| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| feq1i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | feq1 6691 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: ftpg 7151 fpropnf1 7265 suppsnop 8182 seqomlem2 8470 addnqf 10967 mulnqf 10968 isumsup2 15867 ruclem6 16258 sadcf 16477 sadadd2lem 16483 sadadd3 16485 sadaddlem 16490 smupf 16502 algrf 16597 funcoppc 17893 pmtr3ncomlem1 19459 znf1o 21517 ovolfsf 25429 ovolsf 25430 ovoliunlem1 25460 ovoliun 25463 ovoliun2 25464 voliunlem3 25510 itgss3 25773 dvexp 25914 efcn 26410 gamf 27010 basellem9 27056 axlowdimlem10 28935 wlkres 29655 1wlkdlem1 30123 vsfval 30619 ho0f 31737 opsqrlem4 32129 pjinvari 32177 fmptdF 32639 omssubaddlem 34336 omssubadd 34337 sitgclg 34379 sitgaddlemb 34385 coinfliprv 34520 plymul02 34583 signshf 34625 circum 35701 knoppcnlem8 36523 knoppcnlem11 36526 poimirlem31 37680 diophren 42803 clsf2 44117 seff 44300 binomcxplemnotnn0 44347 volicoff 45991 fourierdlem62 46164 fourierdlem80 46182 fourierdlem97 46199 carageniuncllem2 46518 0ome 46525 fcoresf1 47065 fcoresfo 47067 fundcmpsurinjimaid 47392 isubgruhgr 47848 lindslinindimp2lem2 48402 zlmodzxzldeplem1 48443 line2 48699 |
| Copyright terms: Public domain | W3C validator |