| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| feq1i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | feq1 6629 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: ftpg 7089 fpropnf1 7201 suppsnop 8108 seqomlem2 8370 addnqf 10836 mulnqf 10837 isumsup2 15750 ruclem6 16141 sadcf 16361 sadadd2lem 16367 sadadd3 16369 sadaddlem 16374 smupf 16386 algrf 16481 funcoppc 17779 pmtr3ncomlem1 19383 znf1o 21486 ovolfsf 25397 ovolsf 25398 ovoliunlem1 25428 ovoliun 25431 ovoliun2 25432 voliunlem3 25478 itgss3 25741 dvexp 25882 efcn 26378 gamf 26978 basellem9 27024 axlowdimlem10 28927 wlkres 29645 1wlkdlem1 30112 vsfval 30608 ho0f 31726 opsqrlem4 32118 pjinvari 32166 fmptdF 32633 omssubaddlem 34307 omssubadd 34308 sitgclg 34350 sitgaddlemb 34356 coinfliprv 34491 plymul02 34554 signshf 34596 circum 35706 knoppcnlem8 36533 knoppcnlem11 36536 poimirlem31 37690 diophren 42845 clsf2 44158 seff 44341 binomcxplemnotnn0 44388 volicoff 46032 fourierdlem62 46205 fourierdlem80 46223 fourierdlem97 46240 carageniuncllem2 46559 0ome 46566 fcoresf1 47099 fcoresfo 47101 fundcmpsurinjimaid 47441 isubgruhgr 47898 lindslinindimp2lem2 48490 zlmodzxzldeplem1 48531 line2 48783 |
| Copyright terms: Public domain | W3C validator |