MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq123d Structured version   Visualization version   GIF version

Theorem feq123d 6645
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1 (𝜑𝐹 = 𝐺)
feq12d.2 (𝜑𝐴 = 𝐵)
feq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
feq123d (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))

Proof of Theorem feq123d
StepHypRef Expression
1 feq12d.1 . . 3 (𝜑𝐹 = 𝐺)
2 feq12d.2 . . 3 (𝜑𝐴 = 𝐵)
31, 2feq12d 6644 . 2 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
4 feq123d.3 . . 3 (𝜑𝐶 = 𝐷)
54feq3d 6641 . 2 (𝜑 → (𝐺:𝐵𝐶𝐺:𝐵𝐷))
63, 5bitrd 279 1 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  feq123  6646  feq23d  6651  fprg  7094  csbwrdg  14453  funcestrcsetclem8  18055  funcsetcestrclem8  18070  funcsetcestrclem9  18071  evlfcl  18130  yonedalem3a  18182  yonedalem4c  18185  yonedalem3b  18187  yonedainv  18189  iscau  25204  isuhgr  29040  uhgreq12g  29045  isuhgrop  29050  uhgrun  29054  isupgr  29064  upgrop  29074  isumgr  29075  upgrun  29098  umgrun  29100  lfuhgr1v0e  29234  wlkp1  29660  sseqf  34426  ismfs  35614  isrngo  37957  gneispace2  44249  isubgruhgr  47992  funcringcsetcALTV2lem8  48421  funcringcsetclem8ALTV  48444
  Copyright terms: Public domain W3C validator