![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq123d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
feq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
feq123d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | feq12d 6735 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
4 | feq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 4 | feq3d 6734 | . 2 ⊢ (𝜑 → (𝐺:𝐵⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
6 | 3, 5 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: feq123 6737 feq23d 6742 fprg 7189 csbwrdg 14592 funcestrcsetclem8 18216 funcsetcestrclem8 18231 funcsetcestrclem9 18232 evlfcl 18292 yonedalem3a 18344 yonedalem4c 18347 yonedalem3b 18349 yonedainv 18351 iscau 25329 isuhgr 29095 uhgreq12g 29100 isuhgrop 29105 uhgrun 29109 isupgr 29119 upgrop 29129 isumgr 29130 upgrun 29153 umgrun 29155 lfuhgr1v0e 29289 wlkp1 29717 sseqf 34357 ismfs 35517 isrngo 37857 gneispace2 44094 isubgruhgr 47738 funcringcsetcALTV2lem8 48020 funcringcsetclem8ALTV 48043 |
Copyright terms: Public domain | W3C validator |