Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5lem3 Structured version   Visualization version   GIF version

Theorem aks6d1c5lem3 42098
Description: Lemma for Claim 5, polynomial division with a linear power. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c5p3.1 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
aks6d1c5p3.2 (𝜑𝑊 ∈ (0...𝐴))
aks6d1c5p3.3 (𝜑𝐶 ∈ ℕ0)
aks6d1c5p3.4 (𝜑𝐶 ≤ (𝑌𝑊))
aks6d1c5p3.5 𝑄 = (quot1p𝐾)
aks6d1c5p3.6 𝑆 = (algSc‘(Poly1𝐾))
aks6d1c5p3.7 𝑀 = (mulGrp‘(Poly1𝐾))
Assertion
Ref Expression
aks6d1c5lem3 (𝜑 → ((𝐺𝑌)𝑄(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))))
Distinct variable groups:   ,𝑔,𝑖   𝐴,𝑔,𝑖   𝑔,𝐾,𝑖   𝑔,𝑀,𝑖   𝑆,𝑔,𝑖   𝑖,𝑊   𝑔,𝑋,𝑖   𝑔,𝑌,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝐶(𝑔,𝑖)   𝑃(𝑔,𝑖)   𝑄(𝑔,𝑖)   𝐺(𝑔,𝑖)   𝑊(𝑔)

Proof of Theorem aks6d1c5lem3
StepHypRef Expression
1 aks6d1c5p3.7 . . . . . 6 𝑀 = (mulGrp‘(Poly1𝐾))
2 aks6d1p5.1 . . . . . . . . . 10 (𝜑𝐾 ∈ Field)
32fldcrngd 20627 . . . . . . . . 9 (𝜑𝐾 ∈ CRing)
4 eqid 2729 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
54ply1crng 22059 . . . . . . . . 9 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
63, 5syl 17 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ CRing)
7 crngring 20130 . . . . . . . 8 ((Poly1𝐾) ∈ CRing → (Poly1𝐾) ∈ Ring)
86, 7syl 17 . . . . . . 7 (𝜑 → (Poly1𝐾) ∈ Ring)
9 eqid 2729 . . . . . . . 8 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
109ringmgp 20124 . . . . . . 7 ((Poly1𝐾) ∈ Ring → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
118, 10syl 17 . . . . . 6 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
121, 11eqeltrid 2832 . . . . 5 (𝜑𝑀 ∈ Mnd)
131fveq2i 6843 . . . . . 6 (Base‘𝑀) = (Base‘(mulGrp‘(Poly1𝐾)))
14 aks6d1c5.7 . . . . . 6 = (.g‘(mulGrp‘(Poly1𝐾)))
15 aks6d1c5p3.1 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
16 nn0ex 12424 . . . . . . . . . . . . . 14 0 ∈ V
1716a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ0 ∈ V)
18 ovexd 7404 . . . . . . . . . . . . 13 (𝜑 → (0...𝐴) ∈ V)
19 elmapg 8789 . . . . . . . . . . . . 13 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
2017, 18, 19syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
2115, 20mpbid 232 . . . . . . . . . . 11 (𝜑𝑌:(0...𝐴)⟶ℕ0)
22 aks6d1c5p3.2 . . . . . . . . . . 11 (𝜑𝑊 ∈ (0...𝐴))
2321, 22ffvelcdmd 7039 . . . . . . . . . 10 (𝜑 → (𝑌𝑊) ∈ ℕ0)
2423nn0zd 12531 . . . . . . . . 9 (𝜑 → (𝑌𝑊) ∈ ℤ)
25 aks6d1c5p3.3 . . . . . . . . . 10 (𝜑𝐶 ∈ ℕ0)
2625nn0zd 12531 . . . . . . . . 9 (𝜑𝐶 ∈ ℤ)
2724, 26zsubcld 12619 . . . . . . . 8 (𝜑 → ((𝑌𝑊) − 𝐶) ∈ ℤ)
28 aks6d1c5p3.4 . . . . . . . . 9 (𝜑𝐶 ≤ (𝑌𝑊))
2923nn0red 12480 . . . . . . . . . 10 (𝜑 → (𝑌𝑊) ∈ ℝ)
3025nn0red 12480 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
3129, 30subge0d 11744 . . . . . . . . 9 (𝜑 → (0 ≤ ((𝑌𝑊) − 𝐶) ↔ 𝐶 ≤ (𝑌𝑊)))
3228, 31mpbird 257 . . . . . . . 8 (𝜑 → 0 ≤ ((𝑌𝑊) − 𝐶))
3327, 32jca 511 . . . . . . 7 (𝜑 → (((𝑌𝑊) − 𝐶) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − 𝐶)))
34 elnn0z 12518 . . . . . . 7 (((𝑌𝑊) − 𝐶) ∈ ℕ0 ↔ (((𝑌𝑊) − 𝐶) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − 𝐶)))
3533, 34sylibr 234 . . . . . 6 (𝜑 → ((𝑌𝑊) − 𝐶) ∈ ℕ0)
368ringcmnd 20169 . . . . . . . . 9 (𝜑 → (Poly1𝐾) ∈ CMnd)
37 cmnmnd 19703 . . . . . . . . 9 ((Poly1𝐾) ∈ CMnd → (Poly1𝐾) ∈ Mnd)
3836, 37syl 17 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ Mnd)
39 crngring 20130 . . . . . . . . . 10 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
403, 39syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
41 aks6d1c5.6 . . . . . . . . . 10 𝑋 = (var1𝐾)
42 eqid 2729 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
4341, 4, 42vr1cl 22078 . . . . . . . . 9 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝐾)))
4440, 43syl 17 . . . . . . . 8 (𝜑𝑋 ∈ (Base‘(Poly1𝐾)))
45 eqid 2729 . . . . . . . . . . . . 13 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4645zrhrhm 21397 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
4740, 46syl 17 . . . . . . . . . . 11 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
