| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flddrngd | Structured version Visualization version GIF version | ||
| Description: A field is a division ring. (Contributed by SN, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| flddrngd.1 | ⊢ (𝜑 → 𝑅 ∈ Field) |
| Ref | Expression |
|---|---|
| flddrngd | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flddrngd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Field) | |
| 2 | isfld 20625 | . . 3 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) | |
| 3 | 2 | simplbi 497 | . 2 ⊢ (𝑅 ∈ Field → 𝑅 ∈ DivRing) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CRingccrg 20119 DivRingcdr 20614 Fieldcfield 20615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-in 3910 df-field 20617 |
| This theorem is referenced by: ply1asclunit 33509 ply1unit 33510 ply1dg1rt 33515 m1pmeq 33519 fldextsdrg 33621 fldgenfldext 33635 evls1fldgencl 33637 fldextrspunlsplem 33640 fldextrspunfld 33643 fldextrspunlem2 33644 fldextrspundgdvdslem 33647 fldextrspundgdvds 33648 extdgfialglem1 33659 minplyirred 33678 algextdeglem2 33685 algextdeglem3 33686 algextdeglem4 33687 algextdeglem5 33688 algextdeglem7 33690 algextdeglem8 33691 rtelextdg2lem 33693 rtelextdg2 33694 constrsdrg 33742 aks6d1c5lem3 42110 aks6d1c5lem2 42111 aks5lem7 42173 prjcrv0 42606 |
| Copyright terms: Public domain | W3C validator |