MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem31 Structured version   Visualization version   GIF version

Theorem fin23lem31 10303
Description: Lemma for fin23 10349. The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem31 ((𝑡:ω–1-1𝑉𝐺𝐹 ran 𝑡𝐺) → ran 𝑍 ran 𝑡)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧,𝑎   𝐹,𝑎,𝑡   𝑉,𝑎   𝑤,𝑎,𝑥,𝑧,𝑃   𝑣,𝑎,𝑅,𝑖,𝑢   𝑈,𝑎,𝑖,𝑢,𝑣,𝑧   𝑍,𝑎   𝑔,𝑎,𝐺,𝑡,𝑥
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖,𝑎)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑔,𝑖)   𝐺(𝑧,𝑤,𝑣,𝑢,𝑖)   𝑉(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem31
StepHypRef Expression
1 fin23lem17.f . . . 4 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
21ssfin3ds 10290 . . 3 ((𝐺𝐹 ran 𝑡𝐺) → ran 𝑡𝐹)
3 fin23lem.a . . . . . 6 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
4 fin23lem.b . . . . . 6 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
5 fin23lem.c . . . . . 6 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
6 fin23lem.d . . . . . 6 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
7 fin23lem.e . . . . . 6 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
83, 1, 4, 5, 6, 7fin23lem29 10301 . . . . 5 ran 𝑍 ran 𝑡
98a1i 11 . . . 4 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑍 ran 𝑡)
103, 1fin23lem21 10299 . . . . . . 7 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
1110ancoms 458 . . . . . 6 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑈 ≠ ∅)
12 n0 4319 . . . . . 6 ( ran 𝑈 ≠ ∅ ↔ ∃𝑎 𝑎 ran 𝑈)
1311, 12sylib 218 . . . . 5 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ∃𝑎 𝑎 ran 𝑈)
143fnseqom 8426 . . . . . . . . . . . . 13 𝑈 Fn ω
15 fndm 6624 . . . . . . . . . . . . 13 (𝑈 Fn ω → dom 𝑈 = ω)
1614, 15ax-mp 5 . . . . . . . . . . . 12 dom 𝑈 = ω
17 peano1 7868 . . . . . . . . . . . . 13 ∅ ∈ ω
1817ne0ii 4310 . . . . . . . . . . . 12 ω ≠ ∅
1916, 18eqnetri 2996 . . . . . . . . . . 11 dom 𝑈 ≠ ∅
20 dm0rn0 5891 . . . . . . . . . . . 12 (dom 𝑈 = ∅ ↔ ran 𝑈 = ∅)
2120necon3bii 2978 . . . . . . . . . . 11 (dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅)
2219, 21mpbi 230 . . . . . . . . . 10 ran 𝑈 ≠ ∅
23 intssuni 4937 . . . . . . . . . 10 (ran 𝑈 ≠ ∅ → ran 𝑈 ran 𝑈)
2422, 23ax-mp 5 . . . . . . . . 9 ran 𝑈 ran 𝑈
253fin23lem16 10295 . . . . . . . . 9 ran 𝑈 = ran 𝑡
2624, 25sseqtri 3998 . . . . . . . 8 ran 𝑈 ran 𝑡
2726sseli 3945 . . . . . . 7 (𝑎 ran 𝑈𝑎 ran 𝑡)
28 f1fun 6761 . . . . . . . . . . . . 13 (𝑡:ω–1-1𝑉 → Fun 𝑡)
2928adantr 480 . . . . . . . . . . . 12 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → Fun 𝑡)
303, 1, 4, 5, 6, 7fin23lem30 10302 . . . . . . . . . . . 12 (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅)
3129, 30syl 17 . . . . . . . . . . 11 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ( ran 𝑍 ran 𝑈) = ∅)
32 disj 4416 . . . . . . . . . . 11 (( ran 𝑍 ran 𝑈) = ∅ ↔ ∀𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈)
3331, 32sylib 218 . . . . . . . . . 10 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ∀𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈)
34 rsp 3226 . . . . . . . . . 10 (∀𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈 → (𝑎 ran 𝑍 → ¬ 𝑎 ran 𝑈))
3533, 34syl 17 . . . . . . . . 9 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → (𝑎 ran 𝑍 → ¬ 𝑎 ran 𝑈))
3635con2d 134 . . . . . . . 8 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → (𝑎 ran 𝑈 → ¬ 𝑎 ran 𝑍))
3736imp 406 . . . . . . 7 (((𝑡:ω–1-1𝑉 ran 𝑡𝐹) ∧ 𝑎 ran 𝑈) → ¬ 𝑎 ran 𝑍)
38 nelne1 3023 . . . . . . 7 ((𝑎 ran 𝑡 ∧ ¬ 𝑎 ran 𝑍) → ran 𝑡 ran 𝑍)
3927, 37, 38syl2an2 686 . . . . . 6 (((𝑡:ω–1-1𝑉 ran 𝑡𝐹) ∧ 𝑎 ran 𝑈) → ran 𝑡 ran 𝑍)
4039necomd 2981 . . . . 5 (((𝑡:ω–1-1𝑉 ran 𝑡𝐹) ∧ 𝑎 ran 𝑈) → ran 𝑍 ran 𝑡)
4113, 40exlimddv 1935 . . . 4 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑍 ran 𝑡)
42 df-pss 3937 . . . 4 ( ran 𝑍 ran 𝑡 ↔ ( ran 𝑍 ran 𝑡 ran 𝑍 ran 𝑡))
439, 41, 42sylanbrc 583 . . 3 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑍 ran 𝑡)
442, 43sylan2 593 . 2 ((𝑡:ω–1-1𝑉 ∧ (𝐺𝐹 ran 𝑡𝐺)) → ran 𝑍 ran 𝑡)
45443impb 1114 1 ((𝑡:ω–1-1𝑉𝐺𝐹 ran 𝑡𝐺) → ran 𝑍 ran 𝑡)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  cin 3916  wss 3917  wpss 3918  c0 4299  ifcif 4491  𝒫 cpw 4566   cuni 4874   cint 4913   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  ccom 5645  suc csuc 6337  Fun wfun 6508   Fn wfn 6509  1-1wf1 6511  cfv 6514  crio 7346  (class class class)co 7390  cmpo 7392  ωcom 7845  seqωcseqom 8418  m cmap 8802  cen 8918  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899
This theorem is referenced by:  fin23lem32  10304
  Copyright terms: Public domain W3C validator