Proof of Theorem ply1unit
| Step | Hyp | Ref
| Expression |
| 1 | | ply1asclunit.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ Field) |
| 2 | 1 | fldcrngd 20742 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ CRing) |
| 3 | 2 | crngringd 20243 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ Ring) |
| 4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 𝐹 ∈ Ring) |
| 5 | | ply1asclunit.1 |
. . . . . . . . . 10
⊢ 𝑃 = (Poly1‘𝐹) |
| 6 | 5 | ply1ring 22249 |
. . . . . . . . 9
⊢ (𝐹 ∈ Ring → 𝑃 ∈ Ring) |
| 7 | 3, 6 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 8 | | eqid 2737 |
. . . . . . . . 9
⊢
(Unit‘𝑃) =
(Unit‘𝑃) |
| 9 | | eqid 2737 |
. . . . . . . . 9
⊢
(invr‘𝑃) = (invr‘𝑃) |
| 10 | 8, 9 | unitinvcl 20390 |
. . . . . . . 8
⊢ ((𝑃 ∈ Ring ∧ 𝐶 ∈ (Unit‘𝑃)) →
((invr‘𝑃)‘𝐶) ∈ (Unit‘𝑃)) |
| 11 | 7, 10 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → ((invr‘𝑃)‘𝐶) ∈ (Unit‘𝑃)) |
| 12 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 13 | 12, 8 | unitcl 20375 |
. . . . . . 7
⊢
(((invr‘𝑃)‘𝐶) ∈ (Unit‘𝑃) → ((invr‘𝑃)‘𝐶) ∈ (Base‘𝑃)) |
| 14 | 11, 13 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → ((invr‘𝑃)‘𝐶) ∈ (Base‘𝑃)) |
| 15 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 16 | 1 | flddrngd 20741 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ DivRing) |
| 17 | | drngnzr 20748 |
. . . . . . . . 9
⊢ (𝐹 ∈ DivRing → 𝐹 ∈ NzRing) |
| 18 | 5 | ply1nz 26161 |
. . . . . . . . 9
⊢ (𝐹 ∈ NzRing → 𝑃 ∈ NzRing) |
| 19 | 16, 17, 18 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ NzRing) |
| 20 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 𝑃 ∈ NzRing) |
| 21 | 8, 15, 20, 11 | unitnz 33243 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → ((invr‘𝑃)‘𝐶) ≠ (0g‘𝑃)) |
| 22 | | ply1unit.d |
. . . . . . 7
⊢ 𝐷 = (deg1‘𝐹) |
| 23 | 22, 5, 15, 12 | deg1nn0cl 26127 |
. . . . . 6
⊢ ((𝐹 ∈ Ring ∧
((invr‘𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ ((invr‘𝑃)‘𝐶) ≠ (0g‘𝑃)) → (𝐷‘((invr‘𝑃)‘𝐶)) ∈
ℕ0) |
| 24 | 4, 14, 21, 23 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘((invr‘𝑃)‘𝐶)) ∈
ℕ0) |
| 25 | 24 | nn0red 12588 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘((invr‘𝑃)‘𝐶)) ∈ ℝ) |
| 26 | 24 | nn0ge0d 12590 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 0 ≤ (𝐷‘((invr‘𝑃)‘𝐶))) |
| 27 | 25, 26 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → ((𝐷‘((invr‘𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr‘𝑃)‘𝐶)))) |
| 28 | | ply1unit.f |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ (Base‘𝑃)) |
| 29 | 28 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 𝐶 ∈ (Base‘𝑃)) |
| 30 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 𝐶 ∈ (Unit‘𝑃)) |
| 31 | 8, 15, 20, 30 | unitnz 33243 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 𝐶 ≠ (0g‘𝑃)) |
| 32 | 22, 5, 15, 12 | deg1nn0cl 26127 |
. . . . 5
⊢ ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃) ∧ 𝐶 ≠ (0g‘𝑃)) → (𝐷‘𝐶) ∈
ℕ0) |
| 33 | 4, 29, 31, 32 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘𝐶) ∈
ℕ0) |
| 34 | 33 | nn0red 12588 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘𝐶) ∈ ℝ) |
| 35 | 33 | nn0ge0d 12590 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 0 ≤ (𝐷‘𝐶)) |
| 36 | | eqid 2737 |
. . . . . . 7
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 37 | | eqid 2737 |
. . . . . . 7
⊢
(1r‘𝑃) = (1r‘𝑃) |
