MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq123d Structured version   Visualization version   GIF version

Theorem feq123d 6640
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1 (𝜑𝐹 = 𝐺)
feq12d.2 (𝜑𝐴 = 𝐵)
feq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
feq123d (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))

Proof of Theorem feq123d
StepHypRef Expression
1 feq12d.1 . . 3 (𝜑𝐹 = 𝐺)
2 feq12d.2 . . 3 (𝜑𝐴 = 𝐵)
31, 2feq12d 6639 . 2 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
4 feq123d.3 . . 3 (𝜑𝐶 = 𝐷)
54feq3d 6638 . 2 (𝜑 → (𝐺:𝐵𝐶𝐺:𝐵𝐷))
63, 5bitrd 278 1 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wf 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-fun 6481  df-fn 6482  df-f 6483
This theorem is referenced by:  feq123  6641  feq23d  6646  fprg  7083  csbwrdg  14347  funcestrcsetclem8  17961  funcsetcestrclem8  17976  funcsetcestrclem9  17977  evlfcl  18037  yonedalem3a  18089  yonedalem4c  18092  yonedalem3b  18094  yonedainv  18096  iscau  24546  isuhgr  27719  uhgreq12g  27724  isuhgrop  27729  uhgrun  27733  isupgr  27743  upgrop  27753  isumgr  27754  upgrun  27777  umgrun  27779  lfuhgr1v0e  27910  wlkp1  28337  sseqf  32659  ismfs  33810  isrngo  36168  gneispace2  42072  funcringcsetcALTV2lem8  45961  funcringcsetclem8ALTV  45984
  Copyright terms: Public domain W3C validator