MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flddrngd Structured version   Visualization version   GIF version

Theorem flddrngd 20758
Description: A field is a division ring. (Contributed by SN, 17-Jan-2025.)
Hypothesis
Ref Expression
flddrngd.1 (𝜑𝑅 ∈ Field)
Assertion
Ref Expression
flddrngd (𝜑𝑅 ∈ DivRing)

Proof of Theorem flddrngd
StepHypRef Expression
1 flddrngd.1 . 2 (𝜑𝑅 ∈ Field)
2 isfld 20757 . . 3 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
32simplbi 497 . 2 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
41, 3syl 17 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  CRingccrg 20252  DivRingcdr 20746  Fieldcfield 20747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-in 3970  df-field 20749
This theorem is referenced by:  ply1asclunit  33579  ply1unit  33580  ply1dg1rt  33584  m1pmeq  33588  fldgenfldext  33693  evls1fldgencl  33695  minplyirred  33719  algextdeglem2  33724  algextdeglem3  33725  algextdeglem4  33726  algextdeglem5  33727  algextdeglem7  33729  algextdeglem8  33730  rtelextdg2lem  33732  rtelextdg2  33733  aks6d1c5lem3  42119  aks6d1c5lem2  42120  aks5lem7  42182  prjcrv0  42620
  Copyright terms: Public domain W3C validator