Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1unit Structured version   Visualization version   GIF version

Theorem ply1unit 33565
Description: In a field 𝐹, a polynomial 𝐶 is a unit iff it has degree 0. This corresponds to the nonzero scalars, see ply1asclunit 33564. (Contributed by Thierry Arnoux, 25-Apr-2025.)
Hypotheses
Ref Expression
ply1asclunit.1 𝑃 = (Poly1𝐹)
ply1asclunit.2 𝐴 = (algSc‘𝑃)
ply1asclunit.3 𝐵 = (Base‘𝐹)
ply1asclunit.4 0 = (0g𝐹)
ply1asclunit.5 (𝜑𝐹 ∈ Field)
ply1unit.d 𝐷 = (deg1𝐹)
ply1unit.f (𝜑𝐶 ∈ (Base‘𝑃))
Assertion
Ref Expression
ply1unit (𝜑 → (𝐶 ∈ (Unit‘𝑃) ↔ (𝐷𝐶) = 0))

Proof of Theorem ply1unit
StepHypRef Expression
1 ply1asclunit.5 . . . . . . . . 9 (𝜑𝐹 ∈ Field)
21fldcrngd 20764 . . . . . . . 8 (𝜑𝐹 ∈ CRing)
32crngringd 20273 . . . . . . 7 (𝜑𝐹 ∈ Ring)
43adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐹 ∈ Ring)
5 ply1asclunit.1 . . . . . . . . . 10 𝑃 = (Poly1𝐹)
65ply1ring 22270 . . . . . . . . 9 (𝐹 ∈ Ring → 𝑃 ∈ Ring)
73, 6syl 17 . . . . . . . 8 (𝜑𝑃 ∈ Ring)
8 eqid 2740 . . . . . . . . 9 (Unit‘𝑃) = (Unit‘𝑃)
9 eqid 2740 . . . . . . . . 9 (invr𝑃) = (invr𝑃)
108, 9unitinvcl 20416 . . . . . . . 8 ((𝑃 ∈ Ring ∧ 𝐶 ∈ (Unit‘𝑃)) → ((invr𝑃)‘𝐶) ∈ (Unit‘𝑃))
117, 10sylan 579 . . . . . . 7 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((invr𝑃)‘𝐶) ∈ (Unit‘𝑃))
12 eqid 2740 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
1312, 8unitcl 20401 . . . . . . 7 (((invr𝑃)‘𝐶) ∈ (Unit‘𝑃) → ((invr𝑃)‘𝐶) ∈ (Base‘𝑃))
1411, 13syl 17 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((invr𝑃)‘𝐶) ∈ (Base‘𝑃))
15 eqid 2740 . . . . . . 7 (0g𝑃) = (0g𝑃)
161flddrngd 20763 . . . . . . . . 9 (𝜑𝐹 ∈ DivRing)
17 drngnzr 20770 . . . . . . . . 9 (𝐹 ∈ DivRing → 𝐹 ∈ NzRing)
185ply1nz 26181 . . . . . . . . 9 (𝐹 ∈ NzRing → 𝑃 ∈ NzRing)
1916, 17, 183syl 18 . . . . . . . 8 (𝜑𝑃 ∈ NzRing)
2019adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝑃 ∈ NzRing)
218, 15, 20, 11unitnz 33219 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((invr𝑃)‘𝐶) ≠ (0g𝑃))
22 ply1unit.d . . . . . . 7 𝐷 = (deg1𝐹)
2322, 5, 15, 12deg1nn0cl 26147 . . . . . 6 ((𝐹 ∈ Ring ∧ ((invr𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ ((invr𝑃)‘𝐶) ≠ (0g𝑃)) → (𝐷‘((invr𝑃)‘𝐶)) ∈ ℕ0)
244, 14, 21, 23syl3anc 1371 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘((invr𝑃)‘𝐶)) ∈ ℕ0)
2524nn0red 12614 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ)
2624nn0ge0d 12616 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 0 ≤ (𝐷‘((invr𝑃)‘𝐶)))
2725, 26jca 511 . . 3 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr𝑃)‘𝐶))))
28 ply1unit.f . . . . . 6 (𝜑𝐶 ∈ (Base‘𝑃))
2928adantr 480 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐶 ∈ (Base‘𝑃))
30 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐶 ∈ (Unit‘𝑃))
318, 15, 20, 30unitnz 33219 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐶 ≠ (0g𝑃))
3222, 5, 15, 12deg1nn0cl 26147 . . . . 5 ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃) ∧ 𝐶 ≠ (0g𝑃)) → (𝐷𝐶) ∈ ℕ0)
334, 29, 31, 32syl3anc 1371 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷𝐶) ∈ ℕ0)
3433nn0red 12614 . . 3 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷𝐶) ∈ ℝ)
3533nn0ge0d 12616 . . 3 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 0 ≤ (𝐷𝐶))
36 eqid 2740 . . . . . . 7 (.r𝑃) = (.r𝑃)
