| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for algextdeg 33715. The subspace 𝑍 of annihilators of 𝐴 is a principal ideal generated by the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
| algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
| algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
| algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
| algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) |
| algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) |
| algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
| algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
| algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
| algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
| algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) |
| Ref | Expression |
|---|---|
| algextdeglem5 | ⊢ (𝜑 → 𝑍 = ((RSpan‘𝑃)‘{(𝑀‘𝐴)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algextdeglem.o | . . 3 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 2 | algextdeglem.y | . . . 4 ⊢ 𝑃 = (Poly1‘𝐾) | |
| 3 | algextdeg.k | . . . . 5 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 4 | 3 | fveq2i 6861 | . . . 4 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
| 5 | 2, 4 | eqtri 2752 | . . 3 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
| 6 | eqid 2729 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 7 | algextdeg.f | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 8 | algextdeg.e | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 10 | 7 | fldcrngd 20651 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 11 | issdrg 20697 | . . . . . . 7 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
| 12 | 8, 11 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
| 13 | 12 | simp2d 1143 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 14 | 1, 3, 6, 9, 10, 13 | irngssv 33683 | . . . 4 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
| 15 | algextdeg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
| 16 | 14, 15 | sseldd 3947 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
| 17 | eqid 2729 | . . 3 ⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} | |
| 18 | eqid 2729 | . . 3 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
| 19 | eqid 2729 | . . 3 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
| 20 | 1, 5, 6, 7, 8, 16, 9, 17, 18, 19 | ply1annig1p 33694 | . 2 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = ((RSpan‘𝑃)‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
| 21 | algextdeglem.z | . . . 4 ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) | |
| 22 | 10 | crnggrpd 20156 | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ Grp) |
| 23 | 22 | grpmndd 18878 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Mnd) |
| 24 | 7 | flddrngd 20650 | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 25 | subrgsubg 20486 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) | |
| 26 | 6 | subgss 19059 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) |
| 27 | 13, 25, 26 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
| 28 | 16 | snssd 4773 | . . . . . . . . . 10 ⊢ (𝜑 → {𝐴} ⊆ (Base‘𝐸)) |
| 29 | 27, 28 | unssd 4155 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸)) |
| 30 | 6, 24, 29 | fldgensdrg 33264 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸)) |
| 31 | sdrgsubrg 20700 | . . . . . . . 8 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸)) | |
| 32 | subrgsubg 20486 | . . . . . . . 8 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸)) | |
| 33 | 9 | subg0cl 19066 | . . . . . . . 8 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸) → (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 34 | 30, 31, 32, 33 | 4syl 19 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 35 | 6, 24, 29 | fldgenssv 33265 | . . . . . . 7 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) |
| 36 | algextdeg.l | . . . . . . . 8 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 37 | 36, 6, 9 | ress0g 18689 | . . . . . . 7 ⊢ ((𝐸 ∈ Mnd ∧ (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) → (0g‘𝐸) = (0g‘𝐿)) |
| 38 | 23, 34, 35, 37 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (0g‘𝐸) = (0g‘𝐿)) |
| 39 | 38 | sneqd 4601 | . . . . 5 ⊢ (𝜑 → {(0g‘𝐸)} = {(0g‘𝐿)}) |
| 40 | 39 | imaeq2d 6031 | . . . 4 ⊢ (𝜑 → (◡𝐺 “ {(0g‘𝐸)}) = (◡𝐺 “ {(0g‘𝐿)})) |
| 41 | 21, 40 | eqtr4id 2783 | . . 3 ⊢ (𝜑 → 𝑍 = (◡𝐺 “ {(0g‘𝐸)})) |
| 42 | algextdeglem.g | . . . . 5 ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) | |
| 43 | algextdeglem.u | . . . . . 6 ⊢ 𝑈 = (Base‘𝑃) | |
| 44 | 43 | mpteq1i 5198 | . . . . 5 ⊢ (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) |
| 45 | 42, 44 | eqtri 2752 | . . . 4 ⊢ 𝐺 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) |
| 46 | 1, 5, 6, 10, 13, 16, 9, 17, 45 | ply1annidllem 33691 | . . 3 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = (◡𝐺 “ {(0g‘𝐸)})) |
| 47 | 41, 46 | eqtr4d 2767 | . 2 ⊢ (𝜑 → 𝑍 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)}) |
| 48 | algextdeg.m | . . . . 5 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 49 | 1, 5, 6, 7, 8, 16, 9, 17, 18, 19, 48 | minplyval 33695 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})) |
| 50 | 49 | sneqd 4601 | . . 3 ⊢ (𝜑 → {(𝑀‘𝐴)} = {((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})}) |
| 51 | 50 | fveq2d 6862 | . 2 ⊢ (𝜑 → ((RSpan‘𝑃)‘{(𝑀‘𝐴)}) = ((RSpan‘𝑃)‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
| 52 | 20, 47, 51 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → 𝑍 = ((RSpan‘𝑃)‘{(𝑀‘𝐴)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 ∪ cun 3912 ⊆ wss 3914 {csn 4589 ∪ cuni 4871 ↦ cmpt 5188 ◡ccnv 5637 dom cdm 5638 “ cima 5641 ‘cfv 6511 (class class class)co 7387 [cec 8669 Basecbs 17179 ↾s cress 17200 0gc0g 17402 /s cqus 17468 Mndcmnd 18661 SubGrpcsubg 19052 ~QG cqg 19054 SubRingcsubrg 20478 DivRingcdr 20638 Fieldcfield 20639 SubDRingcsdrg 20695 RSpancrsp 21117 Poly1cpl1 22061 evalSub1 ces1 22200 deg1cdg1 25959 idlGen1pcig1p 26035 fldGen cfldgen 33260 IntgRing cirng 33678 minPoly cminply 33689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-srg 20096 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-rlreg 20603 df-drng 20640 df-field 20641 df-sdrg 20696 df-lmod 20768 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-cnfld 21265 df-assa 21762 df-asp 21763 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-evls 21981 df-evl 21982 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-coe1 22067 df-evls1 22202 df-evl1 22203 df-mdeg 25960 df-deg1 25961 df-mon1 26036 df-uc1p 26037 df-q1p 26038 df-r1p 26039 df-ig1p 26040 df-fldgen 33261 df-irng 33679 df-minply 33690 |
| This theorem is referenced by: algextdeglem6 33712 |
| Copyright terms: Public domain | W3C validator |