![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq1i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq1i.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
feq1i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | feq1 6728 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: ftpg 7190 fpropnf1 7304 suppsnop 8219 seqomlem2 8507 addnqf 11017 mulnqf 11018 isumsup2 15894 ruclem6 16283 sadcf 16499 sadadd2lem 16505 sadadd3 16507 sadaddlem 16512 smupf 16524 algrf 16620 funcoppc 17939 pmtr3ncomlem1 19515 znf1o 21593 ovolfsf 25525 ovolsf 25526 ovoliunlem1 25556 ovoliun 25559 ovoliun2 25560 voliunlem3 25606 itgss3 25870 dvexp 26011 efcn 26505 gamf 27104 basellem9 27150 axlowdimlem10 28984 wlkres 29706 1wlkdlem1 30169 vsfval 30665 ho0f 31783 opsqrlem4 32175 pjinvari 32223 fmptdF 32674 omssubaddlem 34264 omssubadd 34265 sitgclg 34307 sitgaddlemb 34313 coinfliprv 34447 plymul02 34523 signshf 34565 circum 35642 knoppcnlem8 36466 knoppcnlem11 36469 poimirlem31 37611 diophren 42769 clsf2 44088 seff 44278 binomcxplemnotnn0 44325 volicoff 45916 fourierdlem62 46089 fourierdlem80 46107 fourierdlem97 46124 carageniuncllem2 46443 0ome 46450 fcoresf1 46984 fcoresfo 46986 fundcmpsurinjimaid 47285 isubgruhgr 47738 lindslinindimp2lem2 48188 zlmodzxzldeplem1 48229 line2 48486 |
Copyright terms: Public domain | W3C validator |