| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flddrngd | Structured version Visualization version GIF version | ||
| Description: A field is a division ring. (Contributed by SN, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| flddrngd.1 | ⊢ (𝜑 → 𝑅 ∈ Field) |
| Ref | Expression |
|---|---|
| flddrngd | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flddrngd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Field) | |
| 2 | isfld 20649 | . . 3 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) | |
| 3 | 2 | simplbi 497 | . 2 ⊢ (𝑅 ∈ Field → 𝑅 ∈ DivRing) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CRingccrg 20143 DivRingcdr 20638 Fieldcfield 20639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-field 20641 |
| This theorem is referenced by: ply1asclunit 33543 ply1unit 33544 ply1dg1rt 33548 m1pmeq 33552 fldextsdrg 33650 fldgenfldext 33663 evls1fldgencl 33665 fldextrspunlsplem 33668 fldextrspunfld 33671 fldextrspunlem2 33672 fldextrspundgdvdslem 33675 fldextrspundgdvds 33676 minplyirred 33701 algextdeglem2 33708 algextdeglem3 33709 algextdeglem4 33710 algextdeglem5 33711 algextdeglem7 33713 algextdeglem8 33714 rtelextdg2lem 33716 rtelextdg2 33717 constrsdrg 33765 aks6d1c5lem3 42125 aks6d1c5lem2 42126 aks5lem7 42188 prjcrv0 42621 |
| Copyright terms: Public domain | W3C validator |