| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for algextdeg 33759. The subspace 𝑍 of annihilators of 𝐴 is a principal ideal generated by the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
| algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
| algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
| algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
| algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) |
| algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) |
| algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
| algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
| algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
| algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
| algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) |
| Ref | Expression |
|---|---|
| algextdeglem5 | ⊢ (𝜑 → 𝑍 = ((RSpan‘𝑃)‘{(𝑀‘𝐴)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algextdeglem.o | . . 3 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 2 | algextdeglem.y | . . . 4 ⊢ 𝑃 = (Poly1‘𝐾) | |
| 3 | algextdeg.k | . . . . 5 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 4 | 3 | fveq2i 6879 | . . . 4 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
| 5 | 2, 4 | eqtri 2758 | . . 3 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
| 6 | eqid 2735 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 7 | algextdeg.f | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 8 | algextdeg.e | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 9 | eqid 2735 | . . . . 5 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 10 | 7 | fldcrngd 20702 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 11 | issdrg 20748 | . . . . . . 7 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
| 12 | 8, 11 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
| 13 | 12 | simp2d 1143 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 14 | 1, 3, 6, 9, 10, 13 | irngssv 33729 | . . . 4 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
| 15 | algextdeg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
| 16 | 14, 15 | sseldd 3959 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
| 17 | eqid 2735 | . . 3 ⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} | |
| 18 | eqid 2735 | . . 3 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
| 19 | eqid 2735 | . . 3 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
| 20 | 1, 5, 6, 7, 8, 16, 9, 17, 18, 19 | ply1annig1p 33738 | . 2 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = ((RSpan‘𝑃)‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
| 21 | algextdeglem.z | . . . 4 ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) | |
| 22 | 10 | crnggrpd 20207 | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ Grp) |
| 23 | 22 | grpmndd 18929 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Mnd) |
| 24 | 7 | flddrngd 20701 | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 25 | subrgsubg 20537 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) | |
| 26 | 6 | subgss 19110 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) |
| 27 | 13, 25, 26 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
| 28 | 16 | snssd 4785 | . . . . . . . . . 10 ⊢ (𝜑 → {𝐴} ⊆ (Base‘𝐸)) |
| 29 | 27, 28 | unssd 4167 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸)) |
| 30 | 6, 24, 29 | fldgensdrg 33308 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸)) |
| 31 | sdrgsubrg 20751 | . . . . . . . 8 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸)) | |
| 32 | subrgsubg 20537 | . . . . . . . 8 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸)) | |
| 33 | 9 | subg0cl 19117 | . . . . . . . 8 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸) → (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 34 | 30, 31, 32, 33 | 4syl 19 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 35 | 6, 24, 29 | fldgenssv 33309 | . . . . . . 7 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) |
| 36 | algextdeg.l | . . . . . . . 8 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 37 | 36, 6, 9 | ress0g 18740 | . . . . . . 7 ⊢ ((𝐸 ∈ Mnd ∧ (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) → (0g‘𝐸) = (0g‘𝐿)) |
| 38 | 23, 34, 35, 37 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (0g‘𝐸) = (0g‘𝐿)) |
| 39 | 38 | sneqd 4613 | . . . . 5 ⊢ (𝜑 → {(0g‘𝐸)} = {(0g‘𝐿)}) |
| 40 | 39 | imaeq2d 6047 | . . . 4 ⊢ (𝜑 → (◡𝐺 “ {(0g‘𝐸)}) = (◡𝐺 “ {(0g‘𝐿)})) |
| 41 | 21, 40 | eqtr4id 2789 | . . 3 ⊢ (𝜑 → 𝑍 = (◡𝐺 “ {(0g‘𝐸)})) |
| 42 | algextdeglem.g | . . . . 5 ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) | |
| 43 | algextdeglem.u | . . . . . 6 ⊢ 𝑈 = (Base‘𝑃) | |
| 44 | 43 | mpteq1i 5211 | . . . . 5 ⊢ (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) |
| 45 | 42, 44 | eqtri 2758 | . . . 4 ⊢ 𝐺 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) |
| 46 | 1, 5, 6, 10, 13, 16, 9, 17, 45 | ply1annidllem 33735 | . . 3 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = (◡𝐺 “ {(0g‘𝐸)})) |
| 47 | 41, 46 | eqtr4d 2773 | . 2 ⊢ (𝜑 → 𝑍 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)}) |
| 48 | algextdeg.m | . . . . 5 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 49 | 1, 5, 6, 7, 8, 16, 9, 17, 18, 19, 48 | minplyval 33739 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})) |
| 50 | 49 | sneqd 4613 | . . 3 ⊢ (𝜑 → {(𝑀‘𝐴)} = {((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})}) |
| 51 | 50 | fveq2d 6880 | . 2 ⊢ (𝜑 → ((RSpan‘𝑃)‘{(𝑀‘𝐴)}) = ((RSpan‘𝑃)‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
| 52 | 20, 47, 51 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → 𝑍 = ((RSpan‘𝑃)‘{(𝑀‘𝐴)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {crab 3415 ∪ cun 3924 ⊆ wss 3926 {csn 4601 ∪ cuni 4883 ↦ cmpt 5201 ◡ccnv 5653 dom cdm 5654 “ cima 5657 ‘cfv 6531 (class class class)co 7405 [cec 8717 Basecbs 17228 ↾s cress 17251 0gc0g 17453 /s cqus 17519 Mndcmnd 18712 SubGrpcsubg 19103 ~QG cqg 19105 SubRingcsubrg 20529 DivRingcdr 20689 Fieldcfield 20690 SubDRingcsdrg 20746 RSpancrsp 21168 Poly1cpl1 22112 evalSub1 ces1 22251 deg1cdg1 26011 idlGen1pcig1p 26087 fldGen cfldgen 33304 IntgRing cirng 33724 minPoly cminply 33733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-srg 20147 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-rhm 20432 df-subrng 20506 df-subrg 20530 df-rlreg 20654 df-drng 20691 df-field 20692 df-sdrg 20747 df-lmod 20819 df-lss 20889 df-lsp 20929 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-rsp 21170 df-cnfld 21316 df-assa 21813 df-asp 21814 df-ascl 21815 df-psr 21869 df-mvr 21870 df-mpl 21871 df-opsr 21873 df-evls 22032 df-evl 22033 df-psr1 22115 df-vr1 22116 df-ply1 22117 df-coe1 22118 df-evls1 22253 df-evl1 22254 df-mdeg 26012 df-deg1 26013 df-mon1 26088 df-uc1p 26089 df-q1p 26090 df-r1p 26091 df-ig1p 26092 df-fldgen 33305 df-irng 33725 df-minply 33734 |
| This theorem is referenced by: algextdeglem6 33756 |
| Copyright terms: Public domain | W3C validator |