![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq1i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq1i.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
feq1i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | feq1 6717 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: ftpg 7176 fpropnf1 7287 suppsnop 8202 seqomlem2 8490 addnqf 10986 mulnqf 10987 isumsup2 15879 ruclem6 16268 sadcf 16487 sadadd2lem 16493 sadadd3 16495 sadaddlem 16500 smupf 16512 algrf 16607 funcoppc 17926 pmtr3ncomlem1 19506 znf1o 21588 ovolfsf 25520 ovolsf 25521 ovoliunlem1 25551 ovoliun 25554 ovoliun2 25555 voliunlem3 25601 itgss3 25865 dvexp 26006 efcn 26502 gamf 27101 basellem9 27147 axlowdimlem10 28981 wlkres 29703 1wlkdlem1 30166 vsfval 30662 ho0f 31780 opsqrlem4 32172 pjinvari 32220 fmptdF 32673 omssubaddlem 34281 omssubadd 34282 sitgclg 34324 sitgaddlemb 34330 coinfliprv 34464 plymul02 34540 signshf 34582 circum 35659 knoppcnlem8 36483 knoppcnlem11 36486 poimirlem31 37638 diophren 42801 clsf2 44116 seff 44305 binomcxplemnotnn0 44352 volicoff 45951 fourierdlem62 46124 fourierdlem80 46142 fourierdlem97 46159 carageniuncllem2 46478 0ome 46485 fcoresf1 47019 fcoresfo 47021 fundcmpsurinjimaid 47336 isubgruhgr 47792 lindslinindimp2lem2 48305 zlmodzxzldeplem1 48346 line2 48602 |
Copyright terms: Public domain | W3C validator |