| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| feq1i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | feq1 6634 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: ftpg 7095 fpropnf1 7207 suppsnop 8114 seqomlem2 8376 addnqf 10846 mulnqf 10847 isumsup2 15755 ruclem6 16146 sadcf 16366 sadadd2lem 16372 sadadd3 16374 sadaddlem 16379 smupf 16391 algrf 16486 funcoppc 17784 pmtr3ncomlem1 19387 znf1o 21490 ovolfsf 25400 ovolsf 25401 ovoliunlem1 25431 ovoliun 25434 ovoliun2 25435 voliunlem3 25481 itgss3 25744 dvexp 25885 efcn 26381 gamf 26981 basellem9 27027 axlowdimlem10 28931 wlkres 29649 1wlkdlem1 30119 vsfval 30615 ho0f 31733 opsqrlem4 32125 pjinvari 32173 fmptdF 32640 mplmulmvr 33590 omssubaddlem 34333 omssubadd 34334 sitgclg 34376 sitgaddlemb 34382 coinfliprv 34517 plymul02 34580 signshf 34622 circum 35739 knoppcnlem8 36565 knoppcnlem11 36568 poimirlem31 37711 diophren 42930 clsf2 44243 seff 44426 binomcxplemnotnn0 44473 volicoff 46117 fourierdlem62 46290 fourierdlem80 46308 fourierdlem97 46325 carageniuncllem2 46644 0ome 46651 fcoresf1 47193 fcoresfo 47195 fundcmpsurinjimaid 47535 isubgruhgr 47992 lindslinindimp2lem2 48584 zlmodzxzldeplem1 48625 line2 48877 |
| Copyright terms: Public domain | W3C validator |