![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flddrngd | Structured version Visualization version GIF version |
Description: A field is a division ring. (Contributed by SN, 17-Jan-2025.) |
Ref | Expression |
---|---|
flddrngd.1 | ⊢ (𝜑 → 𝑅 ∈ Field) |
Ref | Expression |
---|---|
flddrngd | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flddrngd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Field) | |
2 | isfld 20757 | . . 3 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) | |
3 | 2 | simplbi 497 | . 2 ⊢ (𝑅 ∈ Field → 𝑅 ∈ DivRing) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 CRingccrg 20252 DivRingcdr 20746 Fieldcfield 20747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-field 20749 |
This theorem is referenced by: ply1asclunit 33579 ply1unit 33580 ply1dg1rt 33584 m1pmeq 33588 fldgenfldext 33693 evls1fldgencl 33695 minplyirred 33719 algextdeglem2 33724 algextdeglem3 33725 algextdeglem4 33726 algextdeglem5 33727 algextdeglem7 33729 algextdeglem8 33730 rtelextdg2lem 33732 rtelextdg2 33733 aks6d1c5lem3 42119 aks6d1c5lem2 42120 aks5lem7 42182 prjcrv0 42620 |
Copyright terms: Public domain | W3C validator |