37 eqid 2740 . . . . . . 7 (1r𝑃) = (1r𝑃)
388, 9, 36, 37unitlinv 20419 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝐶 ∈ (Unit‘𝑃)) → (((invr𝑃)‘𝐶)(.r𝑃)𝐶) = (1r𝑃))
397, 38sylan 579 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (((invr𝑃)‘𝐶)(.r𝑃)𝐶) = (1r𝑃))
4039fveq2d 6924 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(((invr𝑃)‘𝐶)(.r𝑃)𝐶)) = (𝐷‘(1r𝑃)))
41 eqid 2740 . . . . 5 (RLReg‘𝐹) = (RLReg‘𝐹)
42 drngdomn 20771 . . . . . . . 8 (𝐹 ∈ DivRing → 𝐹 ∈ Domn)
4316, 42syl 17 . . . . . . 7 (𝜑𝐹 ∈ Domn)
4443adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐹 ∈ Domn)
45 eqid 2740 . . . . . . . 8 (coe1‘((invr𝑃)‘𝐶)) = (coe1‘((invr𝑃)‘𝐶))
46 ply1asclunit.3 . . . . . . . 8 𝐵 = (Base‘𝐹)
4745, 12, 5, 46coe1fvalcl 22235 . . . . . . 7 ((((invr𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ (𝐷‘((invr𝑃)‘𝐶)) ∈ ℕ0) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ 𝐵)
4814, 24, 47syl2anc 583 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ 𝐵)
49 ply1asclunit.4 . . . . . . . 8 0 = (0g𝐹)
5022, 5, 15, 12, 49, 45deg1ldg 26151 . . . . . . 7 ((𝐹 ∈ Ring ∧ ((invr𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ ((invr𝑃)‘𝐶) ≠ (0g𝑃)) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ≠ 0 )
514, 14, 21, 50syl3anc 1371 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ≠ 0 )
5246, 41, 49domnrrg 20735 . . . . . 6 ((𝐹 ∈ Domn ∧ ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ 𝐵 ∧ ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ≠ 0 ) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ (RLReg‘𝐹))
5344, 48, 51, 52syl3anc 1371 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ (RLReg‘𝐹))
5422, 5, 41, 12, 36, 15, 4, 14, 21, 53, 29, 31deg1mul2 26173 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(((invr𝑃)‘𝐶)(.r𝑃)𝐶)) = ((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)))
55 eqid 2740 . . . . . . . 8 (Monic1p𝐹) = (Monic1p𝐹)
565, 37, 55, 22mon1pid 26213 . . . . . . 7 (𝐹 ∈ NzRing → ((1r𝑃) ∈ (Monic1p𝐹) ∧ (𝐷‘(1r𝑃)) = 0))
5756simprd 495 . . . . . 6 (𝐹 ∈ NzRing → (𝐷‘(1r𝑃)) = 0)
5816, 17, 573syl 18 . . . . 5 (𝜑 → (𝐷‘(1r𝑃)) = 0)
5958adantr 480 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(1r𝑃)) = 0)
6040, 54, 593eqtr3d 2788 . . 3 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)) = 0)
61 add20 11802 . . . . 5 ((((𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr𝑃)‘𝐶))) ∧ ((𝐷𝐶) ∈ ℝ ∧ 0 ≤ (𝐷𝐶))) → (((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)) = 0 ↔ ((𝐷‘((invr𝑃)‘𝐶)) = 0 ∧ (𝐷𝐶) = 0)))
6261anassrs 467 . . . 4 (((((𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr𝑃)‘𝐶))) ∧ (𝐷𝐶) ∈ ℝ) ∧ 0 ≤ (𝐷𝐶)) → (((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)) = 0 ↔ ((𝐷‘((invr𝑃)‘𝐶)) = 0 ∧ (𝐷𝐶) = 0)))
6362simplbda 499 . . 3 ((((((𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr𝑃)‘𝐶))) ∧ (𝐷𝐶) ∈ ℝ) ∧ 0 ≤ (𝐷𝐶)) ∧ ((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)) = 0) → (𝐷𝐶) = 0)
6427, 34, 35, 60, 63syl1111anc 839 . 2 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷𝐶) = 0)
653adantr 480 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐹 ∈ Ring)
6628adantr 480 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐶 ∈ (Base‘𝑃))
6722, 5, 12deg1xrcl 26141 . . . . . . 7 (𝐶 ∈ (Base‘𝑃) → (𝐷𝐶) ∈ ℝ*)
6828, 67syl 17 . . . . . 6 (𝜑 → (𝐷𝐶) ∈ ℝ*)
