| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iseqlgd | Structured version Visualization version GIF version | ||
| Description: Condition for a triangle to be equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
| Ref | Expression |
|---|---|
| iseqlg.p | ⊢ 𝑃 = (Base‘𝐺) |
| iseqlg.m | ⊢ − = (dist‘𝐺) |
| iseqlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| iseqlg.l | ⊢ 𝐿 = (LineG‘𝐺) |
| iseqlg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| iseqlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| iseqlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| iseqlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| iseqlgd.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐶)) |
| iseqlgd.2 | ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐶 − 𝐴)) |
| iseqlgd.3 | ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐴 − 𝐵)) |
| Ref | Expression |
|---|---|
| iseqlgd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | iseqlg.m | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | eqid 2734 | . . 3 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
| 4 | iseqlg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | iseqlg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 6 | iseqlg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | iseqlg.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 8 | iseqlgd.1 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐶)) | |
| 9 | iseqlgd.2 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐶 − 𝐴)) | |
| 10 | iseqlgd.3 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐴 − 𝐵)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 6, 7, 5, 8, 9, 10 | trgcgr 28459 | . 2 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐵𝐶𝐴”〉) |
| 12 | iseqlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 13 | iseqlg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 14 | 1, 2, 12, 13, 4, 5, 6, 7 | iseqlg 28810 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺) ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐵𝐶𝐴”〉)) |
| 15 | 11, 14 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6540 (class class class)co 7412 〈“cs3 14862 Basecbs 17228 distcds 17281 TarskiGcstrkg 28370 Itvcitv 28376 LineGclng 28377 cgrGccgrg 28453 eqltrGceqlg 28808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-map 8849 df-pm 8850 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-n0 12509 df-z 12596 df-uz 12860 df-fz 13529 df-fzo 13676 df-hash 14351 df-word 14534 df-concat 14590 df-s1 14615 df-s2 14868 df-s3 14869 df-trkgc 28391 df-trkgcb 28393 df-trkg 28396 df-cgrg 28454 df-eqlg 28809 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |