464. The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem31 ((𝑡:ω–1-1𝑉𝐺𝐹 ran 𝑡𝐺) → ran 𝑍 ran 𝑡)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧,𝑎   𝐹,𝑎,𝑡   𝑉,𝑎   𝑤,𝑎,𝑥,𝑧,𝑃   𝑣,𝑎,𝑅,𝑖,𝑢   𝑈,𝑎,𝑖,𝑢,𝑣,𝑧   𝑍,𝑎   𝑔,𝑎,𝐺,𝑡,𝑥
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖,𝑎)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑔,𝑖)   𝐺(𝑧,𝑤,𝑣,𝑢,𝑖)   𝑉(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem31
StepHypRef Expression
1 fin23lem17.f . . . 4 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
21ssfin3ds 9405 . . 3 ((𝐺𝐹 ran 𝑡𝐺) → ran 𝑡𝐹)
3 fin23lem.a . . . . . 6 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
4 fin23lem.b . . . . . 6 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
5 fin23lem.c . . . . . 6 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
6 fin23lem.d . . . . . 6 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
7 fin23lem.e . . . . . 6 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
83, 1, 4, 5, 6, 7fin23lem29 9416 . . . . 5 ran 𝑍 ran 𝑡
98a1i 11 . . . 4 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑍 ran 𝑡)
103, 1fin23lem21 9414 . . . . . . 7 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
1110ancoms 450 . . . . . 6 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑈 ≠ ∅)
12 n0 4095 . . . . . 6 ( ran 𝑈 ≠ ∅ ↔ ∃𝑎 𝑎 ran 𝑈)
1311, 12sylib 209 . . . . 5 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ∃𝑎 𝑎 ran 𝑈)
143fnseqom 7754 . . . . . . . . . . . . . 14 𝑈 Fn ω
15 fndm 6168 . . . . . . . . . . . . . 14 (𝑈 Fn ω → dom 𝑈 = ω)
1614, 15ax-mp 5 . . . . . . . . . . . . 13 dom 𝑈 = ω
17 peano1 7283 . . . . . . . . . . . . . 14 ∅ ∈ ω
1817ne0ii 4088 . . . . . . . . . . . . 13 ω ≠ ∅
1916, 18eqnetri 3007 . . . . . . . . . . . 12 dom 𝑈 ≠ ∅
20 dm0rn0 5510 . . . . . . . . . . . . 13 (dom 𝑈 = ∅ ↔ ran 𝑈 = ∅)
2120necon3bii 2989 . . . . . . . . . . . 12 (dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅)
2219, 21mpbi 221 . . . . . . . . . . 11 ran 𝑈 ≠ ∅
23 intssuni 4655 . . . . . . . . . . 11 (ran 𝑈 ≠ ∅ → ran 𝑈 ran 𝑈)
2422, 23ax-mp 5 . . . . . . . . . 10 ran 𝑈 ran 𝑈
253fin23lem16 9410 . . . . . . . . . 10 ran 𝑈 = ran 𝑡
2624, 25sseqtri 3797 . . . . . . . . 9 ran 𝑈 ran 𝑡
2726sseli 3757 . . . . . . . 8 (𝑎 ran 𝑈𝑎 ran 𝑡)
2827adantl 473 . . . . . . 7 (((𝑡:ω–1-1𝑉 ran 𝑡𝐹) ∧ 𝑎 ran 𝑈) → 𝑎 ran 𝑡)
29 f1fun 6285 . . . . . . . . . . . . 13 (𝑡:ω–1-1𝑉 → Fun 𝑡)
3029adantr 472 . . . . . . . . . . . 12 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → Fun 𝑡)
313, 1, 4, 5, 6, 7fin23lem30 9417 . . . . . . . . . . . 12 (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅)
3230, 31syl 17 . . . . . . . . . . 11 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ( ran 𝑍 ran 𝑈) = ∅)
33 disj 4178 . . . . . . . . . . 11 (( ran 𝑍 ran 𝑈) = ∅ ↔ ∀𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈)
3432, 33sylib 209 . . . . . . . . . 10 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ∀𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈)
35 rsp 3076 . . . . . . . . . 10 (∀𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈 → (𝑎 ran 𝑍 → ¬ 𝑎 ran 𝑈))
3634, 35syl 17 . . . . . . . . 9 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → (𝑎 ran 𝑍 → ¬ 𝑎 ran 𝑈))
3736con2d 131 . . . . . . . 8 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → (𝑎 ran 𝑈 → ¬ 𝑎 ran 𝑍))
3837imp 395 . . . . . . 7 (((𝑡:ω–1-1𝑉 ran 𝑡𝐹) ∧ 𝑎 ran 𝑈) → ¬ 𝑎 ran 𝑍)
39 nelne1 3033 . . . . . . 7 ((𝑎 ran 𝑡 ∧ ¬ 𝑎 ran 𝑍) → ran 𝑡 ran 𝑍)
4028, 38, 39syl2anc 579 . . . . . 6 (((𝑡:ω–1-1𝑉 ran 𝑡𝐹) ∧ 𝑎 ran 𝑈) → ran 𝑡 ran 𝑍)
4140necomd 2992 . . . . 5 (((𝑡:ω–1-1𝑉 ran 𝑡𝐹) ∧ 𝑎 ran 𝑈) → ran 𝑍 ran 𝑡)
4213, 41exlimddv 2030 . . . 4 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑍 ran 𝑡)
43 df-pss 3748 . . . 4 ( ran 𝑍 ran 𝑡 ↔ ( ran 𝑍 ran 𝑡 ran 𝑍 ran 𝑡))
449, 42, 43sylanbrc 578 . . 3 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑍 ran 𝑡)
452, 44sylan2 586 . 2 ((𝑡:ω–1-1𝑉 ∧ (𝐺𝐹 ran 𝑡𝐺)) → ran 𝑍 ran 𝑡)
46453impb 1143 1 ((𝑡:ω–1-1𝑉𝐺𝐹 ran 𝑡𝐺) → ran 𝑍 ran 𝑡)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  {cab 2751  wne 2937  wral 3055  {crab 3059  Vcvv 3350  cdif 3729  cin 3731  wss 3732  wpss 3733  c0 4079  ifcif 4243  𝒫 cpw 4315   cuni 4594   cint 4633   class class class wbr 4809  cmpt 4888  dom cdm 5277  ran crn 5278  ccom 5281  suc csuc 5910  Fun wfun 6062   Fn wfn 6063  1-1wf1 6065  cfv 6068  crio 6802  (class class class)co 6842  cmpt2 6844  ωcom 7263  seq𝜔cseqom 7746  𝑚 cmap 8060  cen 8157  Fincfn 8160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-seqom 7747  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016
This theorem is referenced by:  fin23lem32  9419
  Copyright terms: Public domain W3C validator