| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flddrngd | Structured version Visualization version GIF version | ||
| Description: A field is a division ring. (Contributed by SN, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| flddrngd.1 | ⊢ (𝜑 → 𝑅 ∈ Field) |
| Ref | Expression |
|---|---|
| flddrngd | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flddrngd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Field) | |
| 2 | isfld 20660 | . . 3 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) | |
| 3 | 2 | simplbi 497 | . 2 ⊢ (𝑅 ∈ Field → 𝑅 ∈ DivRing) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CRingccrg 20154 DivRingcdr 20649 Fieldcfield 20650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-field 20652 |
| This theorem is referenced by: ply1asclunit 33536 ply1unit 33537 ply1dg1rt 33541 m1pmeq 33545 fldextsdrg 33643 fldgenfldext 33656 evls1fldgencl 33658 fldextrspunlsplem 33661 fldextrspunfld 33664 fldextrspunlem2 33665 fldextrspundgdvdslem 33668 fldextrspundgdvds 33669 minplyirred 33694 algextdeglem2 33701 algextdeglem3 33702 algextdeglem4 33703 algextdeglem5 33704 algextdeglem7 33706 algextdeglem8 33707 rtelextdg2lem 33709 rtelextdg2 33710 constrsdrg 33758 aks6d1c5lem3 42118 aks6d1c5lem2 42119 aks5lem7 42181 prjcrv0 42614 |
| Copyright terms: Public domain | W3C validator |