![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem5 | Structured version Visualization version GIF version |
Description: Lemma for algextdeg 33261. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
algextdeg.k | β’ πΎ = (πΈ βΎs πΉ) |
algextdeg.l | β’ πΏ = (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) |
algextdeg.d | β’ π· = ( deg1 βπΈ) |
algextdeg.m | β’ π = (πΈ minPoly πΉ) |
algextdeg.f | β’ (π β πΈ β Field) |
algextdeg.e | β’ (π β πΉ β (SubDRingβπΈ)) |
algextdeg.a | β’ (π β π΄ β (πΈ IntgRing πΉ)) |
algextdeglem.o | β’ π = (πΈ evalSub1 πΉ) |
algextdeglem.y | β’ π = (Poly1βπΎ) |
algextdeglem.u | β’ π = (Baseβπ) |
algextdeglem.g | β’ πΊ = (π β π β¦ ((πβπ)βπ΄)) |
algextdeglem.n | β’ π = (π₯ β π β¦ [π₯](π ~QG π)) |
algextdeglem.z | β’ π = (β‘πΊ β {(0gβπΏ)}) |
algextdeglem.q | β’ π = (π /s (π ~QG π)) |
algextdeglem.j | β’ π½ = (π β (Baseβπ) β¦ βͺ (πΊ β π)) |
Ref | Expression |
---|---|
algextdeglem5 | β’ (π β π = ((RSpanβπ)β{(πβπ΄)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algextdeglem.o | . . 3 β’ π = (πΈ evalSub1 πΉ) | |
2 | algextdeglem.y | . . . 4 β’ π = (Poly1βπΎ) | |
3 | algextdeg.k | . . . . 5 β’ πΎ = (πΈ βΎs πΉ) | |
4 | 3 | fveq2i 6884 | . . . 4 β’ (Poly1βπΎ) = (Poly1β(πΈ βΎs πΉ)) |
5 | 2, 4 | eqtri 2752 | . . 3 β’ π = (Poly1β(πΈ βΎs πΉ)) |
6 | eqid 2724 | . . 3 β’ (BaseβπΈ) = (BaseβπΈ) | |
7 | algextdeg.f | . . 3 β’ (π β πΈ β Field) | |
8 | algextdeg.e | . . 3 β’ (π β πΉ β (SubDRingβπΈ)) | |
9 | eqid 2724 | . . . . 5 β’ (0gβπΈ) = (0gβπΈ) | |
10 | 7 | fldcrngd 20590 | . . . . 5 β’ (π β πΈ β CRing) |
11 | issdrg 20629 | . . . . . . 7 β’ (πΉ β (SubDRingβπΈ) β (πΈ β DivRing β§ πΉ β (SubRingβπΈ) β§ (πΈ βΎs πΉ) β DivRing)) | |
12 | 8, 11 | sylib 217 | . . . . . 6 β’ (π β (πΈ β DivRing β§ πΉ β (SubRingβπΈ) β§ (πΈ βΎs πΉ) β DivRing)) |
13 | 12 | simp2d 1140 | . . . . 5 β’ (π β πΉ β (SubRingβπΈ)) |
14 | 1, 3, 6, 9, 10, 13 | irngssv 33232 | . . . 4 β’ (π β (πΈ IntgRing πΉ) β (BaseβπΈ)) |
15 | algextdeg.a | . . . 4 β’ (π β π΄ β (πΈ IntgRing πΉ)) | |
16 | 14, 15 | sseldd 3975 | . . 3 β’ (π β π΄ β (BaseβπΈ)) |
17 | eqid 2724 | . . 3 β’ {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} | |
18 | eqid 2724 | . . 3 β’ (RSpanβπ) = (RSpanβπ) | |
19 | eqid 2724 | . . 3 β’ (idlGen1pβ(πΈ βΎs πΉ)) = (idlGen1pβ(πΈ βΎs πΉ)) | |
20 | 1, 5, 6, 7, 8, 16, 9, 17, 18, 19 | ply1annig1p 33245 | . 2 β’ (π β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = ((RSpanβπ)β{((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})})) |
21 | algextdeglem.z | . . . 4 β’ π = (β‘πΊ β {(0gβπΏ)}) | |
22 | 10 | crnggrpd 20142 | . . . . . . . 8 β’ (π β πΈ β Grp) |
23 | 22 | grpmndd 18866 | . . . . . . 7 β’ (π β πΈ β Mnd) |
24 | 7 | flddrngd 20589 | . . . . . . . . . 10 β’ (π β πΈ β DivRing) |
25 | subrgsubg 20469 | . . . . . . . . . . . 12 β’ (πΉ β (SubRingβπΈ) β πΉ β (SubGrpβπΈ)) | |
26 | 6 | subgss 19044 | . . . . . . . . . . . 12 β’ (πΉ β (SubGrpβπΈ) β πΉ β (BaseβπΈ)) |
27 | 13, 25, 26 | 3syl 18 | . . . . . . . . . . 11 β’ (π β πΉ β (BaseβπΈ)) |
28 | 16 | snssd 4804 | . . . . . . . . . . 11 β’ (π β {π΄} β (BaseβπΈ)) |
29 | 27, 28 | unssd 4178 | . . . . . . . . . 10 β’ (π β (πΉ βͺ {π΄}) β (BaseβπΈ)) |
30 | 6, 24, 29 | fldgensdrg 32870 | . . . . . . . . 9 β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (SubDRingβπΈ)) |
31 | sdrgsubrg 20632 | . . . . . . . . 9 β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubDRingβπΈ) β (πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ)) | |
32 | subrgsubg 20469 | . . . . . . . . 9 β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β (πΈ fldGen (πΉ βͺ {π΄})) β (SubGrpβπΈ)) | |
33 | 30, 31, 32 | 3syl 18 | . . . . . . . 8 β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (SubGrpβπΈ)) |
