| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| feq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| feq123d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | feq12d 6679 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| 4 | feq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 4 | feq3d 6676 | . 2 ⊢ (𝜑 → (𝐺:𝐵⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
| 6 | 3, 5 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: feq123 6681 feq23d 6686 fprg 7130 csbwrdg 14516 funcestrcsetclem8 18115 funcsetcestrclem8 18130 funcsetcestrclem9 18131 evlfcl 18190 yonedalem3a 18242 yonedalem4c 18245 yonedalem3b 18247 yonedainv 18249 iscau 25183 isuhgr 28994 uhgreq12g 28999 isuhgrop 29004 uhgrun 29008 isupgr 29018 upgrop 29028 isumgr 29029 upgrun 29052 umgrun 29054 lfuhgr1v0e 29188 wlkp1 29616 sseqf 34390 ismfs 35543 isrngo 37898 gneispace2 44128 isubgruhgr 47872 funcringcsetcALTV2lem8 48289 funcringcsetclem8ALTV 48312 |
| Copyright terms: Public domain | W3C validator |