Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5lem3 Structured version   Visualization version   GIF version

Theorem aks6d1c5lem3 42138
Description: Lemma for Claim 5, polynomial division with a linear power. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c5p3.1 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
aks6d1c5p3.2 (𝜑𝑊 ∈ (0...𝐴))
aks6d1c5p3.3 (𝜑𝐶 ∈ ℕ0)
aks6d1c5p3.4 (𝜑𝐶 ≤ (𝑌𝑊))
aks6d1c5p3.5 𝑄 = (quot1p𝐾)
aks6d1c5p3.6 𝑆 = (algSc‘(Poly1𝐾))
aks6d1c5p3.7 𝑀 = (mulGrp‘(Poly1𝐾))
Assertion
Ref Expression
aks6d1c5lem3 (𝜑 → ((𝐺𝑌)𝑄(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))))
Distinct variable groups:   ,𝑔,𝑖   𝐴,𝑔,𝑖   𝑔,𝐾,𝑖   𝑔,𝑀,𝑖   𝑆,𝑔,𝑖   𝑖,𝑊   𝑔,𝑋,𝑖   𝑔,𝑌,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝐶(𝑔,𝑖)   𝑃(𝑔,𝑖)   𝑄(𝑔,𝑖)   𝐺(𝑔,𝑖)   𝑊(𝑔)

Proof of Theorem aks6d1c5lem3
StepHypRef Expression
1 aks6d1c5p3.7 . . . . . 6 𝑀 = (mulGrp‘(Poly1𝐾))
2 aks6d1p5.1 . . . . . . . . . 10 (𝜑𝐾 ∈ Field)
32fldcrngd 20742 . . . . . . . . 9 (𝜑𝐾 ∈ CRing)
4 eqid 2737 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
54ply1crng 22200 . . . . . . . . 9 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
63, 5syl 17 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ CRing)
7 crngring 20242 . . . . . . . 8 ((Poly1𝐾) ∈ CRing → (Poly1𝐾) ∈ Ring)
86, 7syl 17 . . . . . . 7 (𝜑 → (Poly1𝐾) ∈ Ring)
9 eqid 2737 . . . . . . . 8 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
109ringmgp 20236 . . . . . . 7 ((Poly1𝐾) ∈ Ring → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
118, 10syl 17 . . . . . 6 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
121, 11eqeltrid 2845 . . . . 5 (𝜑𝑀 ∈ Mnd)
131fveq2i 6909 . . . . . 6 (Base‘𝑀) = (Base‘(mulGrp‘(Poly1𝐾)))
14 aks6d1c5.7 . . . . . 6 = (.g‘(mulGrp‘(Poly1𝐾)))
15 aks6d1c5p3.1 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
16 nn0ex 12532 . . . . . . . . . . . . . 14 0 ∈ V
1716a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ0 ∈ V)
18 ovexd 7466 . . . . . . . . . . . . 13 (𝜑 → (0...𝐴) ∈ V)
19 elmapg 8879 . . . . . . . . . . . . 13 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
2017, 18, 19syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
2115, 20mpbid 232 . . . . . . . . . . 11 (𝜑𝑌:(0...𝐴)⟶ℕ0)
22 aks6d1c5p3.2 . . . . . . . . . . 11 (𝜑𝑊 ∈ (0...𝐴))
2321, 22ffvelcdmd 7105 . . . . . . . . . 10 (𝜑 → (𝑌𝑊) ∈ ℕ0)
2423nn0zd 12639 . . . . . . . . 9 (𝜑 → (𝑌𝑊) ∈ ℤ)
25 aks6d1c5p3.3 . . . . . . . . . 10 (𝜑𝐶 ∈ ℕ0)
2625nn0zd 12639 . . . . . . . . 9 (𝜑𝐶 ∈ ℤ)
2724, 26zsubcld 12727 . . . . . . . 8 (𝜑 → ((𝑌𝑊) − 𝐶) ∈ ℤ)
28 aks6d1c5p3.4 . . . . . . . . 9 (𝜑𝐶 ≤ (𝑌𝑊))
2923nn0red 12588 . . . . . . . . . 10 (𝜑 → (𝑌𝑊) ∈ ℝ)
3025nn0red 12588 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
3129, 30subge0d 11853 . . . . . . . . 9 (𝜑 → (0 ≤ ((𝑌𝑊) − 𝐶) ↔ 𝐶 ≤ (𝑌𝑊)))
3228, 31mpbird 257 . . . . . . . 8 (𝜑 → 0 ≤ ((𝑌𝑊) − 𝐶))
3327, 32jca 511 . . . . . . 7 (𝜑 → (((𝑌𝑊) − 𝐶) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − 𝐶)))
34 elnn0z 12626 . . . . . . 7 (((𝑌𝑊) − 𝐶) ∈ ℕ0 ↔ (((𝑌𝑊) − 𝐶) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − 𝐶)))
3533, 34sylibr 234 . . . . . 6 (𝜑 → ((𝑌𝑊) − 𝐶) ∈ ℕ0)
368ringcmnd 20281 . . . . . . . . 9 (𝜑 → (Poly1𝐾) ∈ CMnd)
37 cmnmnd 19815 . . . . . . . . 9 ((Poly1𝐾) ∈ CMnd → (Poly1𝐾) ∈ Mnd)
3836, 37syl 17 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ Mnd)
39 crngring 20242 . . . . . . . . . 10 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
403, 39syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
41 aks6d1c5.6 . . . . . . . . . 10 𝑋 = (var1𝐾)
42 eqid 2737 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
4341, 4, 42vr1cl 22219 . . . . . . . . 9 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝐾)))
4440, 43syl 17 . . . . . . . 8 (𝜑𝑋 ∈ (Base‘(Poly1𝐾)))
45 eqid 2737 . . . . . . . . . . . . 13 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4645zrhrhm 21522 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