48 zringbas 21339 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
49 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
5048, 49rhmf 20370 . . . . . . . . . . 11 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5147, 50syl 17 . . . . . . . . . 10 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5222elfzelzd 13462 . . . . . . . . . 10 (𝜑𝑊 ∈ ℤ)
5351, 52ffvelcdmd 7039 . . . . . . . . 9 (𝜑 → ((ℤRHom‘𝐾)‘𝑊) ∈ (Base‘𝐾))
54 aks6d1c5p3.6 . . . . . . . . . 10 𝑆 = (algSc‘(Poly1𝐾))
554, 54, 49, 42ply1sclcl 22148 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (𝑆‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾)))
5640, 53, 55syl2anc 584 . . . . . . . 8 (𝜑 → (𝑆‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾)))
57 eqid 2729 . . . . . . . . 9 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
5842, 57mndcl 18645 . . . . . . . 8 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (𝑆‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)))
5938, 44, 56, 58syl3anc 1373 . . . . . . 7 (𝜑 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)))
609, 42mgpbas 20030 . . . . . . . . 9 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
6160eqcomi 2738 . . . . . . . 8 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
6213, 61eqtri 2752 . . . . . . 7 (Base‘𝑀) = (Base‘(Poly1𝐾))
6359, 62eleqtrrdi 2839 . . . . . 6 (𝜑 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘𝑀))
6413, 14, 11, 35, 63mulgnn0cld 19003 . . . . 5 (𝜑 → (((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘𝑀))
65 eqid 2729 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
669crngmgp 20126 . . . . . . . 8 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
676, 66syl 17 . . . . . . 7 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
681, 67eqeltrid 2832 . . . . . 6 (𝜑𝑀 ∈ CMnd)
69 fzfid 13914 . . . . . . 7 (𝜑 → (0...𝐴) ∈ Fin)
70 diffi 9116 . . . . . . 7 ((0...𝐴) ∈ Fin → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
7169, 70syl 17 . . . . . 6 (𝜑 → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
7211adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
7321adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑌:(0...𝐴)⟶ℕ0)
74 eldifi 4090 . . . . . . . . . 10 (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) → 𝑖 ∈ (0...𝐴))
7574adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ (0...𝐴))
7673, 75ffvelcdmd 7039 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑌𝑖) ∈ ℕ0)
7738adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Poly1𝐾) ∈ Mnd)
7844adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑋 ∈ (Base‘(Poly1𝐾)))
7940adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ Ring)
8079, 46, 503syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
81 elfzelz 13461 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ)
8275, 81syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ ℤ)
8380, 82ffvelcdmd 7039 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
844, 54, 49, 42ply1sclcl 22148 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) → (𝑆‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
8579, 83, 84syl2anc 584 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑆‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
8642, 57mndcl 18645 . . . . . . . . . 10 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (𝑆‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
8777, 78, 85, 86syl3anc 1373 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
8887, 62eleqtrrdi 2839 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘𝑀))
8913, 14mulgnn0cl 18998 . . . . . . . 8 (((mulGrp‘(Poly1𝐾)) ∈ Mnd ∧ (𝑌𝑖) ∈ ℕ0 ∧ (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘𝑀)) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘𝑀))
9072, 76, 88, 89syl3anc 1373 . . . . . . 7 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘𝑀))
9190ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘𝑀))
9265, 68, 71, 91gsummptcl 19873 . . . . 5 (𝜑 → (𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘𝑀))
