![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flddrngd | Structured version Visualization version GIF version |
Description: A field is a division ring. (Contributed by SN, 17-Jan-2025.) |
Ref | Expression |
---|---|
flddrngd.1 | ⊢ (𝜑 → 𝑅 ∈ Field) |
Ref | Expression |
---|---|
flddrngd | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flddrngd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Field) | |
2 | isfld 20762 | . . 3 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) | |
3 | 2 | simplbi 497 | . 2 ⊢ (𝑅 ∈ Field → 𝑅 ∈ DivRing) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 CRingccrg 20261 DivRingcdr 20751 Fieldcfield 20752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-field 20754 |
This theorem is referenced by: ply1asclunit 33564 ply1unit 33565 ply1dg1rt 33569 m1pmeq 33573 fldgenfldext 33678 evls1fldgencl 33680 minplyirred 33704 algextdeglem2 33709 algextdeglem3 33710 algextdeglem4 33711 algextdeglem5 33712 algextdeglem7 33714 algextdeglem8 33715 rtelextdg2lem 33717 rtelextdg2 33718 aks6d1c5lem3 42094 aks6d1c5lem2 42095 aks5lem7 42157 prjcrv0 42588 |
Copyright terms: Public domain | W3C validator |