4740, 46syl 17 . . . . . . . . . . 11 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
48 zringbas 21464 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
49 eqid 2737 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
5048, 49rhmf 20485 . . . . . . . . . . 11 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5147, 50syl 17 . . . . . . . . . 10 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5222elfzelzd 13565 . . . . . . . . . 10 (𝜑𝑊 ∈ ℤ)
5351, 52ffvelcdmd 7105 . . . . . . . . 9 (𝜑 → ((ℤRHom‘𝐾)‘𝑊) ∈ (Base‘𝐾))
54 aks6d1c5p3.6 . . . . . . . . . 10 𝑆 = (algSc‘(Poly1𝐾))
554, 54, 49, 42ply1sclcl 22289 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (𝑆‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾)))
5640, 53, 55syl2anc 584 . . . . . . . 8 (𝜑 → (𝑆‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾)))
57 eqid 2737 . . . . . . . . 9 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
5842, 57mndcl 18755 . . . . . . . 8 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (𝑆‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)))
5938, 44, 56, 58syl3anc 1373 . . . . . . 7 (𝜑 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)))
609, 42mgpbas 20142 . . . . . . . . 9 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
6160eqcomi 2746 . . . . . . . 8 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
6213, 61eqtri 2765 . . . . . . 7 (Base‘𝑀) = (Base‘(Poly1𝐾))
6359, 62eleqtrrdi 2852 . . . . . 6 (𝜑 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘𝑀))
6413, 14, 11, 35, 63mulgnn0cld 19113 . . . . 5 (𝜑 → (((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘𝑀))
65 eqid 2737 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
669crngmgp 20238 . . . . . . . 8 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
676, 66syl 17 . . . . . . 7 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
681, 67eqeltrid 2845 . . . . . 6 (𝜑𝑀 ∈ CMnd)
69 fzfid 14014 . . . . . . 7 (𝜑 → (0...𝐴) ∈ Fin)
70 diffi 9215 . . . . . . 7 ((0...𝐴) ∈ Fin → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
7169, 70syl 17 . . . . . 6 (𝜑 → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
7211adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
7321adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑌:(0...𝐴)⟶ℕ0)
74 eldifi 4131 . . . . . . . . . 10 (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) → 𝑖 ∈ (0...𝐴))
7574adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ (0...𝐴))
7673, 75ffvelcdmd 7105 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑌𝑖) ∈ ℕ0)
7738adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Poly1𝐾) ∈ Mnd)
7844adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑋 ∈ (Base‘(Poly1𝐾)))
7940adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ Ring)
8079, 46, 503syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
81 elfzelz 13564 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ)
8275, 81syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ ℤ)
8380, 82ffvelcdmd 7105 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
844, 54, 49, 42ply1sclcl 22289 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) → (𝑆‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
8579, 83, 84syl2anc 584 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑆‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
8642, 57mndcl 18755 . . . . . . . . . 10 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (𝑆‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
8777, 78, 85, 86syl3anc 1373 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
8887, 62eleqtrrdi 2852 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘𝑀))
8913, 14mulgnn0cl 19108 . . . . . . . 8 (((mulGrp‘(Poly1𝐾)) ∈ Mnd ∧ (𝑌𝑖) ∈ ℕ0 ∧ (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘𝑀)) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘𝑀))
