| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flddrngd | Structured version Visualization version GIF version | ||
| Description: A field is a division ring. (Contributed by SN, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| flddrngd.1 | ⊢ (𝜑 → 𝑅 ∈ Field) |
| Ref | Expression |
|---|---|
| flddrngd | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flddrngd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Field) | |
| 2 | isfld 20705 | . . 3 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) | |
| 3 | 2 | simplbi 497 | . 2 ⊢ (𝑅 ∈ Field → 𝑅 ∈ DivRing) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CRingccrg 20199 DivRingcdr 20694 Fieldcfield 20695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-in 3938 df-field 20697 |
| This theorem is referenced by: ply1asclunit 33592 ply1unit 33593 ply1dg1rt 33597 m1pmeq 33601 fldextsdrg 33701 fldgenfldext 33714 evls1fldgencl 33716 fldextrspunlsplem 33719 fldextrspunfld 33722 fldextrspunlem2 33723 fldextrspundgdvdslem 33726 fldextrspundgdvds 33727 minplyirred 33750 algextdeglem2 33757 algextdeglem3 33758 algextdeglem4 33759 algextdeglem5 33760 algextdeglem7 33762 algextdeglem8 33763 rtelextdg2lem 33765 rtelextdg2 33766 constrsdrg 33814 aks6d1c5lem3 42155 aks6d1c5lem2 42156 aks5lem7 42218 prjcrv0 42623 |
| Copyright terms: Public domain | W3C validator |