![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem5 | Structured version Visualization version GIF version |
Description: Lemma for algextdeg 33716. The subspace 𝑍 of annihilators of 𝐴 is a principal ideal generated by the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) |
algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) |
algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) |
Ref | Expression |
---|---|
algextdeglem5 | ⊢ (𝜑 → 𝑍 = ((RSpan‘𝑃)‘{(𝑀‘𝐴)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algextdeglem.o | . . 3 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
2 | algextdeglem.y | . . . 4 ⊢ 𝑃 = (Poly1‘𝐾) | |
3 | algextdeg.k | . . . . 5 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
4 | 3 | fveq2i 6923 | . . . 4 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
5 | 2, 4 | eqtri 2768 | . . 3 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
6 | eqid 2740 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
7 | algextdeg.f | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) | |
8 | algextdeg.e | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
9 | eqid 2740 | . . . . 5 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
10 | 7 | fldcrngd 20764 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ CRing) |
11 | issdrg 20811 | . . . . . . 7 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
12 | 8, 11 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
13 | 12 | simp2d 1143 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
14 | 1, 3, 6, 9, 10, 13 | irngssv 33688 | . . . 4 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
15 | algextdeg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
16 | 14, 15 | sseldd 4009 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
17 | eqid 2740 | . . 3 ⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} | |
18 | eqid 2740 | . . 3 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
19 | eqid 2740 | . . 3 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
20 | 1, 5, 6, 7, 8, 16, 9, 17, 18, 19 | ply1annig1p 33697 | . 2 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = ((RSpan‘𝑃)‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
21 | algextdeglem.z | . . . 4 ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) | |
22 | 10 | crnggrpd 20274 | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ Grp) |
23 | 22 | grpmndd 18986 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Mnd) |
24 | 7 | flddrngd 20763 | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
25 | subrgsubg 20605 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) | |
26 | 6 | subgss 19167 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) |
27 | 13, 25, 26 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
28 | 16 | snssd 4834 | . . . . . . . . . 10 ⊢ (𝜑 → {𝐴} ⊆ (Base‘𝐸)) |
29 | 27, 28 | unssd 4215 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸)) |
30 | 6, 24, 29 | fldgensdrg 33281 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸)) |
31 | sdrgsubrg 20814 | . . . . . . . 8 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸)) | |
32 | subrgsubg 20605 | . . . . . . . 8 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸)) | |
33 | 9 | subg0cl 19174 | . . . . . . . 8 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸) → (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
34 | 30, 31, 32, 33 | 4syl 19 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
35 | 6, 24, 29 | fldgenssv 33282 | . . . . . . 7 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) |
36 | algextdeg.l | . . . . . . . 8 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
37 | 36, 6, 9 | ress0g 18800 | . . . . . . 7 ⊢ ((𝐸 ∈ Mnd ∧ (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) → (0g‘𝐸) = (0g‘𝐿)) |
38 | 23, 34, 35, 37 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → (0g‘𝐸) = (0g‘𝐿)) |
39 | 38 | sneqd 4660 | . . . . 5 ⊢ (𝜑 → {(0g‘𝐸)} = {(0g‘𝐿)}) |
40 | 39 | imaeq2d 6089 | . . . 4 ⊢ (𝜑 → (◡𝐺 “ {(0g‘𝐸)}) = (◡𝐺 “ {(0g‘𝐿)})) |
41 | 21, 40 | eqtr4id 2799 | . . 3 ⊢ (𝜑 → 𝑍 = (◡𝐺 “ {(0g‘𝐸)})) |
42 | algextdeglem.g | . . . . 5 ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) | |
43 | algextdeglem.u | . . . . . 6 ⊢ 𝑈 = (Base‘𝑃) | |
44 | 43 | mpteq1i 5262 | . . . . 5 ⊢ (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) |
45 | 42, 44 | eqtri 2768 | . . . 4 ⊢ 𝐺 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) |
46 | 1, 5, 6, 10, 13, 16, 9, 17, 45 | ply1annidllem 33694 | . . 3 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = (◡𝐺 “ {(0g‘𝐸)})) |
47 | 41, 46 | eqtr4d 2783 | . 2 ⊢ (𝜑 → 𝑍 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)}) |
48 | algextdeg.m | . . . . 5 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
49 | 1, 5, 6, 7, 8, 16, 9, 17, 18, 19, 48 | minplyval 33698 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})) |
50 | 49 | sneqd 4660 | . . 3 ⊢ (𝜑 → {(𝑀‘𝐴)} = {((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})}) |
51 | 50 | fveq2d 6924 | . 2 ⊢ (𝜑 → ((RSpan‘𝑃)‘{(𝑀‘𝐴)}) = ((RSpan‘𝑃)‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
52 | 20, 47, 51 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → 𝑍 = ((RSpan‘𝑃)‘{(𝑀‘𝐴)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 ∪ cun 3974 ⊆ wss 3976 {csn 4648 ∪ cuni 4931 ↦ cmpt 5249 ◡ccnv 5699 dom cdm 5700 “ cima 5703 ‘cfv 6573 (class class class)co 7448 [cec 8761 Basecbs 17258 ↾s cress 17287 0gc0g 17499 /s cqus 17565 Mndcmnd 18772 SubGrpcsubg 19160 ~QG cqg 19162 SubRingcsubrg 20595 DivRingcdr 20751 Fieldcfield 20752 SubDRingcsdrg 20809 RSpancrsp 21240 Poly1cpl1 22199 evalSub1 ces1 22338 deg1cdg1 26113 idlGen1pcig1p 26189 fldGen cfldgen 33277 IntgRing cirng 33683 minPoly cminply 33692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-srg 20214 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-rlreg 20716 df-drng 20753 df-field 20754 df-sdrg 20810 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-cnfld 21388 df-assa 21896 df-asp 21897 df-ascl 21898 df-psr 21952 df-mvr 21953 df-mpl 21954 df-opsr 21956 df-evls 22121 df-evl 22122 df-psr1 22202 df-vr1 22203 df-ply1 22204 df-coe1 22205 df-evls1 22340 df-evl1 22341 df-mdeg 26114 df-deg1 26115 df-mon1 26190 df-uc1p 26191 df-q1p 26192 df-r1p 26193 df-ig1p 26194 df-fldgen 33278 df-irng 33684 df-minply 33693 |
This theorem is referenced by: algextdeglem6 33713 |
Copyright terms: Public domain | W3C validator |