Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5lem3 Structured version   Visualization version   GIF version

Theorem aks6d1c5lem3 42132
Description: Lemma for Claim 5, polynomial division with a linear power. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c5p3.1 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
aks6d1c5p3.2 (𝜑𝑊 ∈ (0...𝐴))
aks6d1c5p3.3 (𝜑𝐶 ∈ ℕ0)
aks6d1c5p3.4 (𝜑𝐶 ≤ (𝑌𝑊))
aks6d1c5p3.5 𝑄 = (quot1p𝐾)
aks6d1c5p3.6 𝑆 = (algSc‘(Poly1𝐾))
aks6d1c5p3.7 𝑀 = (mulGrp‘(Poly1𝐾))
Assertion
Ref Expression
aks6d1c5lem3 (𝜑 → ((𝐺𝑌)𝑄(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))))
Distinct variable groups:   ,𝑔,𝑖   𝐴,𝑔,𝑖   𝑔,𝐾,𝑖   𝑔,𝑀,𝑖   𝑆,𝑔,𝑖   𝑖,𝑊   𝑔,𝑋,𝑖   𝑔,𝑌,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝐶(𝑔,𝑖)   𝑃(𝑔,𝑖)   𝑄(𝑔,𝑖)   𝐺(𝑔,𝑖)   𝑊(𝑔)

Proof of Theorem aks6d1c5lem3
StepHypRef Expression
1 aks6d1c5p3.7 . . . . . 6 𝑀 = (mulGrp‘(Poly1𝐾))
2 aks6d1p5.1 . . . . . . . . . 10 (𝜑𝐾 ∈ Field)
32fldcrngd 20658 . . . . . . . . 9 (𝜑𝐾 ∈ CRing)
4 eqid 2730 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
54ply1crng 22090 . . . . . . . . 9 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
63, 5syl 17 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ CRing)
7 crngring 20161 . . . . . . . 8 ((Poly1𝐾) ∈ CRing → (Poly1𝐾) ∈ Ring)
86, 7syl 17 . . . . . . 7 (𝜑 → (Poly1𝐾) ∈ Ring)
9 eqid 2730 . . . . . . . 8 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
109ringmgp 20155 . . . . . . 7 ((Poly1𝐾) ∈ Ring → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
118, 10syl 17 . . . . . 6 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
121, 11eqeltrid 2833 . . . . 5 (𝜑𝑀 ∈ Mnd)
131fveq2i 6864 . . . . . 6 (Base‘𝑀) = (Base‘(mulGrp‘(Poly1𝐾)))
14 aks6d1c5.7 . . . . . 6 = (.g‘(mulGrp‘(Poly1𝐾)))
15 aks6d1c5p3.1 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
16 nn0ex 12455 . . . . . . . . . . . . . 14 0 ∈ V
1716a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ0 ∈ V)
18 ovexd 7425 . . . . . . . . . . . . 13 (𝜑 → (0...𝐴) ∈ V)
19 elmapg 8815 . . . . . . . . . . . . 13 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
2017, 18, 19syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
2115, 20mpbid 232 . . . . . . . . . . 11 (𝜑𝑌:(0...𝐴)⟶ℕ0)
22 aks6d1c5p3.2 . . . . . . . . . . 11 (𝜑𝑊 ∈ (0...𝐴))
2321, 22ffvelcdmd 7060 . . . . . . . . . 10 (𝜑 → (𝑌𝑊) ∈ ℕ0)
2423nn0zd 12562 . . . . . . . . 9 (𝜑 → (𝑌𝑊) ∈ ℤ)
25 aks6d1c5p3.3 . . . . . . . . . 10 (𝜑𝐶 ∈ ℕ0)
2625nn0zd 12562 . . . . . . . . 9 (𝜑𝐶 ∈ ℤ)
2724, 26zsubcld 12650 . . . . . . . 8 (𝜑 → ((𝑌𝑊) − 𝐶) ∈ ℤ)
28 aks6d1c5p3.4 . . . . . . . . 9 (𝜑𝐶 ≤ (𝑌𝑊))
2923nn0red 12511 . . . . . . . . . 10 (𝜑 → (𝑌𝑊) ∈ ℝ)
3025nn0red 12511 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
3129, 30subge0d 11775 . . . . . . . . 9 (𝜑 → (0 ≤ ((𝑌𝑊) − 𝐶) ↔ 𝐶 ≤ (𝑌𝑊)))
3228, 31mpbird 257 . . . . . . . 8 (𝜑 → 0 ≤ ((𝑌𝑊) − 𝐶))
3327, 32jca 511 . . . . . . 7 (𝜑 → (((𝑌𝑊) − 𝐶) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − 𝐶)))
34 elnn0z 12549 . . . . . . 7 (((𝑌𝑊) − 𝐶) ∈ ℕ0 ↔ (((𝑌𝑊) − 𝐶) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − 𝐶)))
3533, 34sylibr 234 . . . . . 6 (𝜑 → ((𝑌𝑊) − 𝐶) ∈ ℕ0)
368ringcmnd 20200 . . . . . . . . 9 (𝜑 → (Poly1𝐾) ∈ CMnd)
37 cmnmnd 19734 . . . . . . . . 9 ((Poly1𝐾) ∈ CMnd → (Poly1𝐾) ∈ Mnd)
3836, 37syl 17 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ Mnd)
39 crngring 20161 . . . . . . . . . 10 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
403, 39syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
41 aks6d1c5.6 . . . . . . . . . 10 𝑋 = (var1𝐾)
42 eqid 2730 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
4341, 4, 42vr1cl 22109 . . . . . . . . 9 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝐾)))
4440, 43syl 17 . . . . . . . 8 (𝜑𝑋 ∈ (Base‘(Poly1𝐾)))
45 eqid 2730 . . . . . . . . . . . . 13 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4645zrhrhm 21428 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