| 38 | 8, 9, 36, 37 | unitlinv 20393 |
. . . . . 6
⊢ ((𝑃 ∈ Ring ∧ 𝐶 ∈ (Unit‘𝑃)) →
(((invr‘𝑃)‘𝐶)(.r‘𝑃)𝐶) = (1r‘𝑃)) |
| 39 | 7, 38 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (((invr‘𝑃)‘𝐶)(.r‘𝑃)𝐶) = (1r‘𝑃)) |
| 40 | 39 | fveq2d 6910 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(((invr‘𝑃)‘𝐶)(.r‘𝑃)𝐶)) = (𝐷‘(1r‘𝑃))) |
| 41 | | eqid 2737 |
. . . . 5
⊢
(RLReg‘𝐹) =
(RLReg‘𝐹) |
| 42 | | drngdomn 20749 |
. . . . . . . 8
⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Domn) |
| 43 | 16, 42 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ Domn) |
| 44 | 43 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 𝐹 ∈ Domn) |
| 45 | | eqid 2737 |
. . . . . . . 8
⊢
(coe1‘((invr‘𝑃)‘𝐶)) =
(coe1‘((invr‘𝑃)‘𝐶)) |
| 46 | | ply1asclunit.3 |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐹) |
| 47 | 45, 12, 5, 46 | coe1fvalcl 22214 |
. . . . . . 7
⊢
((((invr‘𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ (𝐷‘((invr‘𝑃)‘𝐶)) ∈ ℕ0) →
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ∈ 𝐵) |
| 48 | 14, 24, 47 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) →
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ∈ 𝐵) |
| 49 | | ply1asclunit.4 |
. . . . . . . 8
⊢ 0 =
(0g‘𝐹) |
| 50 | 22, 5, 15, 12, 49, 45 | deg1ldg 26131 |
. . . . . . 7
⊢ ((𝐹 ∈ Ring ∧
((invr‘𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ ((invr‘𝑃)‘𝐶) ≠ (0g‘𝑃)) →
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ≠ 0 ) |
| 51 | 4, 14, 21, 50 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) →
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ≠ 0 ) |
| 52 | 46, 41, 49 | domnrrg 20713 |
. . . . . 6
⊢ ((𝐹 ∈ Domn ∧
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ∈ 𝐵 ∧
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ≠ 0 ) →
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ∈ (RLReg‘𝐹)) |
| 53 | 44, 48, 51, 52 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) →
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ∈ (RLReg‘𝐹)) |
| 54 | 22, 5, 41, 12, 36, 15, 4, 14, 21, 53, 29, 31 | deg1mul2 26153 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(((invr‘𝑃)‘𝐶)(.r‘𝑃)𝐶)) = ((𝐷‘((invr‘𝑃)‘𝐶)) + (𝐷‘𝐶))) |
| 55 | | eqid 2737 |
. . . . . . . 8
⊢
(Monic1p‘𝐹) = (Monic1p‘𝐹) |
| 56 | 5, 37, 55, 22 | mon1pid 26193 |
. . . . . . 7
⊢ (𝐹 ∈ NzRing →
((1r‘𝑃)
∈ (Monic1p‘𝐹) ∧ (𝐷‘(1r‘𝑃)) = 0)) |
| 57 | 56 | simprd 495 |
. . . . . 6
⊢ (𝐹 ∈ NzRing → (𝐷‘(1r‘𝑃)) = 0) |
| 58 | 16, 17, 57 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (𝐷‘(1r‘𝑃)) = 0) |
| 59 | 58 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(1r‘𝑃)) = 0) |
| 60 | 40, 54, 59 | 3eqtr3d 2785 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → ((𝐷‘((invr‘𝑃)‘𝐶)) + (𝐷‘𝐶)) = 0) |
| 61 | | add20 11775 |
. . . . 5
⊢ ((((𝐷‘((invr‘𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr‘𝑃)‘𝐶))) ∧ ((𝐷‘𝐶) ∈ ℝ ∧ 0 ≤ (𝐷‘𝐶))) → (((𝐷‘((invr‘𝑃)‘𝐶)) + (𝐷‘𝐶)) = 0 ↔ ((𝐷‘((invr‘𝑃)‘𝐶)) = 0 ∧ (𝐷‘𝐶) = 0))) |
| 62 | 61 | anassrs 467 |
. . . 4
⊢
(((((𝐷‘((invr‘𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr‘𝑃)‘𝐶))) ∧ (𝐷‘𝐶) ∈ ℝ) ∧ 0 ≤ (𝐷‘𝐶)) → (((𝐷‘((invr‘𝑃)‘𝐶)) + (𝐷‘𝐶)) = 0 ↔ ((𝐷‘((invr‘𝑃)‘𝐶)) = 0 ∧ (𝐷‘𝐶) = 0))) |
| 63 | 62 | simplbda 499 |
. . 3
⊢
((((((𝐷‘((invr‘𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr‘𝑃)‘𝐶))) ∧ (𝐷‘𝐶) ∈ ℝ) ∧ 0 ≤ (𝐷‘𝐶)) ∧ ((𝐷‘((invr‘𝑃)‘𝐶)) + (𝐷‘𝐶)) = 0) → (𝐷‘𝐶) = 0) |
