| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| feq1i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | feq1 6666 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: ftpg 7128 fpropnf1 7242 suppsnop 8157 seqomlem2 8419 addnqf 10901 mulnqf 10902 isumsup2 15812 ruclem6 16203 sadcf 16423 sadadd2lem 16429 sadadd3 16431 sadaddlem 16436 smupf 16448 algrf 16543 funcoppc 17837 pmtr3ncomlem1 19403 znf1o 21461 ovolfsf 25372 ovolsf 25373 ovoliunlem1 25403 ovoliun 25406 ovoliun2 25407 voliunlem3 25453 itgss3 25716 dvexp 25857 efcn 26353 gamf 26953 basellem9 26999 axlowdimlem10 28878 wlkres 29598 1wlkdlem1 30066 vsfval 30562 ho0f 31680 opsqrlem4 32072 pjinvari 32120 fmptdF 32580 omssubaddlem 34290 omssubadd 34291 sitgclg 34333 sitgaddlemb 34339 coinfliprv 34474 plymul02 34537 signshf 34579 circum 35661 knoppcnlem8 36488 knoppcnlem11 36491 poimirlem31 37645 diophren 42801 clsf2 44115 seff 44298 binomcxplemnotnn0 44345 volicoff 45993 fourierdlem62 46166 fourierdlem80 46184 fourierdlem97 46201 carageniuncllem2 46520 0ome 46527 fcoresf1 47070 fcoresfo 47072 fundcmpsurinjimaid 47412 isubgruhgr 47868 lindslinindimp2lem2 48448 zlmodzxzldeplem1 48489 line2 48741 |
| Copyright terms: Public domain | W3C validator |