4740, 46syl 17 . . . . . . . . . . 11 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
48 zringbas 21370 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
49 eqid 2730 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
5048, 49rhmf 20401 . . . . . . . . . . 11 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5147, 50syl 17 . . . . . . . . . 10 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5222elfzelzd 13493 . . . . . . . . . 10 (𝜑𝑊 ∈ ℤ)
5351, 52ffvelcdmd 7060 . . . . . . . . 9 (𝜑 → ((ℤRHom‘𝐾)‘𝑊) ∈ (Base‘𝐾))
54 aks6d1c5p3.6 . . . . . . . . . 10 𝑆 = (algSc‘(Poly1𝐾))
554, 54, 49, 42ply1sclcl 22179 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (𝑆‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾)))
5640, 53, 55syl2anc 584 . . . . . . . 8 (𝜑 → (𝑆‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾)))
57 eqid 2730 . . . . . . . . 9 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
5842, 57mndcl 18676 . . . . . . . 8 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (𝑆‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)))
5938, 44, 56, 58syl3anc 1373 . . . . . . 7 (𝜑 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)))
609, 42mgpbas 20061 . . . . . . . . 9 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
6160eqcomi 2739 . . . . . . . 8 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
6213, 61eqtri 2753 . . . . . . 7 (Base‘𝑀) = (Base‘(Poly1𝐾))
6359, 62eleqtrrdi 2840 . . . . . 6 (𝜑 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘𝑀))
6413, 14, 11, 35, 63mulgnn0cld 19034 . . . . 5 (𝜑 → (((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘𝑀))
65 eqid 2730 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
669crngmgp 20157 . . . . . . . 8 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
676, 66syl 17 . . . . . . 7 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
681, 67eqeltrid 2833 . . . . . 6 (𝜑𝑀 ∈ CMnd)
69 fzfid 13945 . . . . . . 7 (𝜑 → (0...𝐴) ∈ Fin)
70 diffi 9145 . . . . . . 7 ((0...𝐴) ∈ Fin → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
7169, 70syl 17 . . . . . 6 (𝜑 → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
7211adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
7321adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑌:(0...𝐴)⟶ℕ0)
74 eldifi 4097 . . . . . . . . . 10 (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) → 𝑖 ∈ (0...𝐴))
7574adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ (0...𝐴))
7673, 75ffvelcdmd 7060 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑌𝑖) ∈ ℕ0)
7738adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Poly1𝐾) ∈ Mnd)
7844adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑋 ∈ (Base‘(Poly1𝐾)))
7940adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ Ring)
8079, 46, 503syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
81 elfzelz 13492 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ)
8275, 81syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ ℤ)
8380, 82ffvelcdmd 7060 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
844, 54, 49, 42ply1sclcl 22179 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) → (𝑆‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
8579, 83, 84syl2anc 584 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑆‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
8642, 57mndcl 18676 . . . . . . . . . 10 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (𝑆‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
8777, 78, 85, 86syl3anc 1373 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
8887, 62eleqtrrdi 2840 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘𝑀))
8913, 14mulgnn0cl 19029 . . . . . . . 8 (((mulGrp‘(Poly1𝐾)) ∈ Mnd ∧ (𝑌𝑖) ∈ ℕ0 ∧ (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘𝑀)) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘𝑀))
