MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1otrgds Structured version   Visualization version   GIF version

Theorem f1otrgds 28117
Description: Convenient lemma for f1otrg 28119. (Contributed by Thierry Arnoux, 19-Mar-2019.)
Hypotheses
Ref Expression
f1otrkg.p 𝑃 = (Baseβ€˜πΊ)
f1otrkg.d 𝐷 = (distβ€˜πΊ)
f1otrkg.i 𝐼 = (Itvβ€˜πΊ)
f1otrkg.b 𝐡 = (Baseβ€˜π»)
f1otrkg.e 𝐸 = (distβ€˜π»)
f1otrkg.j 𝐽 = (Itvβ€˜π»)
f1otrkg.f (πœ‘ β†’ 𝐹:𝐡–1-1-onto→𝑃)
f1otrkg.1 ((πœ‘ ∧ (𝑒 ∈ 𝐡 ∧ 𝑓 ∈ 𝐡)) β†’ (𝑒𝐸𝑓) = ((πΉβ€˜π‘’)𝐷(πΉβ€˜π‘“)))
f1otrkg.2 ((πœ‘ ∧ (𝑒 ∈ 𝐡 ∧ 𝑓 ∈ 𝐡 ∧ 𝑔 ∈ 𝐡)) β†’ (𝑔 ∈ (𝑒𝐽𝑓) ↔ (πΉβ€˜π‘”) ∈ ((πΉβ€˜π‘’)𝐼(πΉβ€˜π‘“))))
f1otrgitv.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
f1otrgitv.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
Assertion
Ref Expression
f1otrgds (πœ‘ β†’ (π‘‹πΈπ‘Œ) = ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘Œ)))
Distinct variable groups:   𝑒,𝑓,𝑔,𝐡   𝐷,𝑒,𝑓   𝑒,𝐸,𝑓   𝑒,𝐹,𝑓,𝑔   𝑒,𝐼,𝑓,𝑔   𝑒,𝐽,𝑓,𝑔   𝑒,𝑋,𝑓,𝑔   πœ‘,𝑒,𝑓,𝑔   𝑓,π‘Œ,𝑔
Allowed substitution hints:   𝐷(𝑔)   𝑃(𝑒,𝑓,𝑔)   𝐸(𝑔)   𝐺(𝑒,𝑓,𝑔)   𝐻(𝑒,𝑓,𝑔)   π‘Œ(𝑒)

Proof of Theorem f1otrgds
StepHypRef Expression
1 f1otrkg.1 . . 3 ((πœ‘ ∧ (𝑒 ∈ 𝐡 ∧ 𝑓 ∈ 𝐡)) β†’ (𝑒𝐸𝑓) = ((πΉβ€˜π‘’)𝐷(πΉβ€˜π‘“)))
21ralrimivva 3200 . 2 (πœ‘ β†’ βˆ€π‘’ ∈ 𝐡 βˆ€π‘“ ∈ 𝐡 (𝑒𝐸𝑓) = ((πΉβ€˜π‘’)𝐷(πΉβ€˜π‘“)))
3 f1otrgitv.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
4 f1otrgitv.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝐡)
5 oveq1 7415 . . . . 5 (𝑒 = 𝑋 β†’ (𝑒𝐸𝑓) = (𝑋𝐸𝑓))
6 fveq2 6891 . . . . . 6 (𝑒 = 𝑋 β†’ (πΉβ€˜π‘’) = (πΉβ€˜π‘‹))
76oveq1d 7423 . . . . 5 (𝑒 = 𝑋 β†’ ((πΉβ€˜π‘’)𝐷(πΉβ€˜π‘“)) = ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘“)))
85, 7eqeq12d 2748 . . . 4 (𝑒 = 𝑋 β†’ ((𝑒𝐸𝑓) = ((πΉβ€˜π‘’)𝐷(πΉβ€˜π‘“)) ↔ (𝑋𝐸𝑓) = ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘“))))
9 oveq2 7416 . . . . 5 (𝑓 = π‘Œ β†’ (𝑋𝐸𝑓) = (π‘‹πΈπ‘Œ))
10 fveq2 6891 . . . . . 6 (𝑓 = π‘Œ β†’ (πΉβ€˜π‘“) = (πΉβ€˜π‘Œ))
1110oveq2d 7424 . . . . 5 (𝑓 = π‘Œ β†’ ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘“)) = ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘Œ)))
129, 11eqeq12d 2748 . . . 4 (𝑓 = π‘Œ β†’ ((𝑋𝐸𝑓) = ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘“)) ↔ (π‘‹πΈπ‘Œ) = ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘Œ))))
138, 12rspc2v 3622 . . 3 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (βˆ€π‘’ ∈ 𝐡 βˆ€π‘“ ∈ 𝐡 (𝑒𝐸𝑓) = ((πΉβ€˜π‘’)𝐷(πΉβ€˜π‘“)) β†’ (π‘‹πΈπ‘Œ) = ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘Œ))))
143, 4, 13syl2anc 584 . 2 (πœ‘ β†’ (βˆ€π‘’ ∈ 𝐡 βˆ€π‘“ ∈ 𝐡 (𝑒𝐸𝑓) = ((πΉβ€˜π‘’)𝐷(πΉβ€˜π‘“)) β†’ (π‘‹πΈπ‘Œ) = ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘Œ))))
152, 14mpd 15 1 (πœ‘ β†’ (π‘‹πΈπ‘Œ) = ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  distcds 17205  Itvcitv 27681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411
This theorem is referenced by:  f1otrg  28119
  Copyright terms: Public domain W3C validator