93 eqid 2729 . . . . . 6 (+g𝑀) = (+g𝑀)
9465, 93mndcl 18645 . . . . 5 ((𝑀 ∈ Mnd ∧ (((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘𝑀) ∧ (𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘𝑀)) → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘𝑀))
9512, 64, 92, 94syl3anc 1373 . . . 4 (𝜑 → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘𝑀))
9695, 62eleqtrdi 2838 . . 3 (𝜑 → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)))
9765, 93cmncom 19704 . . . . . . . . . 10 ((𝑀 ∈ CMnd ∧ (((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘𝑀) ∧ (𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘𝑀)) → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
9868, 64, 92, 97syl3anc 1373 . . . . . . . . 9 (𝜑 → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
9998oveq1d 7384 . . . . . . . 8 (𝜑 → (((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
100 eqid 2729 . . . . . . . . . . . . . 14 (.r‘(Poly1𝐾)) = (.r‘(Poly1𝐾))
1011, 100mgpplusg 20029 . . . . . . . . . . . . 13 (.r‘(Poly1𝐾)) = (+g𝑀)
102101eqcomi 2738 . . . . . . . . . . . 12 (+g𝑀) = (.r‘(Poly1𝐾))
103102a1i 11 . . . . . . . . . . 11 (𝜑 → (+g𝑀) = (.r‘(Poly1𝐾)))
104103oveqd 7386 . . . . . . . . . 10 (𝜑 → ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
105104oveq1d 7384 . . . . . . . . 9 (𝜑 → (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
10692, 62eleqtrdi 2838 . . . . . . . . . 10 (𝜑 → (𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
10764, 62eleqtrdi 2838 . . . . . . . . . 10 (𝜑 → (((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
10860, 14, 11, 25, 59mulgnn0cld 19003 . . . . . . . . . 10 (𝜑 → (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
10942, 100, 8, 106, 107, 108ringassd 20142 . . . . . . . . 9 (𝜑 → (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))))
110105, 109eqtrd 2764 . . . . . . . 8 (𝜑 → (((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(+g𝑀)(((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))))
11199, 110eqtrd 2764 . . . . . . 7 (𝜑 → (((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))))
112111oveq2d 7385 . . . . . 6 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) = ((𝐺𝑌)(-g‘(Poly1𝐾))((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))))
11329recnd 11178 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑊) ∈ ℂ)
11430recnd 11178 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℂ)
115113, 114npcand 11513 . . . . . . . . . . . . 13 (𝜑 → (((𝑌𝑊) − 𝐶) + 𝐶) = (𝑌𝑊))
116115eqcomd 2735 . . . . . . . . . . . 12 (𝜑 → (𝑌𝑊) = (((𝑌𝑊) − 𝐶) + 𝐶))
117116oveq1d 7384 . . . . . . . . . . 11 (𝜑 → ((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) = ((((𝑌𝑊) − 𝐶) + 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))
11860a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾))))
11959, 118eleqtrd 2830 . . . . . . . . . . . . 13 (𝜑 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
12035, 25, 1193jca 1128 . . . . . . . . . . . 12 (𝜑 → (((𝑌𝑊) − 𝐶) ∈ ℕ0𝐶 ∈ ℕ0 ∧ (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(mulGrp‘(Poly1𝐾)))))
121 eqid 2729 . . . . . . . . . . . . 13 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
1229, 100mgpplusg 20029 . . . . . . . . . . . . 13 (.r‘(Poly1𝐾)) = (+g‘(mulGrp‘(Poly1𝐾)))
123121, 14, 122mulgnn0dir 19012 . . . . . . . . . . . 12 (((mulGrp‘(Poly1𝐾)) ∈ Mnd ∧ (((𝑌𝑊) − 𝐶) ∈ ℕ0𝐶 ∈ ℕ0 ∧ (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))) → ((((𝑌𝑊) − 𝐶) + 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
12411, 120, 123syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((((𝑌𝑊) − 𝐶) + 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
125117, 124eqtr2d 2765 . . . . . . . . . 10 (𝜑 → ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))
126125oveq2d 7385 . . . . . . . . 9 (𝜑 → ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
127 aks6d1c5.8 . . . . . . . . . . . . 13 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