9072, 76, 88, 89syl3anc 1373 . . . . . . 7 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘𝑀))
9190ralrimiva 3126 . . . . . 6 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘𝑀))
9265, 68, 71, 91gsummptcl 19904 . . . . 5 (𝜑 → (𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘𝑀))
93 eqid 2730 . . . . . 6 (+g𝑀) = (+g𝑀)
9465, 93mndcl 18676 . . . . 5 ((𝑀 ∈ Mnd ∧ (((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘𝑀) ∧ (𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘𝑀)) → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘𝑀))
9512, 64, 92, 94syl3anc 1373 . . . 4 (𝜑 → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘𝑀))
9695, 62eleqtrdi 2839 . . 3 (𝜑 → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)))
9765, 93cmncom 19735 . . . . . . . . . 10 ((𝑀 ∈ CMnd ∧ (((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘𝑀) ∧ (𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘𝑀)) → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
9868, 64, 92, 97syl3anc 1373 . . . . . . . . 9 (𝜑 → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
9998oveq1d 7405 . . . . . . . 8 (𝜑 → (((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
100 eqid 2730 . . . . . . . . . . . . . 14 (.r‘(Poly1𝐾)) = (.r‘(Poly1𝐾))
1011, 100mgpplusg 20060 . . . . . . . . . . . . 13 (.r‘(Poly1𝐾)) = (+g𝑀)
102101eqcomi 2739 . . . . . . . . . . . 12 (+g𝑀) = (.r‘(Poly1𝐾))
103102a1i 11 . . . . . . . . . . 11 (𝜑 → (+g𝑀) = (.r‘(Poly1𝐾)))
104103oveqd 7407 . . . . . . . . . 10 (𝜑 → ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
105104oveq1d 7405 . . . . . . . . 9 (𝜑 → (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
10692, 62eleqtrdi 2839 . . . . . . . . . 10 (𝜑 → (𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
10764, 62eleqtrdi 2839 . . . . . . . . . 10 (𝜑 → (((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
10860, 14, 11, 25, 59mulgnn0cld 19034 . . . . . . . . . 10 (𝜑 → (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
10942, 100, 8, 106, 107, 108ringassd 20173 . . . . . . . . 9 (𝜑 → (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))))
110105, 109eqtrd 2765 . . . . . . . 8 (𝜑 → (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))))
11199, 110eqtrd 2765 . . . . . . 7 (𝜑 → (((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))))
112111oveq2d 7406 . . . . . 6 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) = ((𝐺𝑌)(-g‘(Poly1𝐾))((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))))
11329recnd 11209 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑊) ∈ ℂ)
11430recnd 11209 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℂ)
115113, 114npcand 11544 . . . . . . . . . . . . 13 (𝜑 → (((𝑌𝑊) − 𝐶) + 𝐶) = (𝑌𝑊))
116115eqcomd 2736 . . . . . . . . . . . 12 (𝜑 → (𝑌𝑊) = (((𝑌𝑊) − 𝐶) + 𝐶))
117116oveq1d 7405 . . . . . . . . . . 11 (𝜑 → ((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) = ((((𝑌𝑊) − 𝐶) + 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))
11860a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾))))
11959, 118eleqtrd 2831 . . . . . . . . . . . . 13 (𝜑 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
12035, 25, 1193jca 1128 . . . . . . . . . . . 12 (𝜑 → (((𝑌𝑊) − 𝐶) ∈ ℕ0𝐶 ∈ ℕ0 ∧ (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(mulGrp‘(Poly1𝐾)))))
121 eqid 2730 . . . . . . . . . . . . 13 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
1229, 100mgpplusg 20060 . . . . . . . . . . . . 13 (.r‘(Poly1𝐾)) = (+g‘(mulGrp‘(Poly1𝐾)))
123121, 14, 122mulgnn0dir 19043 . . . . . . . . . . . 12 (((mulGrp‘(Poly1𝐾)) ∈ Mnd ∧ (((𝑌𝑊) − 𝐶) ∈ ℕ0𝐶 ∈ ℕ0 ∧ (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))) → ((((𝑌𝑊) − 𝐶) + 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
12411, 120, 123syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((((𝑌𝑊) − 𝐶) + 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