34 | 9 | subg0cl 19051 | . . . . . . . 8 β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubGrpβπΈ) β (0gβπΈ) β (πΈ fldGen (πΉ βͺ {π΄}))) |
35 | 33, 34 | syl 17 | . . . . . . 7 β’ (π β (0gβπΈ) β (πΈ fldGen (πΉ βͺ {π΄}))) |
36 | 6, 24, 29 | fldgenssv 32871 | . . . . . . 7 β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (BaseβπΈ)) |
37 | algextdeg.l | . . . . . . . 8 β’ πΏ = (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) | |
38 | 37, 6, 9 | ress0g 18685 | . . . . . . 7 β’ ((πΈ β Mnd β§ (0gβπΈ) β (πΈ fldGen (πΉ βͺ {π΄})) β§ (πΈ fldGen (πΉ βͺ {π΄})) β (BaseβπΈ)) β (0gβπΈ) = (0gβπΏ)) |
39 | 23, 35, 36, 38 | syl3anc 1368 | . . . . . 6 β’ (π β (0gβπΈ) = (0gβπΏ)) |
40 | 39 | sneqd 4632 | . . . . 5 β’ (π β {(0gβπΈ)} = {(0gβπΏ)}) |
41 | 40 | imaeq2d 6049 | . . . 4 β’ (π β (β‘πΊ β {(0gβπΈ)}) = (β‘πΊ β {(0gβπΏ)})) |
42 | 21, 41 | eqtr4id 2783 | . . 3 β’ (π β π = (β‘πΊ β {(0gβπΈ)})) |
43 | algextdeglem.g | . . . . 5 β’ πΊ = (π β π β¦ ((πβπ)βπ΄)) | |
44 | algextdeglem.u | . . . . . 6 β’ π = (Baseβπ) | |
45 | 44 | mpteq1i 5234 | . . . . 5 β’ (π β π β¦ ((πβπ)βπ΄)) = (π β (Baseβπ) β¦ ((πβπ)βπ΄)) |
46 | 43, 45 | eqtri 2752 | . . . 4 β’ πΊ = (π β (Baseβπ) β¦ ((πβπ)βπ΄)) |
47 | 1, 5, 6, 10, 13, 16, 9, 17, 46 | ply1annidllem 33242 | . . 3 β’ (π β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = (β‘πΊ β {(0gβπΈ)})) |
48 | 42, 47 | eqtr4d 2767 | . 2 β’ (π β π = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)}) |
49 | algextdeg.m | . . . . 5 β’ π = (πΈ minPoly πΉ) | |
50 | 1, 5, 6, 7, 8, 16, 9, 17, 18, 19, 49 | minplyval 33246 | . . . 4 β’ (π β (πβπ΄) = ((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})) |
51 | 50 | sneqd 4632 | . . 3 β’ (π β {(πβπ΄)} = {((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})}) |
52 | 51 | fveq2d 6885 | . 2 β’ (π β ((RSpanβπ)β{(πβπ΄)}) = ((RSpanβπ)β{((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})})) |
53 | 20, 48, 52 | 3eqtr4d 2774 | 1 β’ (π β π = ((RSpanβπ)β{(πβπ΄)})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 {crab 3424 βͺ cun 3938 β wss 3940 {csn 4620 βͺ cuni 4899 β¦ cmpt 5221 β‘ccnv 5665 dom cdm 5666 β cima 5669 βcfv 6533 (class class class)co 7401 [cec 8697 Basecbs 17143 βΎs cress 17172 0gc0g 17384 /s cqus 17450 Mndcmnd 18657 SubGrpcsubg 19037 ~QG cqg 19039 SubRingcsubrg 20459 DivRingcdr 20577 Fieldcfield 20578 SubDRingcsdrg 20627 RSpancrsp 21056 Poly1cpl1 22019 evalSub1 ces1 22154 deg1 cdg1 25909 idlGen1pcig1p 25987 fldGen cfldgen 32866 IntgRing cirng 33227 minPoly cminply 33236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-ofr 7664 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-fzo 13625 df-seq 13964 df-hash 14288 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17386 df-gsum 17387 df-prds 17392 df-pws 17394 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-mhm 18703 df-submnd 18704 df-grp 18856 df-minusg 18857 df-sbg 18858 df-mulg 18986 df-subg 19040 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-srg 20082 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-rhm 20364 df-subrng 20436 df-subrg 20461 df-drng 20579 df-field 20580 df-sdrg 20628 df-lmod 20698 df-lss 20769 df-lsp 20809 df-sra 21011 df-rgmod 21012 df-lidl 21057 df-rsp 21058 df-rlreg 21183 df-cnfld 21229 df-assa 21716 df-asp 21717 df-ascl 21718 df-psr 21771 df-mvr 21772 df-mpl 21773 df-opsr 21775 df-evls 21945 df-evl 21946 df-psr1 22022 df-vr1 22023 df-ply1 22024 df-coe1 22025 df-evls1 22156 df-evl1 22157 df-mdeg 25910 df-deg1 25911 df-mon1 25988 df-uc1p 25989 df-q1p 25990 df-r1p 25991 df-ig1p 25992 df-fldgen 32867 df-irng 33228 df-minply 33237 |
This theorem is referenced by: algextdeglem6 33258 |
Copyright terms: Public domain | W3C validator |