69 0xr 11337 . . . . . 6 0 ∈ ℝ*
70 xeqlelt 32781 . . . . . 6 (((𝐷𝐶) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝐷𝐶) = 0 ↔ ((𝐷𝐶) ≤ 0 ∧ ¬ (𝐷𝐶) < 0)))
7168, 69, 70sylancl 585 . . . . 5 (𝜑 → ((𝐷𝐶) = 0 ↔ ((𝐷𝐶) ≤ 0 ∧ ¬ (𝐷𝐶) < 0)))
7271simprbda 498 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → (𝐷𝐶) ≤ 0)
73 ply1asclunit.2 . . . . . 6 𝐴 = (algSc‘𝑃)
7422, 5, 12, 73deg1le0 26170 . . . . 5 ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → ((𝐷𝐶) ≤ 0 ↔ 𝐶 = (𝐴‘((coe1𝐶)‘0))))
7574biimpa 476 . . . 4 (((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) ∧ (𝐷𝐶) ≤ 0) → 𝐶 = (𝐴‘((coe1𝐶)‘0)))
7665, 66, 72, 75syl21anc 837 . . 3 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐶 = (𝐴‘((coe1𝐶)‘0)))
771adantr 480 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐹 ∈ Field)
78 0nn0 12568 . . . . 5 0 ∈ ℕ0
79 eqid 2740 . . . . . 6 (coe1𝐶) = (coe1𝐶)
8079, 12, 5, 46coe1fvalcl 22235 . . . . 5 ((𝐶 ∈ (Base‘𝑃) ∧ 0 ∈ ℕ0) → ((coe1𝐶)‘0) ∈ 𝐵)
8166, 78, 80sylancl 585 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → ((coe1𝐶)‘0) ∈ 𝐵)
82 simpl 482 . . . . 5 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝜑)
8371simplbda 499 . . . . . 6 ((𝜑 ∧ (𝐷𝐶) = 0) → ¬ (𝐷𝐶) < 0)
8422, 5, 15, 12deg1lt0 26150 . . . . . . . 8 ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → ((𝐷𝐶) < 0 ↔ 𝐶 = (0g𝑃)))
8584necon3bbid 2984 . . . . . . 7 ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → (¬ (𝐷𝐶) < 0 ↔ 𝐶 ≠ (0g𝑃)))
8685biimpa 476 . . . . . 6 (((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) ∧ ¬ (𝐷𝐶) < 0) → 𝐶 ≠ (0g𝑃))
8765, 66, 83, 86syl21anc 837 . . . . 5 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐶 ≠ (0g𝑃))
883adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → 𝐹 ∈ Ring)
8928adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → 𝐶 ∈ (Base‘𝑃))
90 simpr 484 . . . . . . . 8 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → (𝐷𝐶) ≤ 0)
9122, 5, 49, 12, 15, 88, 89, 90deg1le0eq0 33563 . . . . . . 7 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → (𝐶 = (0g𝑃) ↔ ((coe1𝐶)‘0) = 0 ))
9291necon3bid 2991 . . . . . 6 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → (𝐶 ≠ (0g𝑃) ↔ ((coe1𝐶)‘0) ≠ 0 ))
9392biimpa 476 . . . . 5 (((𝜑 ∧ (𝐷𝐶) ≤ 0) ∧ 𝐶 ≠ (0g𝑃)) → ((coe1𝐶)‘0) ≠ 0 )
9482, 72, 87, 93syl21anc 837 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → ((coe1𝐶)‘0) ≠ 0 )
955, 73, 46, 49, 77, 81, 94ply1asclunit 33564 . . 3 ((𝜑 ∧ (𝐷𝐶) = 0) → (𝐴‘((coe1𝐶)‘0)) ∈ (Unit‘𝑃))
9676, 95eqeltrd 2844 . 2 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐶 ∈ (Unit‘𝑃))
9764, 96impbida 800 1 (𝜑 → (𝐶 ∈ (Unit‘𝑃) ↔ (𝐷𝐶) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  0cn0 12553  Basecbs 17258  .rcmulr 17312  0gc0g 17499  1rcur 20208  Ringcrg 20260  Unitcui 20381  invrcinvr 20413  NzRingcnzr 20538  RLRegcrlreg 20713  Domncdomn 20714  DivRingcdr 20751  Fieldcfield 20752  algSccascl 21895  Poly1cpl1 22199  coe1cco1 22200  deg1cdg1 26113  Monic1pcmn1 26185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-domn 20717  df-drng 20753  df-field 20754  df-lmod 20882  df-lss 20953  df-cnfld 21388  df-assa 21896  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mdeg 26114  df-deg1 26115  df-mon1 26190
This theorem is referenced by:  ply1dg3rt0irred  33572  m1pmeq  33573
  Copyright terms: Public domain W3C validator