MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq123d Structured version   Visualization version   GIF version

Theorem feq123d 6640
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1 (𝜑𝐹 = 𝐺)
feq12d.2 (𝜑𝐴 = 𝐵)
feq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
feq123d (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))

Proof of Theorem feq123d
StepHypRef Expression
1 feq12d.1 . . 3 (𝜑𝐹 = 𝐺)
2 feq12d.2 . . 3 (𝜑𝐴 = 𝐵)
31, 2feq12d 6639 . 2 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
4 feq123d.3 . . 3 (𝜑𝐶 = 𝐷)
54feq3d 6636 . 2 (𝜑 → (𝐺:𝐵𝐶𝐺:𝐵𝐷))
63, 5bitrd 279 1 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  feq123  6641  feq23d  6646  fprg  7088  csbwrdg  14448  funcestrcsetclem8  18050  funcsetcestrclem8  18065  funcsetcestrclem9  18066  evlfcl  18125  yonedalem3a  18177  yonedalem4c  18180  yonedalem3b  18182  yonedainv  18184  iscau  25201  isuhgr  29036  uhgreq12g  29041  isuhgrop  29046  uhgrun  29050  isupgr  29060  upgrop  29070  isumgr  29071  upgrun  29094  umgrun  29096  lfuhgr1v0e  29230  wlkp1  29656  sseqf  34400  ismfs  35581  isrngo  37936  gneispace2  44164  isubgruhgr  47898  funcringcsetcALTV2lem8  48327  funcringcsetclem8ALTV  48350
  Copyright terms: Public domain W3C validator