Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1unit Structured version   Visualization version   GIF version

Theorem ply1unit 33537
Description: In a field 𝐹, a polynomial 𝐶 is a unit iff it has degree 0. This corresponds to the nonzero scalars, see ply1asclunit 33536. (Contributed by Thierry Arnoux, 25-Apr-2025.)
Hypotheses
Ref Expression
ply1asclunit.1 𝑃 = (Poly1𝐹)
ply1asclunit.2 𝐴 = (algSc‘𝑃)
ply1asclunit.3 𝐵 = (Base‘𝐹)
ply1asclunit.4 0 = (0g𝐹)
ply1asclunit.5 (𝜑𝐹 ∈ Field)
ply1unit.d 𝐷 = (deg1𝐹)
ply1unit.f (𝜑𝐶 ∈ (Base‘𝑃))
Assertion
Ref Expression
ply1unit (𝜑 → (𝐶 ∈ (Unit‘𝑃) ↔ (𝐷𝐶) = 0))

Proof of Theorem ply1unit
StepHypRef Expression
1 ply1asclunit.5 . . . . . . . . 9 (𝜑𝐹 ∈ Field)
21fldcrngd 20662 . . . . . . . 8 (𝜑𝐹 ∈ CRing)
32crngringd 20166 . . . . . . 7 (𝜑𝐹 ∈ Ring)
43adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐹 ∈ Ring)
5 ply1asclunit.1 . . . . . . . . . 10 𝑃 = (Poly1𝐹)
65ply1ring 22165 . . . . . . . . 9 (𝐹 ∈ Ring → 𝑃 ∈ Ring)
73, 6syl 17 . . . . . . . 8 (𝜑𝑃 ∈ Ring)
8 eqid 2729 . . . . . . . . 9 (Unit‘𝑃) = (Unit‘𝑃)
9 eqid 2729 . . . . . . . . 9 (invr𝑃) = (invr𝑃)
108, 9unitinvcl 20310 . . . . . . . 8 ((𝑃 ∈ Ring ∧ 𝐶 ∈ (Unit‘𝑃)) → ((invr𝑃)‘𝐶) ∈ (Unit‘𝑃))
117, 10sylan 580 . . . . . . 7 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((invr𝑃)‘𝐶) ∈ (Unit‘𝑃))
12 eqid 2729 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
1312, 8unitcl 20295 . . . . . . 7 (((invr𝑃)‘𝐶) ∈ (Unit‘𝑃) → ((invr𝑃)‘𝐶) ∈ (Base‘𝑃))
1411, 13syl 17 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((invr𝑃)‘𝐶) ∈ (Base‘𝑃))
15 eqid 2729 . . . . . . 7 (0g𝑃) = (0g𝑃)
161flddrngd 20661 . . . . . . . . 9 (𝜑𝐹 ∈ DivRing)
17 drngnzr 20668 . . . . . . . . 9 (𝐹 ∈ DivRing → 𝐹 ∈ NzRing)
185ply1nz 26060 . . . . . . . . 9 (𝐹 ∈ NzRing → 𝑃 ∈ NzRing)
1916, 17, 183syl 18 . . . . . . . 8 (𝜑𝑃 ∈ NzRing)
2019adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝑃 ∈ NzRing)
218, 15, 20, 11unitnz 33206 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((invr𝑃)‘𝐶) ≠ (0g𝑃))
22 ply1unit.d . . . . . . 7 𝐷 = (deg1𝐹)
2322, 5, 15, 12deg1nn0cl 26026 . . . . . 6 ((𝐹 ∈ Ring ∧ ((invr𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ ((invr𝑃)‘𝐶) ≠ (0g𝑃)) → (𝐷‘((invr𝑃)‘𝐶)) ∈ ℕ0)
244, 14, 21, 23syl3anc 1373 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘((invr𝑃)‘𝐶)) ∈ ℕ0)
2524nn0red 12480 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ)
2624nn0ge0d 12482 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 0 ≤ (𝐷‘((invr𝑃)‘𝐶)))
2725, 26jca 511 . . 3 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr𝑃)‘𝐶))))
28 ply1unit.f . . . . . 6 (𝜑𝐶 ∈ (Base‘𝑃))
2928adantr 480 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐶 ∈ (Base‘𝑃))
30 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐶 ∈ (Unit‘𝑃))
318, 15, 20, 30unitnz 33206 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐶 ≠ (0g𝑃))
3222, 5, 15, 12deg1nn0cl 26026 . . . . 5 ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃) ∧ 𝐶 ≠ (0g𝑃)) → (𝐷𝐶) ∈ ℕ0)
334, 29, 31, 32syl3anc 1373 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷𝐶) ∈ ℕ0)
3433nn0red 12480 . . 3 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷𝐶) ∈ ℝ)
3533nn0ge0d 12482 . . 3 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 0 ≤ (𝐷𝐶))
36 eqid 2729 . . . . . . 7 (.r𝑃) = (.r𝑃)
37 eqid 2729 . . . . . . 7 (1r𝑃) = (1r𝑃)
