Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iseqlgd | Structured version Visualization version GIF version |
Description: Condition for a triangle to be equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
Ref | Expression |
---|---|
iseqlg.p | ⊢ 𝑃 = (Base‘𝐺) |
iseqlg.m | ⊢ − = (dist‘𝐺) |
iseqlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
iseqlg.l | ⊢ 𝐿 = (LineG‘𝐺) |
iseqlg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
iseqlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
iseqlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
iseqlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
iseqlgd.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐶)) |
iseqlgd.2 | ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐶 − 𝐴)) |
iseqlgd.3 | ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐴 − 𝐵)) |
Ref | Expression |
---|---|
iseqlgd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | iseqlg.m | . . 3 ⊢ − = (dist‘𝐺) | |
3 | eqid 2736 | . . 3 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
4 | iseqlg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | iseqlg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | iseqlg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | iseqlg.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | iseqlgd.1 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐶)) | |
9 | iseqlgd.2 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐶 − 𝐴)) | |
10 | iseqlgd.3 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐴 − 𝐵)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 6, 7, 5, 8, 9, 10 | trgcgr 27010 | . 2 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐵𝐶𝐴”〉) |
12 | iseqlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
13 | iseqlg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
14 | 1, 2, 12, 13, 4, 5, 6, 7 | iseqlg 27361 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺) ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐵𝐶𝐴”〉)) |
15 | 11, 14 | mpbird 256 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 class class class wbr 5086 ‘cfv 6465 (class class class)co 7316 〈“cs3 14631 Basecbs 16986 distcds 17045 TarskiGcstrkg 26921 Itvcitv 26927 LineGclng 26928 cgrGccgrg 27004 eqltrGceqlg 27359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-pm 8667 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-fzo 13462 df-hash 14124 df-word 14296 df-concat 14352 df-s1 14378 df-s2 14637 df-s3 14638 df-trkgc 26942 df-trkgcb 26944 df-trkg 26947 df-cgrg 27005 df-eqlg 27360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |