| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| feq1i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | feq1 6634 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: ftpg 7094 fpropnf1 7208 suppsnop 8118 seqomlem2 8380 addnqf 10861 mulnqf 10862 isumsup2 15771 ruclem6 16162 sadcf 16382 sadadd2lem 16388 sadadd3 16390 sadaddlem 16395 smupf 16407 algrf 16502 funcoppc 17800 pmtr3ncomlem1 19370 znf1o 21476 ovolfsf 25388 ovolsf 25389 ovoliunlem1 25419 ovoliun 25422 ovoliun2 25423 voliunlem3 25469 itgss3 25732 dvexp 25873 efcn 26369 gamf 26969 basellem9 27015 axlowdimlem10 28914 wlkres 29632 1wlkdlem1 30099 vsfval 30595 ho0f 31713 opsqrlem4 32105 pjinvari 32153 fmptdF 32613 omssubaddlem 34266 omssubadd 34267 sitgclg 34309 sitgaddlemb 34315 coinfliprv 34450 plymul02 34513 signshf 34555 circum 35646 knoppcnlem8 36473 knoppcnlem11 36476 poimirlem31 37630 diophren 42786 clsf2 44099 seff 44282 binomcxplemnotnn0 44329 volicoff 45977 fourierdlem62 46150 fourierdlem80 46168 fourierdlem97 46185 carageniuncllem2 46504 0ome 46511 fcoresf1 47054 fcoresfo 47056 fundcmpsurinjimaid 47396 isubgruhgr 47853 lindslinindimp2lem2 48445 zlmodzxzldeplem1 48486 line2 48738 |
| Copyright terms: Public domain | W3C validator |