128127a1i 11 . . . . . . . . . . . 12 (𝜑𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
1291eqcomi 2738 . . . . . . . . . . . . . 14 (mulGrp‘(Poly1𝐾)) = 𝑀
130129a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑔 = 𝑌) → (mulGrp‘(Poly1𝐾)) = 𝑀)
131 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → 𝑔 = 𝑌)
132131fveq1d 6842 . . . . . . . . . . . . . . 15 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) = (𝑌𝑖))
13354eqcomi 2738 . . . . . . . . . . . . . . . . . 18 (algSc‘(Poly1𝐾)) = 𝑆
134133a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → (algSc‘(Poly1𝐾)) = 𝑆)
135134fveq1d 6842 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) = (𝑆‘((ℤRHom‘𝐾)‘𝑖)))
136135oveq2d 7385 . . . . . . . . . . . . . . 15 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))
137132, 136oveq12d 7387 . . . . . . . . . . . . . 14 (((𝜑𝑔 = 𝑌) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))
138137mpteq2dva 5195 . . . . . . . . . . . . 13 ((𝜑𝑔 = 𝑌) → (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))
139130, 138oveq12d 7387 . . . . . . . . . . . 12 ((𝜑𝑔 = 𝑌) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑀 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))
140 ovexd 7404 . . . . . . . . . . . 12 (𝜑 → (𝑀 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ V)
141128, 139, 15, 140fvmptd 6957 . . . . . . . . . . 11 (𝜑 → (𝐺𝑌) = (𝑀 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))
14222snssd 4769 . . . . . . . . . . . . . . 15 (𝜑 → {𝑊} ⊆ (0...𝐴))
143 undifr 4442 . . . . . . . . . . . . . . 15 ({𝑊} ⊆ (0...𝐴) ↔ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) = (0...𝐴))
144142, 143sylib 218 . . . . . . . . . . . . . 14 (𝜑 → (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) = (0...𝐴))
145144eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → (0...𝐴) = (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}))
146145mpteq1d 5192 . . . . . . . . . . . 12 (𝜑 → (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))
147146oveq2d 7385 . . . . . . . . . . 11 (𝜑 → (𝑀 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑀 Σg (𝑖 ∈ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))
148141, 147eqtrd 2764 . . . . . . . . . 10 (𝜑 → (𝐺𝑌) = (𝑀 Σg (𝑖 ∈ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))
149 neldifsnd 4753 . . . . . . . . . . 11 (𝜑 → ¬ 𝑊 ∈ ((0...𝐴) ∖ {𝑊}))
15013, 14, 11, 23, 63mulgnn0cld 19003 . . . . . . . . . . 11 (𝜑 → ((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘𝑀))
151 fveq2 6840 . . . . . . . . . . . 12 (𝑖 = 𝑊 → (𝑌𝑖) = (𝑌𝑊))
152 2fveq3 6845 . . . . . . . . . . . . 13 (𝑖 = 𝑊 → (𝑆‘((ℤRHom‘𝐾)‘𝑖)) = (𝑆‘((ℤRHom‘𝐾)‘𝑊)))
153152oveq2d 7385 . . . . . . . . . . . 12 (𝑖 = 𝑊 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))
154151, 153oveq12d 7387 . . . . . . . . . . 11 (𝑖 = 𝑊 → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))
15565, 101, 68, 71, 90, 22, 149, 150, 154gsumunsn 19866 . . . . . . . . . 10 (𝜑 → (𝑀 Σg (𝑖 ∈ (((0...𝐴) ∖ {𝑊}) ∪ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
156148, 155eqtr2d 2765 . . . . . . . . 9 (𝜑 → ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = (𝐺𝑌))
157126, 156eqtrd 2764 . . . . . . . 8 (𝜑 → ((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) = (𝐺𝑌))
158157oveq2d 7385 . . . . . . 7 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) = ((𝐺𝑌)(-g‘(Poly1𝐾))(𝐺𝑌)))
1598ringgrpd 20127 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ Grp)
160 aks6d1p5.2 . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
161 aks6d1c5.3 . . . . . . . . . 10 𝑃 = (chr‘𝐾)
162 aks6d1c5.4 . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ0)
163 aks6d1c5.5 . . . . . . . . . 10 (𝜑𝐴 < 𝑃)
1642, 160, 161, 162, 163, 41, 14, 127aks6d1c5lem0 42096 . . . . . . . . 9 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
165164, 15ffvelcdmd 7039 . . . . . . . 8 (𝜑 → (𝐺𝑌) ∈ (Base‘(Poly1𝐾)))
166 eqid 2729 . . . . . . . . 9 (0g‘(Poly1𝐾)) = (0g‘(Poly1𝐾))
167 eqid 2729 . . . . . . . . 9 (-g‘(Poly1𝐾)) = (-g‘(Poly1𝐾))