125117, 124eqtr2d 2766 . . . . . . . . . 10 (𝜑 → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))
126125oveq2d 7406 . . . . . . . . 9 (𝜑 → ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
127 aks6d1c5.8 . . . . . . . . . . . . 13 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
128127a1i 11 . . . . . . . . . . . 12 (𝜑𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
1291eqcomi 2739 . . . . . . . . . . . . . 14 (mulGrp‘(Poly1𝐾)) = 𝑀
130129a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑔 = 𝑌) → (mulGrp‘(Poly1𝐾)) = 𝑀)
131 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → 𝑔 = 𝑌)
132131fveq1d 6863 . . . . . . . . . . . . . . 15 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) = (𝑌𝑖))
13354eqcomi 2739 . . . . . . . . . . . . . . . . . 18 (algSc‘(Poly1𝐾)) = 𝑆
134133a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → (algSc‘(Poly1𝐾)) = 𝑆)
135134fveq1d 6863 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) = (𝑆‘((ℤRHom‘𝐾)‘𝑖)))
136135oveq2d 7406 . . . . . . . . . . . . . . 15 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))
137132, 136oveq12d 7408 . . . . . . . . . . . . . 14 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))
138137mpteq2dva 5203 . . . . . . . . . . . . 13 ((𝜑𝑔 = 𝑌) → (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))
139130, 138oveq12d 7408 . . . . . . . . . . . 12 ((𝜑𝑔 = 𝑌) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑀 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))
140 ovexd 7425 . . . . . . . . . . . 12 (𝜑 → (𝑀 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ V)
141128, 139, 15, 140fvmptd 6978 . . . . . . . . . . 11 (𝜑 → (𝐺𝑌) = (𝑀 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))
14222snssd 4776 . . . . . . . . . . . . . . 15 (𝜑 → {𝑊} ⊆ (0...𝐴))
143 undifr 4449 . . . . . . . . . . . . . . 15 ({𝑊} ⊆ (0...𝐴) ↔ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) = (0...𝐴))
144142, 143sylib 218 . . . . . . . . . . . . . 14 (𝜑 → (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) = (0...𝐴))
145144eqcomd 2736 . . . . . . . . . . . . 13 (𝜑 → (0...𝐴) = (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}))
146145mpteq1d 5200 . . . . . . . . . . . 12 (𝜑 → (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))
147146oveq2d 7406 . . . . . . . . . . 11 (𝜑 → (𝑀 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑀 Σg (𝑖 ∈ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))
148141, 147eqtrd 2765 . . . . . . . . . 10 (𝜑 → (𝐺𝑌) = (𝑀 Σg (𝑖 ∈ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))
149 neldifsnd 4760 . . . . . . . . . . 11 (𝜑 → ¬ 𝑊 ∈ ((0...𝐴) ∖ {𝑊}))
15013, 14, 11, 23, 63mulgnn0cld 19034 . . . . . . . . . . 11 (𝜑 → ((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘𝑀))
151 fveq2 6861 . . . . . . . . . . . 12 (𝑖 = 𝑊 → (𝑌𝑖) = (𝑌𝑊))
152 2fveq3 6866 . . . . . . . . . . . . 13 (𝑖 = 𝑊 → (𝑆‘((ℤRHom‘𝐾)‘𝑖)) = (𝑆‘((ℤRHom‘𝐾)‘𝑊)))
153152oveq2d 7406 . . . . . . . . . . . 12 (𝑖 = 𝑊 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))
154151, 153oveq12d 7408 . . . . . . . . . . 11 (𝑖 = 𝑊 → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))
15565, 101, 68, 71, 90, 22, 149, 150, 154gsumunsn 19897 . . . . . . . . . 10 (𝜑 → (𝑀 Σg (𝑖 ∈ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
156148, 155eqtr2d 2766 . . . . . . . . 9 (𝜑 → ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = (𝐺𝑌))
157126, 156eqtrd 2765 . . . . . . . 8 (𝜑 → ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) = (𝐺𝑌))
158157oveq2d 7406 . . . . . . 7 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) = ((𝐺𝑌)(-g‘(Poly1𝐾))(𝐺𝑌)))
1598ringgrpd 20158 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ Grp)
160 aks6d1p5.2 . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
161 aks6d1c5.3 . . . . . . . . . 10 𝑃 = (chr‘𝐾)
162 aks6d1c5.4 . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ0)
163 aks6d1c5.5 . . . . . . . . . 10 (𝜑𝐴 < 𝑃)