388, 9, 36, 37unitlinv 20313 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝐶 ∈ (Unit‘𝑃)) → (((invr𝑃)‘𝐶)(.r𝑃)𝐶) = (1r𝑃))
397, 38sylan 580 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (((invr𝑃)‘𝐶)(.r𝑃)𝐶) = (1r𝑃))
4039fveq2d 6844 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(((invr𝑃)‘𝐶)(.r𝑃)𝐶)) = (𝐷‘(1r𝑃)))
41 eqid 2729 . . . . 5 (RLReg‘𝐹) = (RLReg‘𝐹)
42 drngdomn 20669 . . . . . . . 8 (𝐹 ∈ DivRing → 𝐹 ∈ Domn)
4316, 42syl 17 . . . . . . 7 (𝜑𝐹 ∈ Domn)
4443adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐹 ∈ Domn)
45 eqid 2729 . . . . . . . 8 (coe1‘((invr𝑃)‘𝐶)) = (coe1‘((invr𝑃)‘𝐶))
46 ply1asclunit.3 . . . . . . . 8 𝐵 = (Base‘𝐹)
4745, 12, 5, 46coe1fvalcl 22130 . . . . . . 7 ((((invr𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ (𝐷‘((invr𝑃)‘𝐶)) ∈ ℕ0) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ 𝐵)
4814, 24, 47syl2anc 584 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ 𝐵)
49 ply1asclunit.4 . . . . . . . 8 0 = (0g𝐹)
5022, 5, 15, 12, 49, 45deg1ldg 26030 . . . . . . 7 ((𝐹 ∈ Ring ∧ ((invr𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ ((invr𝑃)‘𝐶) ≠ (0g𝑃)) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ≠ 0 )
514, 14, 21, 50syl3anc 1373 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ≠ 0 )
5246, 41, 49domnrrg 20633 . . . . . 6 ((𝐹 ∈ Domn ∧ ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ 𝐵 ∧ ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ≠ 0 ) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ (RLReg‘𝐹))
5344, 48, 51, 52syl3anc 1373 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ (RLReg‘𝐹))
5422, 5, 41, 12, 36, 15, 4, 14, 21, 53, 29, 31deg1mul2 26052 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(((invr𝑃)‘𝐶)(.r𝑃)𝐶)) = ((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)))
55 eqid 2729 . . . . . . . 8 (Monic1p𝐹) = (Monic1p𝐹)
565, 37, 55, 22mon1pid 26092 . . . . . . 7 (𝐹 ∈ NzRing → ((1r𝑃) ∈ (Monic1p𝐹) ∧ (𝐷‘(1r𝑃)) = 0))
5756simprd 495 . . . . . 6 (𝐹 ∈ NzRing → (𝐷‘(1r𝑃)) = 0)
5816, 17, 573syl 18 . . . . 5 (𝜑 → (𝐷‘(1r𝑃)) = 0)
5958adantr 480 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(1r𝑃)) = 0)
6040, 54, 593eqtr3d 2772 . . 3 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)) = 0)
61 add20 11666 . . . . 5 ((((𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr𝑃)‘𝐶))) ∧ ((𝐷𝐶) ∈ ℝ ∧ 0 ≤ (𝐷𝐶))) → (((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)) = 0 ↔ ((𝐷‘((invr𝑃)‘𝐶)) = 0 ∧ (𝐷𝐶) = 0)))
6261anassrs 467 . . . 4 (((((𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr𝑃)‘𝐶))) ∧ (𝐷𝐶) ∈ ℝ) ∧ 0 ≤ (𝐷𝐶)) → (((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)) = 0 ↔ ((𝐷‘((invr𝑃)‘𝐶)) = 0 ∧ (𝐷𝐶) = 0)))
6362simplbda 499 . . 3 ((((((𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr𝑃)‘𝐶))) ∧ (𝐷𝐶) ∈ ℝ) ∧ 0 ≤ (𝐷𝐶)) ∧ ((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)) = 0) → (𝐷𝐶) = 0)
6427, 34, 35, 60, 63syl1111anc 840 . 2 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷𝐶) = 0)
653adantr 480 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐹 ∈ Ring)
6628adantr 480 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐶 ∈ (Base‘𝑃))
6722, 5, 12deg1xrcl 26020 . . . . . . 7 (𝐶 ∈ (Base‘𝑃) → (𝐷𝐶) ∈ ℝ*)
6828, 67syl 17 . . . . . 6 (𝜑 → (𝐷𝐶) ∈ ℝ*)
69 0xr 11197 . . . . . 6 0 ∈ ℝ*
70 xeqlelt 32749 . . . . . 6 (((𝐷𝐶) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝐷𝐶) = 0 ↔ ((𝐷𝐶) ≤ 0 ∧ ¬ (𝐷𝐶) < 0)))
