MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq123d Structured version   Visualization version   GIF version

Theorem feq123d 6700
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1 (𝜑𝐹 = 𝐺)
feq12d.2 (𝜑𝐴 = 𝐵)
feq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
feq123d (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))

Proof of Theorem feq123d
StepHypRef Expression
1 feq12d.1 . . 3 (𝜑𝐹 = 𝐺)
2 feq12d.2 . . 3 (𝜑𝐴 = 𝐵)
31, 2feq12d 6699 . 2 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
4 feq123d.3 . . 3 (𝜑𝐶 = 𝐷)
54feq3d 6698 . 2 (𝜑 → (𝐺:𝐵𝐶𝐺:𝐵𝐷))
63, 5bitrd 279 1 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wf 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-fun 6538  df-fn 6539  df-f 6540
This theorem is referenced by:  feq123  6701  feq23d  6706  fprg  7150  csbwrdg  14567  funcestrcsetclem8  18164  funcsetcestrclem8  18179  funcsetcestrclem9  18180  evlfcl  18239  yonedalem3a  18291  yonedalem4c  18294  yonedalem3b  18296  yonedainv  18298  iscau  25233  isuhgr  29044  uhgreq12g  29049  isuhgrop  29054  uhgrun  29058  isupgr  29068  upgrop  29078  isumgr  29079  upgrun  29102  umgrun  29104  lfuhgr1v0e  29238  wlkp1  29666  sseqf  34429  ismfs  35576  isrngo  37926  gneispace2  44123  isubgruhgr  47848  funcringcsetcALTV2lem8  48239  funcringcsetclem8ALTV  48262
  Copyright terms: Public domain W3C validator