9072, 76, 88, 89syl3anc 1373 . . . . . . 7 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘𝑀))
9190ralrimiva 3146 . . . . . 6 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘𝑀))
9265, 68, 71, 91gsummptcl 19985 . . . . 5 (𝜑 → (𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘𝑀))
93 eqid 2737 . . . . . 6 (+g𝑀) = (+g𝑀)
9465, 93mndcl 18755 . . . . 5 ((𝑀 ∈ Mnd ∧ (((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘𝑀) ∧ (𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘𝑀)) → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘𝑀))
9512, 64, 92, 94syl3anc 1373 . . . 4 (𝜑 → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘𝑀))
9695, 62eleqtrdi 2851 . . 3 (𝜑 → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)))
9765, 93cmncom 19816 . . . . . . . . . 10 ((𝑀 ∈ CMnd ∧ (((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘𝑀) ∧ (𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘𝑀)) → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
9868, 64, 92, 97syl3anc 1373 . . . . . . . . 9 (𝜑 → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
9998oveq1d 7446 . . . . . . . 8 (𝜑 → (((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
100 eqid 2737 . . . . . . . . . . . . . 14 (.r‘(Poly1𝐾)) = (.r‘(Poly1𝐾))
1011, 100mgpplusg 20141 . . . . . . . . . . . . 13 (.r‘(Poly1𝐾)) = (+g𝑀)
102101eqcomi 2746 . . . . . . . . . . . 12 (+g𝑀) = (.r‘(Poly1𝐾))
103102a1i 11 . . . . . . . . . . 11 (𝜑 → (+g𝑀) = (.r‘(Poly1𝐾)))
104103oveqd 7448 . . . . . . . . . 10 (𝜑 → ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
105104oveq1d 7446 . . . . . . . . 9 (𝜑 → (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
10692, 62eleqtrdi 2851 . . . . . . . . . 10 (𝜑 → (𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
10764, 62eleqtrdi 2851 . . . . . . . . . 10 (𝜑 → (((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
10860, 14, 11, 25, 59mulgnn0cld 19113 . . . . . . . . . 10 (𝜑 → (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
10942, 100, 8, 106, 107, 108ringassd 20254 . . . . . . . . 9 (𝜑 → (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))))
110105, 109eqtrd 2777 . . . . . . . 8 (𝜑 → (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))))
11199, 110eqtrd 2777 . . . . . . 7 (𝜑 → (((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))))
112111oveq2d 7447 . . . . . 6 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) = ((𝐺𝑌)(-g‘(Poly1𝐾))((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))))
11329recnd 11289 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑊) ∈ ℂ)
11430recnd 11289 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℂ)
115113, 114npcand 11624 . . . . . . . . . . . . 13 (𝜑 → (((𝑌𝑊) − 𝐶) + 𝐶) = (𝑌𝑊))
116115eqcomd 2743 . . . . . . . . . . . 12 (𝜑 → (𝑌𝑊) = (((𝑌𝑊) − 𝐶) + 𝐶))
117116oveq1d 7446 . . . . . . . . . . 11 (𝜑 → ((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) = ((((𝑌𝑊) − 𝐶) + 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))
11860a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾))))
11959, 118eleqtrd 2843 . . . . . . . . . . . . 13 (𝜑 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
12035, 25, 1193jca 1129 . . . . . . . . . . . 12 (𝜑 → (((𝑌𝑊) − 𝐶) ∈ ℕ0𝐶 ∈ ℕ0 ∧ (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(mulGrp‘(Poly1𝐾)))))
121 eqid 2737 . . . . . . . . . . . . 13 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
1229, 100mgpplusg 20141 . . . . . . . . . . . . 13 (.r‘(Poly1𝐾)) = (+g‘(mulGrp‘(Poly1𝐾)))
123121, 14, 122mulgnn0dir 19122 . . . . . . . . . . . 12 (((mulGrp‘(Poly1𝐾)) ∈ Mnd ∧ (((𝑌𝑊) − 𝐶) ∈ ℕ0𝐶 ∈ ℕ0 ∧ (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))) → ((((𝑌𝑊) − 𝐶) + 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
12411, 120, 123syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((((𝑌𝑊) − 𝐶) + 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
125117, 124eqtr2d 2778 . . . . . . . . . 10 (𝜑 → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))
