Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq1i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq1i.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
feq1i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | feq1 6611 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⟶wf 6454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-fun 6460 df-fn 6461 df-f 6462 |
This theorem is referenced by: ftpg 7060 fpropnf1 7172 suppsnop 8025 seqomlem2 8313 addnqf 10750 mulnqf 10751 isumsup2 15603 ruclem6 15989 sadcf 16205 sadadd2lem 16211 sadadd3 16213 sadaddlem 16218 smupf 16230 algrf 16323 funcoppc 17635 pmtr3ncomlem1 19126 znf1o 20804 ovolfsf 24680 ovolsf 24681 ovoliunlem1 24711 ovoliun 24714 ovoliun2 24715 voliunlem3 24761 itgss3 25024 dvexp 25162 efcn 25647 gamf 26237 basellem9 26283 axlowdimlem10 27364 wlkres 28083 1wlkdlem1 28546 vsfval 29040 ho0f 30158 opsqrlem4 30550 pjinvari 30598 fmptdF 31038 omssubaddlem 32311 omssubadd 32312 sitgclg 32354 sitgaddlemb 32360 coinfliprv 32494 plymul02 32570 signshf 32612 circum 33677 knoppcnlem8 34725 knoppcnlem11 34728 poimirlem31 35852 diophren 40672 clsf2 41774 seff 41965 binomcxplemnotnn0 42012 volicoff 43585 fourierdlem62 43758 fourierdlem80 43776 fourierdlem97 43793 carageniuncllem2 44110 0ome 44117 fcoresf1 44621 fcoresfo 44623 fundcmpsurinjimaid 44921 lindslinindimp2lem2 45858 zlmodzxzldeplem1 45899 line2 46156 |
Copyright terms: Public domain | W3C validator |