1642, 160, 161, 162, 163, 41, 14, 127aks6d1c5lem0 42130 . . . . . . . . 9 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
165164, 15ffvelcdmd 7060 . . . . . . . 8 (𝜑 → (𝐺𝑌) ∈ (Base‘(Poly1𝐾)))
166 eqid 2730 . . . . . . . . 9 (0g‘(Poly1𝐾)) = (0g‘(Poly1𝐾))
167 eqid 2730 . . . . . . . . 9 (-g‘(Poly1𝐾)) = (-g‘(Poly1𝐾))
16842, 166, 167grpsubid 18963 . . . . . . . 8 (((Poly1𝐾) ∈ Grp ∧ (𝐺𝑌) ∈ (Base‘(Poly1𝐾))) → ((𝐺𝑌)(-g‘(Poly1𝐾))(𝐺𝑌)) = (0g‘(Poly1𝐾)))
169159, 165, 168syl2anc 584 . . . . . . 7 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))(𝐺𝑌)) = (0g‘(Poly1𝐾)))
170158, 169eqtrd 2765 . . . . . 6 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) = (0g‘(Poly1𝐾)))
171112, 170eqtrd 2765 . . . . 5 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) = (0g‘(Poly1𝐾)))
172171fveq2d 6865 . . . 4 (𝜑 → ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) = ((deg1𝐾)‘(0g‘(Poly1𝐾))))
173 eqid 2730 . . . . . . 7 (deg1𝐾) = (deg1𝐾)
174173, 4, 166deg1z 25999 . . . . . 6 (𝐾 ∈ Ring → ((deg1𝐾)‘(0g‘(Poly1𝐾))) = -∞)
17540, 174syl 17 . . . . 5 (𝜑 → ((deg1𝐾)‘(0g‘(Poly1𝐾))) = -∞)
1762flddrngd 20657 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ DivRing)
177 drngdomn 20665 . . . . . . . . . . . . 13 (𝐾 ∈ DivRing → 𝐾 ∈ Domn)
178176, 177syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Domn)
1794ply1domn 26036 . . . . . . . . . . . 12 (𝐾 ∈ Domn → (Poly1𝐾) ∈ Domn)
180178, 179syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝐾) ∈ Domn)
1816, 180jca 511 . . . . . . . . . 10 (𝜑 → ((Poly1𝐾) ∈ CRing ∧ (Poly1𝐾) ∈ Domn))
182 isidom 20641 . . . . . . . . . 10 ((Poly1𝐾) ∈ IDomn ↔ ((Poly1𝐾) ∈ CRing ∧ (Poly1𝐾) ∈ Domn))
183181, 182sylibr 234 . . . . . . . . 9 (𝜑 → (Poly1𝐾) ∈ IDomn)
184173, 4, 42deg1xrcl 25994 . . . . . . . . . . . . . 14 ((𝑆‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾)) → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ ℝ*)
18556, 184syl 17 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ ℝ*)
186 0xr 11228 . . . . . . . . . . . . . 14 0 ∈ ℝ*
187186a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ*)
188173, 4, 42deg1xrcl 25994 . . . . . . . . . . . . . 14 (𝑋 ∈ (Base‘(Poly1𝐾)) → ((deg1𝐾)‘𝑋) ∈ ℝ*)
18944, 188syl 17 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘𝑋) ∈ ℝ*)
190173, 4, 49, 54deg1sclle 26024 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≤ 0)
19140, 53, 190syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≤ 0)
192 0lt1 11707 . . . . . . . . . . . . . . 15 0 < 1
193192a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
19444, 60eleqtrdi 2839 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ (Base‘(mulGrp‘(Poly1𝐾))))
195121, 14mulg1 19020 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ (Base‘(mulGrp‘(Poly1𝐾))) → (1 𝑋) = 𝑋)
196194, 195syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 𝑋) = 𝑋)
197196fveq2d 6865 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(1 𝑋)) = ((deg1𝐾)‘𝑋))
198 isfld 20656 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
199198biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ Field → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
2002, 199syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
201200simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ DivRing)
202 drngnzr 20664 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
203201, 202syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ NzRing)
204 1nn0 12465 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
205204a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℕ0)
206173, 4, 41, 9, 14deg1pw 26033 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ NzRing ∧ 1 ∈ ℕ0) → ((deg1𝐾)‘(1 𝑋)) = 1)
207203, 205, 206syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(1 𝑋)) = 1)
208197, 207eqtr3d 2767 . . . . . . . . . . . . . . 15 (𝜑 → ((deg1𝐾)‘𝑋) = 1)
209208eqcomd 2736 . . . . . . . . . . . . . 14 (𝜑 → 1 = ((deg1𝐾)‘𝑋))
