![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iseqlgd | Structured version Visualization version GIF version |
Description: Condition for a triangle to be equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
Ref | Expression |
---|---|
iseqlg.p | ⊢ 𝑃 = (Base‘𝐺) |
iseqlg.m | ⊢ − = (dist‘𝐺) |
iseqlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
iseqlg.l | ⊢ 𝐿 = (LineG‘𝐺) |
iseqlg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
iseqlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
iseqlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
iseqlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
iseqlgd.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐶)) |
iseqlgd.2 | ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐶 − 𝐴)) |
iseqlgd.3 | ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐴 − 𝐵)) |
Ref | Expression |
---|---|
iseqlgd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | iseqlg.m | . . 3 ⊢ − = (dist‘𝐺) | |
3 | eqid 2737 | . . 3 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
4 | iseqlg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | iseqlg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | iseqlg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | iseqlg.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | iseqlgd.1 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐶)) | |
9 | iseqlgd.2 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐶 − 𝐴)) | |
10 | iseqlgd.3 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐴 − 𝐵)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 6, 7, 5, 8, 9, 10 | trgcgr 28550 | . 2 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐵𝐶𝐴”〉) |
12 | iseqlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
13 | iseqlg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
14 | 1, 2, 12, 13, 4, 5, 6, 7 | iseqlg 28901 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺) ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐵𝐶𝐴”〉)) |
15 | 11, 14 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 〈“cs3 14887 Basecbs 17254 distcds 17316 TarskiGcstrkg 28461 Itvcitv 28467 LineGclng 28468 cgrGccgrg 28544 eqltrGceqlg 28899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-pm 8877 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-fzo 13701 df-hash 14376 df-word 14559 df-concat 14615 df-s1 14640 df-s2 14893 df-s3 14894 df-trkgc 28482 df-trkgcb 28484 df-trkg 28487 df-cgrg 28545 df-eqlg 28900 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |