| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| feq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| feq123d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | feq12d 6644 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| 4 | feq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 4 | feq3d 6641 | . 2 ⊢ (𝜑 → (𝐺:𝐵⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
| 6 | 3, 5 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: feq123 6646 feq23d 6651 fprg 7094 csbwrdg 14453 funcestrcsetclem8 18055 funcsetcestrclem8 18070 funcsetcestrclem9 18071 evlfcl 18130 yonedalem3a 18182 yonedalem4c 18185 yonedalem3b 18187 yonedainv 18189 iscau 25204 isuhgr 29040 uhgreq12g 29045 isuhgrop 29050 uhgrun 29054 isupgr 29064 upgrop 29074 isumgr 29075 upgrun 29098 umgrun 29100 lfuhgr1v0e 29234 wlkp1 29660 sseqf 34426 ismfs 35614 isrngo 37957 gneispace2 44249 isubgruhgr 47992 funcringcsetcALTV2lem8 48421 funcringcsetclem8ALTV 48444 |
| Copyright terms: Public domain | W3C validator |