7168, 69, 70sylancl 586 . . . . 5 (𝜑 → ((𝐷𝐶) = 0 ↔ ((𝐷𝐶) ≤ 0 ∧ ¬ (𝐷𝐶) < 0)))
7271simprbda 498 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → (𝐷𝐶) ≤ 0)
73 ply1asclunit.2 . . . . . 6 𝐴 = (algSc‘𝑃)
7422, 5, 12, 73deg1le0 26049 . . . . 5 ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → ((𝐷𝐶) ≤ 0 ↔ 𝐶 = (𝐴‘((coe1𝐶)‘0))))
7574biimpa 476 . . . 4 (((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) ∧ (𝐷𝐶) ≤ 0) → 𝐶 = (𝐴‘((coe1𝐶)‘0)))
7665, 66, 72, 75syl21anc 837 . . 3 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐶 = (𝐴‘((coe1𝐶)‘0)))
771adantr 480 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐹 ∈ Field)
78 0nn0 12433 . . . . 5 0 ∈ ℕ0
79 eqid 2729 . . . . . 6 (coe1𝐶) = (coe1𝐶)
8079, 12, 5, 46coe1fvalcl 22130 . . . . 5 ((𝐶 ∈ (Base‘𝑃) ∧ 0 ∈ ℕ0) → ((coe1𝐶)‘0) ∈ 𝐵)
8166, 78, 80sylancl 586 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → ((coe1𝐶)‘0) ∈ 𝐵)
82 simpl 482 . . . . 5 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝜑)
8371simplbda 499 . . . . . 6 ((𝜑 ∧ (𝐷𝐶) = 0) → ¬ (𝐷𝐶) < 0)
8422, 5, 15, 12deg1lt0 26029 . . . . . . . 8 ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → ((𝐷𝐶) < 0 ↔ 𝐶 = (0g𝑃)))
8584necon3bbid 2962 . . . . . . 7 ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → (¬ (𝐷𝐶) < 0 ↔ 𝐶 ≠ (0g𝑃)))
8685biimpa 476 . . . . . 6 (((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) ∧ ¬ (𝐷𝐶) < 0) → 𝐶 ≠ (0g𝑃))
8765, 66, 83, 86syl21anc 837 . . . . 5 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐶 ≠ (0g𝑃))
883adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → 𝐹 ∈ Ring)
8928adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → 𝐶 ∈ (Base‘𝑃))
90 simpr 484 . . . . . . . 8 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → (𝐷𝐶) ≤ 0)
9122, 5, 49, 12, 15, 88, 89, 90deg1le0eq0 33535 . . . . . . 7 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → (𝐶 = (0g𝑃) ↔ ((coe1𝐶)‘0) = 0 ))
9291necon3bid 2969 . . . . . 6 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → (𝐶 ≠ (0g𝑃) ↔ ((coe1𝐶)‘0) ≠ 0 ))
9392biimpa 476 . . . . 5 (((𝜑 ∧ (𝐷𝐶) ≤ 0) ∧ 𝐶 ≠ (0g𝑃)) → ((coe1𝐶)‘0) ≠ 0 )
9482, 72, 87, 93syl21anc 837 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → ((coe1𝐶)‘0) ≠ 0 )
955, 73, 46, 49, 77, 81, 94ply1asclunit 33536 . . 3 ((𝜑 ∧ (𝐷𝐶) = 0) → (𝐴‘((coe1𝐶)‘0)) ∈ (Unit‘𝑃))
9676, 95eqeltrd 2828 . 2 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐶 ∈ (Unit‘𝑃))
9764, 96impbida 800 1 (𝜑 → (𝐶 ∈ (Unit‘𝑃) ↔ (𝐷𝐶) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044   + caddc 11047  *cxr 11183   < clt 11184  cle 11185  0cn0 12418  Basecbs 17155  .rcmulr 17197  0gc0g 17378  1rcur 20101  Ringcrg 20153  Unitcui 20275  invrcinvr 20307  NzRingcnzr 20432  RLRegcrlreg 20611  Domncdomn 20612  DivRingcdr 20649  Fieldcfield 20650  algSccascl 21794  Poly1cpl1 22094  coe1cco1 22095  deg1cdg1 25992  Monic1pcmn1 26064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-rhm 20392  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-domn 20615  df-drng 20651  df-field 20652  df-lmod 20800  df-lss 20870  df-cnfld 21297  df-assa 21795  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-mdeg 25993  df-deg1 25994  df-mon1 26069
This theorem is referenced by:  ply1dg3rt0irred  33544  m1pmeq  33545
  Copyright terms: Public domain W3C validator