| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flddrngd | Structured version Visualization version GIF version | ||
| Description: A field is a division ring. (Contributed by SN, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| flddrngd.1 | ⊢ (𝜑 → 𝑅 ∈ Field) |
| Ref | Expression |
|---|---|
| flddrngd | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flddrngd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Field) | |
| 2 | isfld 20655 | . . 3 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) | |
| 3 | 2 | simplbi 497 | . 2 ⊢ (𝑅 ∈ Field → 𝑅 ∈ DivRing) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 CRingccrg 20152 DivRingcdr 20644 Fieldcfield 20645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-field 20647 |
| This theorem is referenced by: ply1asclunit 33537 ply1unit 33538 ply1dg1rt 33543 m1pmeq 33547 fldextsdrg 33667 fldgenfldext 33681 evls1fldgencl 33683 fldextrspunlsplem 33686 fldextrspunfld 33689 fldextrspunlem2 33690 fldextrspundgdvdslem 33693 fldextrspundgdvds 33694 extdgfialglem1 33705 minplyirred 33724 algextdeglem2 33731 algextdeglem3 33732 algextdeglem4 33733 algextdeglem5 33734 algextdeglem7 33736 algextdeglem8 33737 rtelextdg2lem 33739 rtelextdg2 33740 constrsdrg 33788 aks6d1c5lem3 42178 aks6d1c5lem2 42179 aks5lem7 42241 prjcrv0 42674 |
| Copyright terms: Public domain | W3C validator |