| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1otrgds | Structured version Visualization version GIF version | ||
| Description: Convenient lemma for f1otrg 28849. (Contributed by Thierry Arnoux, 19-Mar-2019.) |
| Ref | Expression |
|---|---|
| f1otrkg.p | ⊢ 𝑃 = (Base‘𝐺) |
| f1otrkg.d | ⊢ 𝐷 = (dist‘𝐺) |
| f1otrkg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| f1otrkg.b | ⊢ 𝐵 = (Base‘𝐻) |
| f1otrkg.e | ⊢ 𝐸 = (dist‘𝐻) |
| f1otrkg.j | ⊢ 𝐽 = (Itv‘𝐻) |
| f1otrkg.f | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝑃) |
| f1otrkg.1 | ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵)) → (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓))) |
| f1otrkg.2 | ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑒)𝐼(𝐹‘𝑓)))) |
| f1otrgitv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| f1otrgitv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| f1otrgds | ⊢ (𝜑 → (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1otrkg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵)) → (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓))) | |
| 2 | 1 | ralrimivva 3175 | . 2 ⊢ (𝜑 → ∀𝑒 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓))) |
| 3 | f1otrgitv.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | f1otrgitv.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | oveq1 7353 | . . . . 5 ⊢ (𝑒 = 𝑋 → (𝑒𝐸𝑓) = (𝑋𝐸𝑓)) | |
| 6 | fveq2 6822 | . . . . . 6 ⊢ (𝑒 = 𝑋 → (𝐹‘𝑒) = (𝐹‘𝑋)) | |
| 7 | 6 | oveq1d 7361 | . . . . 5 ⊢ (𝑒 = 𝑋 → ((𝐹‘𝑒)𝐷(𝐹‘𝑓)) = ((𝐹‘𝑋)𝐷(𝐹‘𝑓))) |
| 8 | 5, 7 | eqeq12d 2747 | . . . 4 ⊢ (𝑒 = 𝑋 → ((𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓)) ↔ (𝑋𝐸𝑓) = ((𝐹‘𝑋)𝐷(𝐹‘𝑓)))) |
| 9 | oveq2 7354 | . . . . 5 ⊢ (𝑓 = 𝑌 → (𝑋𝐸𝑓) = (𝑋𝐸𝑌)) | |
| 10 | fveq2 6822 | . . . . . 6 ⊢ (𝑓 = 𝑌 → (𝐹‘𝑓) = (𝐹‘𝑌)) | |
| 11 | 10 | oveq2d 7362 | . . . . 5 ⊢ (𝑓 = 𝑌 → ((𝐹‘𝑋)𝐷(𝐹‘𝑓)) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌))) |
| 12 | 9, 11 | eqeq12d 2747 | . . . 4 ⊢ (𝑓 = 𝑌 → ((𝑋𝐸𝑓) = ((𝐹‘𝑋)𝐷(𝐹‘𝑓)) ↔ (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌)))) |
| 13 | 8, 12 | rspc2v 3583 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑒 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓)) → (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌)))) |
| 14 | 3, 4, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (∀𝑒 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓)) → (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌)))) |
| 15 | 2, 14 | mpd 15 | 1 ⊢ (𝜑 → (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 distcds 17170 Itvcitv 28411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: f1otrg 28849 |
| Copyright terms: Public domain | W3C validator |