| 64 | 27, 34, 35, 60, 63 | syl1111anc 841 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘𝐶) = 0) |
| 65 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝐹 ∈ Ring) |
| 66 | 28 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝐶 ∈ (Base‘𝑃)) |
| 67 | 22, 5, 12 | deg1xrcl 26121 |
. . . . . . 7
⊢ (𝐶 ∈ (Base‘𝑃) → (𝐷‘𝐶) ∈
ℝ*) |
| 68 | 28, 67 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐷‘𝐶) ∈
ℝ*) |
| 69 | | 0xr 11308 |
. . . . . 6
⊢ 0 ∈
ℝ* |
| 70 | | xeqlelt 32778 |
. . . . . 6
⊢ (((𝐷‘𝐶) ∈ ℝ* ∧ 0 ∈
ℝ*) → ((𝐷‘𝐶) = 0 ↔ ((𝐷‘𝐶) ≤ 0 ∧ ¬ (𝐷‘𝐶) < 0))) |
| 71 | 68, 69, 70 | sylancl 586 |
. . . . 5
⊢ (𝜑 → ((𝐷‘𝐶) = 0 ↔ ((𝐷‘𝐶) ≤ 0 ∧ ¬ (𝐷‘𝐶) < 0))) |
| 72 | 71 | simprbda 498 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → (𝐷‘𝐶) ≤ 0) |
| 73 | | ply1asclunit.2 |
. . . . . 6
⊢ 𝐴 = (algSc‘𝑃) |
| 74 | 22, 5, 12, 73 | deg1le0 26150 |
. . . . 5
⊢ ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → ((𝐷‘𝐶) ≤ 0 ↔ 𝐶 = (𝐴‘((coe1‘𝐶)‘0)))) |
| 75 | 74 | biimpa 476 |
. . . 4
⊢ (((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) ∧ (𝐷‘𝐶) ≤ 0) → 𝐶 = (𝐴‘((coe1‘𝐶)‘0))) |
| 76 | 65, 66, 72, 75 | syl21anc 838 |
. . 3
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝐶 = (𝐴‘((coe1‘𝐶)‘0))) |
| 77 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝐹 ∈ Field) |
| 78 | | 0nn0 12541 |
. . . . 5
⊢ 0 ∈
ℕ0 |
| 79 | | eqid 2737 |
. . . . . 6
⊢
(coe1‘𝐶) = (coe1‘𝐶) |
| 80 | 79, 12, 5, 46 | coe1fvalcl 22214 |
. . . . 5
⊢ ((𝐶 ∈ (Base‘𝑃) ∧ 0 ∈
ℕ0) → ((coe1‘𝐶)‘0) ∈ 𝐵) |
| 81 | 66, 78, 80 | sylancl 586 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → ((coe1‘𝐶)‘0) ∈ 𝐵) |
| 82 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝜑) |
| 83 | 71 | simplbda 499 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → ¬ (𝐷‘𝐶) < 0) |
| 84 | 22, 5, 15, 12 | deg1lt0 26130 |
. . . . . . . 8
⊢ ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → ((𝐷‘𝐶) < 0 ↔ 𝐶 = (0g‘𝑃))) |
| 85 | 84 | necon3bbid 2978 |
. . . . . . 7
⊢ ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → (¬ (𝐷‘𝐶) < 0 ↔ 𝐶 ≠ (0g‘𝑃))) |
| 86 | 85 | biimpa 476 |
. . . . . 6
⊢ (((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) ∧ ¬ (𝐷‘𝐶) < 0) → 𝐶 ≠ (0g‘𝑃)) |
| 87 | 65, 66, 83, 86 | syl21anc 838 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝐶 ≠ (0g‘𝑃)) |
| 88 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐷‘𝐶) ≤ 0) → 𝐹 ∈ Ring) |
| 89 | 28 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐷‘𝐶) ≤ 0) → 𝐶 ∈ (Base‘𝑃)) |
| 90 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐷‘𝐶) ≤ 0) → (𝐷‘𝐶) ≤ 0) |
| 91 | 22, 5, 49, 12, 15, 88, 89, 90 | deg1le0eq0 33598 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐷‘𝐶) ≤ 0) → (𝐶 = (0g‘𝑃) ↔ ((coe1‘𝐶)‘0) = 0 )) |
| 92 | 91 | necon3bid 2985 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐷‘𝐶) ≤ 0) → (𝐶 ≠ (0g‘𝑃) ↔ ((coe1‘𝐶)‘0) ≠ 0
)) |
| 93 | 92 | biimpa 476 |
. . . . 5
⊢ (((𝜑 ∧ (𝐷‘𝐶) ≤ 0) ∧ 𝐶 ≠ (0g‘𝑃)) → ((coe1‘𝐶)‘0) ≠ 0
) |
| 94 | 82, 72, 87, 93 | syl21anc 838 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → ((coe1‘𝐶)‘0) ≠ 0
) |
| 95 | 5, 73, 46, 49, 77, 81, 94 | ply1asclunit 33599 |
. . 3
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → (𝐴‘((coe1‘𝐶)‘0)) ∈
(Unit‘𝑃)) |
| 96 | 76, 95 | eqeltrd 2841 |
. 2
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝐶 ∈ (Unit‘𝑃)) |
| 97 | 64, 96 | impbida 801 |
1
⊢ (𝜑 → (𝐶 ∈ (Unit‘𝑃) ↔ (𝐷‘𝐶) = 0)) |