| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| feq1i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | feq1 6669 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: ftpg 7131 fpropnf1 7245 suppsnop 8160 seqomlem2 8422 addnqf 10908 mulnqf 10909 isumsup2 15819 ruclem6 16210 sadcf 16430 sadadd2lem 16436 sadadd3 16438 sadaddlem 16443 smupf 16455 algrf 16550 funcoppc 17844 pmtr3ncomlem1 19410 znf1o 21468 ovolfsf 25379 ovolsf 25380 ovoliunlem1 25410 ovoliun 25413 ovoliun2 25414 voliunlem3 25460 itgss3 25723 dvexp 25864 efcn 26360 gamf 26960 basellem9 27006 axlowdimlem10 28885 wlkres 29605 1wlkdlem1 30073 vsfval 30569 ho0f 31687 opsqrlem4 32079 pjinvari 32127 fmptdF 32587 omssubaddlem 34297 omssubadd 34298 sitgclg 34340 sitgaddlemb 34346 coinfliprv 34481 plymul02 34544 signshf 34586 circum 35668 knoppcnlem8 36495 knoppcnlem11 36498 poimirlem31 37652 diophren 42808 clsf2 44122 seff 44305 binomcxplemnotnn0 44352 volicoff 46000 fourierdlem62 46173 fourierdlem80 46191 fourierdlem97 46208 carageniuncllem2 46527 0ome 46534 fcoresf1 47074 fcoresfo 47076 fundcmpsurinjimaid 47416 isubgruhgr 47872 lindslinindimp2lem2 48452 zlmodzxzldeplem1 48493 line2 48745 |
| Copyright terms: Public domain | W3C validator |