| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > f1otrgds | Structured version Visualization version GIF version | ||
| Description: Convenient lemma for f1otrg 28814. (Contributed by Thierry Arnoux, 19-Mar-2019.) | 
| Ref | Expression | 
|---|---|
| f1otrkg.p | ⊢ 𝑃 = (Base‘𝐺) | 
| f1otrkg.d | ⊢ 𝐷 = (dist‘𝐺) | 
| f1otrkg.i | ⊢ 𝐼 = (Itv‘𝐺) | 
| f1otrkg.b | ⊢ 𝐵 = (Base‘𝐻) | 
| f1otrkg.e | ⊢ 𝐸 = (dist‘𝐻) | 
| f1otrkg.j | ⊢ 𝐽 = (Itv‘𝐻) | 
| f1otrkg.f | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝑃) | 
| f1otrkg.1 | ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵)) → (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓))) | 
| f1otrkg.2 | ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑒)𝐼(𝐹‘𝑓)))) | 
| f1otrgitv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| f1otrgitv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| f1otrgds | ⊢ (𝜑 → (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1otrkg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵)) → (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓))) | |
| 2 | 1 | ralrimivva 3189 | . 2 ⊢ (𝜑 → ∀𝑒 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓))) | 
| 3 | f1otrgitv.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | f1otrgitv.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | oveq1 7419 | . . . . 5 ⊢ (𝑒 = 𝑋 → (𝑒𝐸𝑓) = (𝑋𝐸𝑓)) | |
| 6 | fveq2 6885 | . . . . . 6 ⊢ (𝑒 = 𝑋 → (𝐹‘𝑒) = (𝐹‘𝑋)) | |
| 7 | 6 | oveq1d 7427 | . . . . 5 ⊢ (𝑒 = 𝑋 → ((𝐹‘𝑒)𝐷(𝐹‘𝑓)) = ((𝐹‘𝑋)𝐷(𝐹‘𝑓))) | 
| 8 | 5, 7 | eqeq12d 2750 | . . . 4 ⊢ (𝑒 = 𝑋 → ((𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓)) ↔ (𝑋𝐸𝑓) = ((𝐹‘𝑋)𝐷(𝐹‘𝑓)))) | 
| 9 | oveq2 7420 | . . . . 5 ⊢ (𝑓 = 𝑌 → (𝑋𝐸𝑓) = (𝑋𝐸𝑌)) | |
| 10 | fveq2 6885 | . . . . . 6 ⊢ (𝑓 = 𝑌 → (𝐹‘𝑓) = (𝐹‘𝑌)) | |
| 11 | 10 | oveq2d 7428 | . . . . 5 ⊢ (𝑓 = 𝑌 → ((𝐹‘𝑋)𝐷(𝐹‘𝑓)) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌))) | 
| 12 | 9, 11 | eqeq12d 2750 | . . . 4 ⊢ (𝑓 = 𝑌 → ((𝑋𝐸𝑓) = ((𝐹‘𝑋)𝐷(𝐹‘𝑓)) ↔ (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌)))) | 
| 13 | 8, 12 | rspc2v 3616 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑒 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓)) → (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌)))) | 
| 14 | 3, 4, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (∀𝑒 ∈ 𝐵 ∀𝑓 ∈ 𝐵 (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓)) → (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌)))) | 
| 15 | 2, 14 | mpd 15 | 1 ⊢ (𝜑 → (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7412 Basecbs 17228 distcds 17281 Itvcitv 28376 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6493 df-fv 6548 df-ov 7415 | 
| This theorem is referenced by: f1otrg 28814 | 
| Copyright terms: Public domain | W3C validator |