126125oveq2d 7447 . . . . . . . . 9 (𝜑 → ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
127 aks6d1c5.8 . . . . . . . . . . . . 13 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
128127a1i 11 . . . . . . . . . . . 12 (𝜑𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
1291eqcomi 2746 . . . . . . . . . . . . . 14 (mulGrp‘(Poly1𝐾)) = 𝑀
130129a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑔 = 𝑌) → (mulGrp‘(Poly1𝐾)) = 𝑀)
131 simplr 769 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → 𝑔 = 𝑌)
132131fveq1d 6908 . . . . . . . . . . . . . . 15 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) = (𝑌𝑖))
13354eqcomi 2746 . . . . . . . . . . . . . . . . . 18 (algSc‘(Poly1𝐾)) = 𝑆
134133a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → (algSc‘(Poly1𝐾)) = 𝑆)
135134fveq1d 6908 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) = (𝑆‘((ℤRHom‘𝐾)‘𝑖)))
136135oveq2d 7447 . . . . . . . . . . . . . . 15 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))
137132, 136oveq12d 7449 . . . . . . . . . . . . . 14 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))
138137mpteq2dva 5242 . . . . . . . . . . . . 13 ((𝜑𝑔 = 𝑌) → (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))
139130, 138oveq12d 7449 . . . . . . . . . . . 12 ((𝜑𝑔 = 𝑌) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑀 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))
140 ovexd 7466 . . . . . . . . . . . 12 (𝜑 → (𝑀 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ V)
141128, 139, 15, 140fvmptd 7023 . . . . . . . . . . 11 (𝜑 → (𝐺𝑌) = (𝑀 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))
14222snssd 4809 . . . . . . . . . . . . . . 15 (𝜑 → {𝑊} ⊆ (0...𝐴))
143 undifr 4483 . . . . . . . . . . . . . . 15 ({𝑊} ⊆ (0...𝐴) ↔ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) = (0...𝐴))
144142, 143sylib 218 . . . . . . . . . . . . . 14 (𝜑 → (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) = (0...𝐴))
145144eqcomd 2743 . . . . . . . . . . . . 13 (𝜑 → (0...𝐴) = (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}))
146145mpteq1d 5237 . . . . . . . . . . . 12 (𝜑 → (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))
147146oveq2d 7447 . . . . . . . . . . 11 (𝜑 → (𝑀 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑀 Σg (𝑖 ∈ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))
148141, 147eqtrd 2777 . . . . . . . . . 10 (𝜑 → (𝐺𝑌) = (𝑀 Σg (𝑖 ∈ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))
149 neldifsnd 4793 . . . . . . . . . . 11 (𝜑 → ¬ 𝑊 ∈ ((0...𝐴) ∖ {𝑊}))
15013, 14, 11, 23, 63mulgnn0cld 19113 . . . . . . . . . . 11 (𝜑 → ((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘𝑀))
151 fveq2 6906 . . . . . . . . . . . 12 (𝑖 = 𝑊 → (𝑌𝑖) = (𝑌𝑊))
152 2fveq3 6911 . . . . . . . . . . . . 13 (𝑖 = 𝑊 → (𝑆‘((ℤRHom‘𝐾)‘𝑖)) = (𝑆‘((ℤRHom‘𝐾)‘𝑊)))
153152oveq2d 7447 . . . . . . . . . . . 12 (𝑖 = 𝑊 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))
154151, 153oveq12d 7449 . . . . . . . . . . 11 (𝑖 = 𝑊 → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))
15565, 101, 68, 71, 90, 22, 149, 150, 154gsumunsn 19978 . . . . . . . . . 10 (𝜑 → (𝑀 Σg (𝑖 ∈ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
156148, 155eqtr2d 2778 . . . . . . . . 9 (𝜑 → ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = (𝐺𝑌))
157126, 156eqtrd 2777 . . . . . . . 8 (𝜑 → ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) = (𝐺𝑌))
158157oveq2d 7447 . . . . . . 7 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) = ((𝐺𝑌)(-g‘(Poly1𝐾))(𝐺𝑌)))
1598ringgrpd 20239 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ Grp)
160 aks6d1p5.2 . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
161 aks6d1c5.3 . . . . . . . . . 10 𝑃 = (chr‘𝐾)
162 aks6d1c5.4 . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ0)
163 aks6d1c5.5 . . . . . . . . . 10 (𝜑𝐴 < 𝑃)