210193, 209breqtrd 5136 . . . . . . . . . . . . 13 (𝜑 → 0 < ((deg1𝐾)‘𝑋))
211185, 187, 189, 191, 210xrlelttrd 13127 . . . . . . . . . . . 12 (𝜑 → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) < ((deg1𝐾)‘𝑋))
2124, 173, 40, 42, 57, 44, 56, 211deg1add 26015 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘(𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) = ((deg1𝐾)‘𝑋))
213208, 205eqeltrd 2829 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘𝑋) ∈ ℕ0)
214212, 213eqeltrd 2829 . . . . . . . . . 10 (𝜑 → ((deg1𝐾)‘(𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ ℕ0)
215173, 4, 166, 42deg1nn0clb 26002 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾))) → ((𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘(𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ ℕ0))
21640, 59, 215syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘(𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ ℕ0))
217214, 216mpbird 257 . . . . . . . . 9 (𝜑 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≠ (0g‘(Poly1𝐾)))
218183, 59, 217, 25, 14idomnnzpownz 42127 . . . . . . . 8 (𝜑 → (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ≠ (0g‘(Poly1𝐾)))
219173, 4, 166, 42deg1nn0clb 26002 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾))) → ((𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) ∈ ℕ0))
22040, 108, 219syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) ∈ ℕ0))
221218, 220mpbid 232 . . . . . . 7 (𝜑 → ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) ∈ ℕ0)
222221nn0red 12511 . . . . . 6 (𝜑 → ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) ∈ ℝ)
223222mnfltd 13091 . . . . 5 (𝜑 → -∞ < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
224175, 223eqbrtrd 5132 . . . 4 (𝜑 → ((deg1𝐾)‘(0g‘(Poly1𝐾))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
225172, 224eqbrtrd 5132 . . 3 (𝜑 → ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
22696, 225jca 511 . 2 (𝜑 → (((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))))
227 eqid 2730 . . . . 5 (Unic1p𝐾) = (Unic1p𝐾)
2284, 42, 166, 227drnguc1p 26086 . . . 4 ((𝐾 ∈ DivRing ∧ (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ≠ (0g‘(Poly1𝐾))) → (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Unic1p𝐾))
229176, 108, 218, 228syl3anc 1373 . . 3 (𝜑 → (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Unic1p𝐾))
230 aks6d1c5p3.5 . . . 4 𝑄 = (quot1p𝐾)
231230, 4, 42, 173, 167, 100, 227q1peqb 26068 . . 3 ((𝐾 ∈ Ring ∧ (𝐺𝑌) ∈ (Base‘(Poly1𝐾)) ∧ (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Unic1p𝐾)) → ((((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) ↔ ((𝐺𝑌)𝑄(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))))
23240, 165, 229, 231syl3anc 1373 . 2 (𝜑 → ((((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) ↔ ((𝐺𝑌)𝑄(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))))
233226, 232mpbid 232 1 (𝜑 → ((𝐺𝑌)𝑄(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cdif 3914  cun 3915  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  0cc0 11075  1c1 11076   + caddc 11078  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  cmin 11412  0cn0 12449  cz 12536  ...cfz 13475  cprime 16648  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  Grpcgrp 18872  -gcsg 18874  .gcmg 19006  CMndccmn 19717  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  NzRingcnzr 20428  Domncdomn 20608  IDomncidom 20609  DivRingcdr 20645  Fieldcfield 20646  ringczring 21363  ℤRHomczrh 21416  chrcchr 21418  algSccascl 21768  var1cv1 22067  Poly1cpl1 22068  deg1cdg1 25966  Unic1pcuc1p 26039  quot1pcq1p 26040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-lmod 20775  df-lss 20845  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-mdeg 25967  df-deg1 25968  df-uc1p 26044  df-q1p 26045
This theorem is referenced by:  aks6d1c5lem2  42133
  Copyright terms: Public domain W3C validator