MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq123d Structured version   Visualization version   GIF version

Theorem feq123d 6680
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1 (𝜑𝐹 = 𝐺)
feq12d.2 (𝜑𝐴 = 𝐵)
feq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
feq123d (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))

Proof of Theorem feq123d
StepHypRef Expression
1 feq12d.1 . . 3 (𝜑𝐹 = 𝐺)
2 feq12d.2 . . 3 (𝜑𝐴 = 𝐵)
31, 2feq12d 6679 . 2 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
4 feq123d.3 . . 3 (𝜑𝐶 = 𝐷)
54feq3d 6676 . 2 (𝜑 → (𝐺:𝐵𝐶𝐺:𝐵𝐷))
63, 5bitrd 279 1 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518
This theorem is referenced by:  feq123  6681  feq23d  6686  fprg  7130  csbwrdg  14516  funcestrcsetclem8  18115  funcsetcestrclem8  18130  funcsetcestrclem9  18131  evlfcl  18190  yonedalem3a  18242  yonedalem4c  18245  yonedalem3b  18247  yonedainv  18249  iscau  25183  isuhgr  28994  uhgreq12g  28999  isuhgrop  29004  uhgrun  29008  isupgr  29018  upgrop  29028  isumgr  29029  upgrun  29052  umgrun  29054  lfuhgr1v0e  29188  wlkp1  29616  sseqf  34390  ismfs  35543  isrngo  37898  gneispace2  44128  isubgruhgr  47872  funcringcsetcALTV2lem8  48289  funcringcsetclem8ALTV  48312
  Copyright terms: Public domain W3C validator