1642, 160, 161, 162, 163, 41, 14, 127aks6d1c5lem0 42136 . . . . . . . . 9 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
165164, 15ffvelcdmd 7105 . . . . . . . 8 (𝜑 → (𝐺𝑌) ∈ (Base‘(Poly1𝐾)))
166 eqid 2737 . . . . . . . . 9 (0g‘(Poly1𝐾)) = (0g‘(Poly1𝐾))
167 eqid 2737 . . . . . . . . 9 (-g‘(Poly1𝐾)) = (-g‘(Poly1𝐾))
16842, 166, 167grpsubid 19042 . . . . . . . 8 (((Poly1𝐾) ∈ Grp ∧ (𝐺𝑌) ∈ (Base‘(Poly1𝐾))) → ((𝐺𝑌)(-g‘(Poly1𝐾))(𝐺𝑌)) = (0g‘(Poly1𝐾)))
169159, 165, 168syl2anc 584 . . . . . . 7 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))(𝐺𝑌)) = (0g‘(Poly1𝐾)))
170158, 169eqtrd 2777 . . . . . 6 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) = (0g‘(Poly1𝐾)))
171112, 170eqtrd 2777 . . . . 5 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) = (0g‘(Poly1𝐾)))
172171fveq2d 6910 . . . 4 (𝜑 → ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) = ((deg1𝐾)‘(0g‘(Poly1𝐾))))
173 eqid 2737 . . . . . . 7 (deg1𝐾) = (deg1𝐾)
174173, 4, 166deg1z 26126 . . . . . 6 (𝐾 ∈ Ring → ((deg1𝐾)‘(0g‘(Poly1𝐾))) = -∞)
17540, 174syl 17 . . . . 5 (𝜑 → ((deg1𝐾)‘(0g‘(Poly1𝐾))) = -∞)
1762flddrngd 20741 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ DivRing)
177 drngdomn 20749 . . . . . . . . . . . . 13 (𝐾 ∈ DivRing → 𝐾 ∈ Domn)
178176, 177syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Domn)
1794ply1domn 26163 . . . . . . . . . . . 12 (𝐾 ∈ Domn → (Poly1𝐾) ∈ Domn)
180178, 179syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝐾) ∈ Domn)
1816, 180jca 511 . . . . . . . . . 10 (𝜑 → ((Poly1𝐾) ∈ CRing ∧ (Poly1𝐾) ∈ Domn))
182 isidom 20725 . . . . . . . . . 10 ((Poly1𝐾) ∈ IDomn ↔ ((Poly1𝐾) ∈ CRing ∧ (Poly1𝐾) ∈ Domn))
183181, 182sylibr 234 . . . . . . . . 9 (𝜑 → (Poly1𝐾) ∈ IDomn)
184173, 4, 42deg1xrcl 26121 . . . . . . . . . . . . . 14 ((𝑆‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾)) → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ ℝ*)
18556, 184syl 17 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ ℝ*)
186 0xr 11308 . . . . . . . . . . . . . 14 0 ∈ ℝ*
187186a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ*)
188173, 4, 42deg1xrcl 26121 . . . . . . . . . . . . . 14 (𝑋 ∈ (Base‘(Poly1𝐾)) → ((deg1𝐾)‘𝑋) ∈ ℝ*)
18944, 188syl 17 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘𝑋) ∈ ℝ*)
190173, 4, 49, 54deg1sclle 26151 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≤ 0)
19140, 53, 190syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≤ 0)
192 0lt1 11785 . . . . . . . . . . . . . . 15 0 < 1
193192a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
19444, 60eleqtrdi 2851 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ (Base‘(mulGrp‘(Poly1𝐾))))
195121, 14mulg1 19099 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ (Base‘(mulGrp‘(Poly1𝐾))) → (1 𝑋) = 𝑋)
196194, 195syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 𝑋) = 𝑋)
197196fveq2d 6910 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(1 𝑋)) = ((deg1𝐾)‘𝑋))
198 isfld 20740 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
199198biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ Field → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
2002, 199syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
201200simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ DivRing)
202 drngnzr 20748 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
203201, 202syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ NzRing)
204 1nn0 12542 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
205204a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℕ0)
206173, 4, 41, 9, 14deg1pw 26160 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ NzRing ∧ 1 ∈ ℕ0) → ((deg1𝐾)‘(1 𝑋)) = 1)
207203, 205, 206syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(1 𝑋)) = 1)
208197, 207eqtr3d 2779 . . . . . . . . . . . . . . 15 (𝜑 → ((deg1𝐾)‘𝑋) = 1)
209208eqcomd 2743 . . . . . . . . . . . . . 14 (𝜑 → 1 = ((deg1𝐾)‘𝑋))
210193, 209breqtrd 5169 . . . . . . . . . . . . 13 (𝜑 → 0 < ((deg1𝐾)‘𝑋))