16842, 166, 167grpsubid 18932 . . . . . . . 8 (((Poly1𝐾) ∈ Grp ∧ (𝐺𝑌) ∈ (Base‘(Poly1𝐾))) → ((𝐺𝑌)(-g‘(Poly1𝐾))(𝐺𝑌)) = (0g‘(Poly1𝐾)))
169159, 165, 168syl2anc 584 . . . . . . 7 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))(𝐺𝑌)) = (0g‘(Poly1𝐾)))
170158, 169eqtrd 2764 . . . . . 6 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))((𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))(.r‘(Poly1𝐾))((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) = (0g‘(Poly1𝐾)))
171112, 170eqtrd 2764 . . . . 5 (𝜑 → ((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) = (0g‘(Poly1𝐾)))
172171fveq2d 6844 . . . 4 (𝜑 → ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) = ((deg1𝐾)‘(0g‘(Poly1𝐾))))
173 eqid 2729 . . . . . . 7 (deg1𝐾) = (deg1𝐾)
174173, 4, 166deg1z 25968 . . . . . 6 (𝐾 ∈ Ring → ((deg1𝐾)‘(0g‘(Poly1𝐾))) = -∞)
17540, 174syl 17 . . . . 5 (𝜑 → ((deg1𝐾)‘(0g‘(Poly1𝐾))) = -∞)
1762flddrngd 20626 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ DivRing)
177 drngdomn 20634 . . . . . . . . . . . . 13 (𝐾 ∈ DivRing → 𝐾 ∈ Domn)
178176, 177syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Domn)
1794ply1domn 26005 . . . . . . . . . . . 12 (𝐾 ∈ Domn → (Poly1𝐾) ∈ Domn)
180178, 179syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝐾) ∈ Domn)
1816, 180jca 511 . . . . . . . . . 10 (𝜑 → ((Poly1𝐾) ∈ CRing ∧ (Poly1𝐾) ∈ Domn))
182 isidom 20610 . . . . . . . . . 10 ((Poly1𝐾) ∈ IDomn ↔ ((Poly1𝐾) ∈ CRing ∧ (Poly1𝐾) ∈ Domn))
183181, 182sylibr 234 . . . . . . . . 9 (𝜑 → (Poly1𝐾) ∈ IDomn)
184173, 4, 42deg1xrcl 25963 . . . . . . . . . . . . . 14 ((𝑆‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾)) → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ ℝ*)
18556, 184syl 17 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ ℝ*)
186 0xr 11197 . . . . . . . . . . . . . 14 0 ∈ ℝ*
187186a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ*)
188173, 4, 42deg1xrcl 25963 . . . . . . . . . . . . . 14 (𝑋 ∈ (Base‘(Poly1𝐾)) → ((deg1𝐾)‘𝑋) ∈ ℝ*)
18944, 188syl 17 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘𝑋) ∈ ℝ*)
190173, 4, 49, 54deg1sclle 25993 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≤ 0)
19140, 53, 190syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≤ 0)
192 0lt1 11676 . . . . . . . . . . . . . . 15 0 < 1
193192a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
19444, 60eleqtrdi 2838 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ (Base‘(mulGrp‘(Poly1𝐾))))
195121, 14mulg1 18989 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ (Base‘(mulGrp‘(Poly1𝐾))) → (1 𝑋) = 𝑋)
196194, 195syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 𝑋) = 𝑋)
197196fveq2d 6844 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(1 𝑋)) = ((deg1𝐾)‘𝑋))
198 isfld 20625 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
199198biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ Field → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
2002, 199syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
201200simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ DivRing)
202 drngnzr 20633 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
203201, 202syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ NzRing)
204 1nn0 12434 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
205204a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℕ0)
206173, 4, 41, 9, 14deg1pw 26002 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ NzRing ∧ 1 ∈ ℕ0) → ((deg1𝐾)‘(1 𝑋)) = 1)
207203, 205, 206syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(1 𝑋)) = 1)
208197, 207eqtr3d 2766 . . . . . . . . . . . . . . 15 (𝜑 → ((deg1𝐾)‘𝑋) = 1)
209208eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑 → 1 = ((deg1𝐾)‘𝑋))
210193, 209breqtrd 5128 . . . . . . . . . . . . 13 (𝜑 → 0 < ((deg1𝐾)‘𝑋))
211185, 187, 189, 191, 210xrlelttrd 13096 . . . . . . . . . . . 12 (𝜑 → ((deg1𝐾)‘(𝑆‘((ℤRHom‘𝐾)‘𝑊))) < ((deg1𝐾)‘𝑋))
2124, 173, 40, 42, 57, 44, 56, 211deg1add 25984 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘(𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) = ((deg1𝐾)‘𝑋))
