![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1otrgds | Structured version Visualization version GIF version |
Description: Convenient lemma for f1otrg 28899. (Contributed by Thierry Arnoux, 19-Mar-2019.) |
Ref | Expression |
---|---|
f1otrkg.p | ⊢ 𝑃 = (Base‘𝐺) |
f1otrkg.d | ⊢ 𝐷 = (dist‘𝐺) |
f1otrkg.i | ⊢ 𝐼 = (Itv‘𝐺) |
f1otrkg.b | ⊢ 𝐵 = (Base‘𝐻) |
f1otrkg.e | ⊢ 𝐸 = (dist‘𝐻) |
f1otrkg.j | ⊢ 𝐽 = (Itv‘𝐻) |
f1otrkg.f | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝑃) |
f1otrkg.1 | ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵)) → (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓))) |
f1otrkg.2 | ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑒)𝐼(𝐹‘𝑓)))) |
f1otrgitv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
f1otrgitv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
f1otrgds | ⊢ (𝜑 → (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1otrkg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵)) → (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓))) | |
2 | 1 | ralrimivva 3208 | . 2 ⊢ (𝜑 → ∀𝑒 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓))) |
3 | f1otrgitv.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
4 | f1otrgitv.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
5 | oveq1 7457 | . . . . 5 ⊢ (𝑒 = 𝑋 → (𝑒𝐸𝑓) = (𝑋𝐸𝑓)) | |
6 | fveq2 6922 | . . . . . 6 ⊢ (𝑒 = 𝑋 → (𝐹‘𝑒) = (𝐹‘𝑋)) | |
7 | 6 | oveq1d 7465 | . . . . 5 ⊢ (𝑒 = 𝑋 → ((𝐹‘𝑒)𝐷(𝐹‘𝑓)) = ((𝐹‘𝑋)𝐷(𝐹‘𝑓))) |
8 | 5, 7 | eqeq12d 2756 | . . . 4 ⊢ (𝑒 = 𝑋 → ((𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓)) ↔ (𝑋𝐸𝑓) = ((𝐹‘𝑋)𝐷(𝐹‘𝑓)))) |
9 | oveq2 7458 | . . . . 5 ⊢ (𝑓 = 𝑌 → (𝑋𝐸𝑓) = (𝑋𝐸𝑌)) | |
10 | fveq2 6922 | . . . . . 6 ⊢ (𝑓 = 𝑌 → (𝐹‘𝑓) = (𝐹‘𝑌)) | |
11 | 10 | oveq2d 7466 | . . . . 5 ⊢ (𝑓 = 𝑌 → ((𝐹‘𝑋)𝐷(𝐹‘𝑓)) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌))) |
12 | 9, 11 | eqeq12d 2756 | . . . 4 ⊢ (𝑓 = 𝑌 → ((𝑋𝐸𝑓) = ((𝐹‘𝑋)𝐷(𝐹‘𝑓)) ↔ (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌)))) |
13 | 8, 12 | rspc2v 3646 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑒 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓)) → (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌)))) |
14 | 3, 4, 13 | syl2anc 583 | . 2 ⊢ (𝜑 → (∀𝑒 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓)) → (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌)))) |
15 | 2, 14 | mpd 15 | 1 ⊢ (𝜑 → (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 –1-1-onto→wf1o 6574 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 distcds 17322 Itvcitv 28461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6527 df-fv 6583 df-ov 7453 |
This theorem is referenced by: f1otrg 28899 |
Copyright terms: Public domain | W3C validator |