Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq123d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
feq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
feq123d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | feq12d 6491 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
4 | feq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 4 | feq3d 6490 | . 2 ⊢ (𝜑 → (𝐺:𝐵⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
6 | 3, 5 | bitrd 282 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ⟶wf 6336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-fun 6342 df-fn 6343 df-f 6344 |
This theorem is referenced by: feq123 6493 feq23d 6498 fprg 6914 csbwrdg 13956 funcestrcsetclem8 17476 funcsetcestrclem8 17491 funcsetcestrclem9 17492 evlfcl 17551 yonedalem3a 17603 yonedalem4c 17606 yonedalem3b 17608 yonedainv 17610 iscau 23989 isuhgr 26965 uhgreq12g 26970 isuhgrop 26975 uhgrun 26979 isupgr 26989 upgrop 26999 isumgr 27000 upgrun 27023 umgrun 27025 lfuhgr1v0e 27156 wlkp1 27583 sseqf 31890 ismfs 33039 isrngo 35649 gneispace2 41243 funcringcsetcALTV2lem8 45083 funcringcsetclem8ALTV 45106 |
Copyright terms: Public domain | W3C validator |