213208, 205eqeltrd 2828 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘𝑋) ∈ ℕ0)
214212, 213eqeltrd 2828 . . . . . . . . . 10 (𝜑 → ((deg1𝐾)‘(𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ ℕ0)
215173, 4, 166, 42deg1nn0clb 25971 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾))) → ((𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘(𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ ℕ0))
21640, 59, 215syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘(𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ ℕ0))
217214, 216mpbird 257 . . . . . . . . 9 (𝜑 → (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))) ≠ (0g‘(Poly1𝐾)))
218183, 59, 217, 25, 14idomnnzpownz 42093 . . . . . . . 8 (𝜑 → (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ≠ (0g‘(Poly1𝐾)))
219173, 4, 166, 42deg1nn0clb 25971 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾))) → ((𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) ∈ ℕ0))
22040, 108, 219syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) ∈ ℕ0))
221218, 220mpbid 232 . . . . . . 7 (𝜑 → ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) ∈ ℕ0)
222221nn0red 12480 . . . . . 6 (𝜑 → ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) ∈ ℝ)
223222mnfltd 13060 . . . . 5 (𝜑 → -∞ < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
224175, 223eqbrtrd 5124 . . . 4 (𝜑 → ((deg1𝐾)‘(0g‘(Poly1𝐾))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
225172, 224eqbrtrd 5124 . . 3 (𝜑 → ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))
22696, 225jca 511 . 2 (𝜑 → (((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))))
227 eqid 2729 . . . . 5 (Unic1p𝐾) = (Unic1p𝐾)
2284, 42, 166, 227drnguc1p 26055 . . . 4 ((𝐾 ∈ DivRing ∧ (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ≠ (0g‘(Poly1𝐾))) → (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Unic1p𝐾))
229176, 108, 218, 228syl3anc 1373 . . 3 (𝜑 → (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Unic1p𝐾))
230 aks6d1c5p3.5 . . . 4 𝑄 = (quot1p𝐾)
231230, 4, 42, 173, 167, 100, 227q1peqb 26037 . . 3 ((𝐾 ∈ Ring ∧ (𝐺𝑌) ∈ (Base‘(Poly1𝐾)) ∧ (𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Unic1p𝐾)) → ((((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) ↔ ((𝐺𝑌)𝑄(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))))
23240, 165, 229, 231syl3anc 1373 . 2 (𝜑 → ((((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ ((deg1𝐾)‘((𝐺𝑌)(-g‘(Poly1𝐾))(((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))(.r‘(Poly1𝐾))(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))))) < ((deg1𝐾)‘(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊)))))) ↔ ((𝐺𝑌)𝑄(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))))
233226, 232mpbid 232 1 (𝜑 → ((𝐺𝑌)𝑄(𝐶 (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − 𝐶) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  cun 3909  wss 3911  {csn 4585   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  0cc0 11044  1c1 11045   + caddc 11047  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  cmin 11381  0cn0 12418  cz 12505  ...cfz 13444  cprime 16617  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18637  Grpcgrp 18841  -gcsg 18843  .gcmg 18975  CMndccmn 19686  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354  NzRingcnzr 20397  Domncdomn 20577  IDomncidom 20578  DivRingcdr 20614  Fieldcfield 20615  ringczring 21332  ℤRHomczrh 21385  chrcchr 21387  algSccascl 21737  var1cv1 22036  Poly1cpl1 22037  deg1cdg1 25935  Unic1pcuc1p 26008  quot1pcq1p 26009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-lmod 20744  df-lss 20814  df-cnfld 21241  df-zring 21333  df-zrh 21389  df-ascl 21740  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-psr1 22040  df-vr1 22041  df-ply1 22042  df-coe1 22043  df-mdeg 25936  df-deg1 25937  df-uc1p 26013  df-q1p 26014
This theorem is referenced by:  aks6d1c5lem2  42099
  Copyright terms: Public domain W3C validator