Proof of Theorem f1otrgitv
| Step | Hyp | Ref
 | Expression | 
| 1 |   | f1otrkg.2 | 
. . 3
⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑒)𝐼(𝐹‘𝑓)))) | 
| 2 | 1 | ralrimivvva 3192 | 
. 2
⊢ (𝜑 → ∀𝑒 ∈ 𝐵 ∀𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑒)𝐼(𝐹‘𝑓)))) | 
| 3 |   | f1otrgitv.x | 
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 4 |   | f1otrgitv.y | 
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| 5 |   | f1otrgitv.z | 
. . 3
⊢ (𝜑 → 𝑍 ∈ 𝐵) | 
| 6 |   | oveq1 7419 | 
. . . . . 6
⊢ (𝑒 = 𝑋 → (𝑒𝐽𝑓) = (𝑋𝐽𝑓)) | 
| 7 | 6 | eleq2d 2819 | 
. . . . 5
⊢ (𝑒 = 𝑋 → (𝑔 ∈ (𝑒𝐽𝑓) ↔ 𝑔 ∈ (𝑋𝐽𝑓))) | 
| 8 |   | fveq2 6885 | 
. . . . . . 7
⊢ (𝑒 = 𝑋 → (𝐹‘𝑒) = (𝐹‘𝑋)) | 
| 9 | 8 | oveq1d 7427 | 
. . . . . 6
⊢ (𝑒 = 𝑋 → ((𝐹‘𝑒)𝐼(𝐹‘𝑓)) = ((𝐹‘𝑋)𝐼(𝐹‘𝑓))) | 
| 10 | 9 | eleq2d 2819 | 
. . . . 5
⊢ (𝑒 = 𝑋 → ((𝐹‘𝑔) ∈ ((𝐹‘𝑒)𝐼(𝐹‘𝑓)) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑓)))) | 
| 11 | 7, 10 | bibi12d 345 | 
. . . 4
⊢ (𝑒 = 𝑋 → ((𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑒)𝐼(𝐹‘𝑓))) ↔ (𝑔 ∈ (𝑋𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑓))))) | 
| 12 |   | oveq2 7420 | 
. . . . . 6
⊢ (𝑓 = 𝑌 → (𝑋𝐽𝑓) = (𝑋𝐽𝑌)) | 
| 13 | 12 | eleq2d 2819 | 
. . . . 5
⊢ (𝑓 = 𝑌 → (𝑔 ∈ (𝑋𝐽𝑓) ↔ 𝑔 ∈ (𝑋𝐽𝑌))) | 
| 14 |   | fveq2 6885 | 
. . . . . . 7
⊢ (𝑓 = 𝑌 → (𝐹‘𝑓) = (𝐹‘𝑌)) | 
| 15 | 14 | oveq2d 7428 | 
. . . . . 6
⊢ (𝑓 = 𝑌 → ((𝐹‘𝑋)𝐼(𝐹‘𝑓)) = ((𝐹‘𝑋)𝐼(𝐹‘𝑌))) | 
| 16 | 15 | eleq2d 2819 | 
. . . . 5
⊢ (𝑓 = 𝑌 → ((𝐹‘𝑔) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑓)) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑌)))) | 
| 17 | 13, 16 | bibi12d 345 | 
. . . 4
⊢ (𝑓 = 𝑌 → ((𝑔 ∈ (𝑋𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑓))) ↔ (𝑔 ∈ (𝑋𝐽𝑌) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑌))))) | 
| 18 |   | eleq1 2821 | 
. . . . 5
⊢ (𝑔 = 𝑍 → (𝑔 ∈ (𝑋𝐽𝑌) ↔ 𝑍 ∈ (𝑋𝐽𝑌))) | 
| 19 |   | fveq2 6885 | 
. . . . . 6
⊢ (𝑔 = 𝑍 → (𝐹‘𝑔) = (𝐹‘𝑍)) | 
| 20 | 19 | eleq1d 2818 | 
. . . . 5
⊢ (𝑔 = 𝑍 → ((𝐹‘𝑔) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑌)) ↔ (𝐹‘𝑍) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑌)))) | 
| 21 | 18, 20 | bibi12d 345 | 
. . . 4
⊢ (𝑔 = 𝑍 → ((𝑔 ∈ (𝑋𝐽𝑌) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑌))) ↔ (𝑍 ∈ (𝑋𝐽𝑌) ↔ (𝐹‘𝑍) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑌))))) | 
| 22 | 11, 17, 21 | rspc3v 3621 | 
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (∀𝑒 ∈ 𝐵 ∀𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑒)𝐼(𝐹‘𝑓))) → (𝑍 ∈ (𝑋𝐽𝑌) ↔ (𝐹‘𝑍) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑌))))) | 
| 23 | 3, 4, 5, 22 | syl3anc 1372 | 
. 2
⊢ (𝜑 → (∀𝑒 ∈ 𝐵 ∀𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑒)𝐼(𝐹‘𝑓))) → (𝑍 ∈ (𝑋𝐽𝑌) ↔ (𝐹‘𝑍) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑌))))) | 
| 24 | 2, 23 | mpd 15 | 
1
⊢ (𝜑 → (𝑍 ∈ (𝑋𝐽𝑌) ↔ (𝐹‘𝑍) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑌)))) |