211185, 187, 189, 191, 210xrlelttrd 13202 . . . . . . . . . . . 12 (𝜑 → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) < ((deg1𝐾)‘𝑋))
2124, 173, 40, 42, 57, 44, 56, 211deg1add 26142 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘(𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) = ((deg1𝐾)‘𝑋))
213208, 205eqeltrd 2841 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘𝑋) ∈ ℕ0)
214212, 213eqeltrd 2841 . . . . . . . . . 10 (𝜑 → ((deg1𝐾)‘(𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ ℕ0)
215173, 4, 166, 42deg1nn0clb 26129 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾))) → ((𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘(𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ ℕ0))
21640, 59, 215syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘(𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ ℕ0))
217214, 216mpbird 257 . . . . . . . . 9 (𝜑 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≠ (0g‘(Poly1𝐾)))
218183, 59, 217, 25, 14idomnnzpownz 42133 . . . . . . . 8 (𝜑 → (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ≠ (0g‘(Poly1𝐾)))
219173, 4, 166, 42deg1nn0clb 26129 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾))) → ((𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) ∈ ℕ0))
22040, 108, 219syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) ∈ ℕ0))
221218, 220mpbid 232 . . . . . . 7 (𝜑 → ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) ∈ ℕ0)
222221nn0red 12588 . . . . . 6 (𝜑 → ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) ∈ ℝ)
223222mnfltd 13166 . . . . 5 (𝜑 → -∞ < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
224175, 223eqbrtrd 5165 . . . 4 (𝜑 → ((deg1𝐾)‘(0g‘(Poly1𝐾))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
225172, 224eqbrtrd 5165 . . 3 (𝜑 → ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
22696, 225jca 511 . 2 (𝜑 → (((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))))
227 eqid 2737 . . . . 5 (Unic1p𝐾) = (Unic1p𝐾)
2284, 42, 166, 227drnguc1p 26213 . . . 4 ((𝐾 ∈ DivRing ∧ (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ≠ (0g‘(Poly1𝐾))) → (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Unic1p𝐾))
229176, 108, 218, 228syl3anc 1373 . . 3 (𝜑 → (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Unic1p𝐾))
230 aks6d1c5p3.5 . . . 4 𝑄 = (quot1p𝐾)
231230, 4, 42, 173, 167, 100, 227q1peqb 26195 . . 3 ((𝐾 ∈ Ring ∧ (𝐺𝑌) ∈ (Base‘(Poly1𝐾)) ∧ (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Unic1p𝐾)) → ((((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) ↔ ((𝐺𝑌)𝑄(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))))
23240, 165, 229, 231syl3anc 1373 . 2 (𝜑 → ((((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) ↔ ((𝐺𝑌)𝑄(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))))
233226, 232mpbid 232 1 (𝜑 → ((𝐺𝑌)𝑄(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cdif 3948  cun 3949  wss 3951  {csn 4626   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985  0cc0 11155  1c1 11156   + caddc 11158  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  cmin 11492  0cn0 12526  cz 12613  ...cfz 13547  cprime 16708  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  Grpcgrp 18951  -gcsg 18953  .gcmg 19085  CMndccmn 19798  mulGrpcmgp 20137  Ringcrg 20230  CRingccrg 20231   RingHom crh 20469  NzRingcnzr 20512  Domncdomn 20692  IDomncidom 20693  DivRingcdr 20729  Fieldcfield 20730  ringczring 21457  ℤRHomczrh 21510  chrcchr 21512  algSccascl 21872  var1cv1 22177  Poly1cpl1 22178  deg1cdg1 26093  Unic1pcuc1p 26166  quot1pcq1p 26167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-domn 20695  df-idom 20696  df-drng 20731  df-field 20732  df-lmod 20860  df-lss 20930  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-mdeg 26094  df-deg1 26095  df-uc1p 26171  df-q1p 26172
This theorem is referenced by:  aks6d1c5lem2  42139
  Copyright terms: Public domain W3C validator