Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq1i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq1i.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
feq1i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | feq1 6577 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ⟶wf 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-fun 6432 df-fn 6433 df-f 6434 |
This theorem is referenced by: ftpg 7022 fpropnf1 7134 suppsnop 7978 seqomlem2 8266 addnqf 10688 mulnqf 10689 isumsup2 15539 ruclem6 15925 sadcf 16141 sadadd2lem 16147 sadadd3 16149 sadaddlem 16154 smupf 16166 algrf 16259 funcoppc 17571 pmtr3ncomlem1 19062 znf1o 20740 ovolfsf 24616 ovolsf 24617 ovoliunlem1 24647 ovoliun 24650 ovoliun2 24651 voliunlem3 24697 itgss3 24960 dvexp 25098 efcn 25583 gamf 26173 basellem9 26219 axlowdimlem10 27300 wlkres 28018 1wlkdlem1 28480 vsfval 28974 ho0f 30092 opsqrlem4 30484 pjinvari 30532 fmptdF 30972 omssubaddlem 32245 omssubadd 32246 sitgclg 32288 sitgaddlemb 32294 coinfliprv 32428 plymul02 32504 signshf 32546 circum 33611 knoppcnlem8 34659 knoppcnlem11 34662 poimirlem31 35787 diophren 40615 clsf2 41689 seff 41880 binomcxplemnotnn0 41927 volicoff 43490 fourierdlem62 43663 fourierdlem80 43681 fourierdlem97 43698 carageniuncllem2 44014 0ome 44021 fcoresf1 44514 fcoresfo 44516 fundcmpsurinjimaid 44815 lindslinindimp2lem2 45752 zlmodzxzldeplem1 45793 line2 46050 |
Copyright terms: Public domain | W3C validator |