| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flddrngd | Structured version Visualization version GIF version | ||
| Description: A field is a division ring. (Contributed by SN, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| flddrngd.1 | ⊢ (𝜑 → 𝑅 ∈ Field) |
| Ref | Expression |
|---|---|
| flddrngd | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flddrngd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Field) | |
| 2 | isfld 20625 | . . 3 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) | |
| 3 | 2 | simplbi 497 | . 2 ⊢ (𝑅 ∈ Field → 𝑅 ∈ DivRing) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CRingccrg 20119 DivRingcdr 20614 Fieldcfield 20615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-field 20617 |
| This theorem is referenced by: ply1asclunit 33516 ply1unit 33517 ply1dg1rt 33521 m1pmeq 33525 fldextsdrg 33623 fldgenfldext 33636 evls1fldgencl 33638 fldextrspunlsplem 33641 fldextrspunfld 33644 fldextrspunlem2 33645 fldextrspundgdvdslem 33648 fldextrspundgdvds 33649 minplyirred 33674 algextdeglem2 33681 algextdeglem3 33682 algextdeglem4 33683 algextdeglem5 33684 algextdeglem7 33686 algextdeglem8 33687 rtelextdg2lem 33689 rtelextdg2 33690 constrsdrg 33738 aks6d1c5lem3 42098 aks6d1c5lem2 42099 aks5lem7 42161 prjcrv0 42594 |
| Copyright terms: Public domain | W3C validator |