Proof of Theorem ply1unit
Step | Hyp | Ref
| Expression |
1 | | ply1asclunit.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ Field) |
2 | 1 | fldcrngd 20644 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ CRing) |
3 | 2 | crngringd 20193 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ Ring) |
4 | 3 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 𝐹 ∈ Ring) |
5 | | ply1asclunit.1 |
. . . . . . . . . 10
⊢ 𝑃 = (Poly1‘𝐹) |
6 | 5 | ply1ring 22173 |
. . . . . . . . 9
⊢ (𝐹 ∈ Ring → 𝑃 ∈ Ring) |
7 | 3, 6 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ Ring) |
8 | | eqid 2728 |
. . . . . . . . 9
⊢
(Unit‘𝑃) =
(Unit‘𝑃) |
9 | | eqid 2728 |
. . . . . . . . 9
⊢
(invr‘𝑃) = (invr‘𝑃) |
10 | 8, 9 | unitinvcl 20336 |
. . . . . . . 8
⊢ ((𝑃 ∈ Ring ∧ 𝐶 ∈ (Unit‘𝑃)) →
((invr‘𝑃)‘𝐶) ∈ (Unit‘𝑃)) |
11 | 7, 10 | sylan 578 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → ((invr‘𝑃)‘𝐶) ∈ (Unit‘𝑃)) |
12 | | eqid 2728 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘𝑃) |
13 | 12, 8 | unitcl 20321 |
. . . . . . 7
⊢
(((invr‘𝑃)‘𝐶) ∈ (Unit‘𝑃) → ((invr‘𝑃)‘𝐶) ∈ (Base‘𝑃)) |
14 | 11, 13 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → ((invr‘𝑃)‘𝐶) ∈ (Base‘𝑃)) |
15 | | eqid 2728 |
. . . . . . 7
⊢
(0g‘𝑃) = (0g‘𝑃) |
16 | 1 | flddrngd 20643 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ DivRing) |
17 | | drngnzr 20651 |
. . . . . . . . 9
⊢ (𝐹 ∈ DivRing → 𝐹 ∈ NzRing) |
18 | 5 | ply1nz 26077 |
. . . . . . . . 9
⊢ (𝐹 ∈ NzRing → 𝑃 ∈ NzRing) |
19 | 16, 17, 18 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ NzRing) |
20 | 19 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 𝑃 ∈ NzRing) |
21 | 8, 15, 20, 11 | unitnz 32967 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → ((invr‘𝑃)‘𝐶) ≠ (0g‘𝑃)) |
22 | | ply1unit.d |
. . . . . . 7
⊢ 𝐷 = ( deg1
‘𝐹) |
23 | 22, 5, 15, 12 | deg1nn0cl 26044 |
. . . . . 6
⊢ ((𝐹 ∈ Ring ∧
((invr‘𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ ((invr‘𝑃)‘𝐶) ≠ (0g‘𝑃)) → (𝐷‘((invr‘𝑃)‘𝐶)) ∈
ℕ0) |
24 | 4, 14, 21, 23 | syl3anc 1368 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘((invr‘𝑃)‘𝐶)) ∈
ℕ0) |
25 | 24 | nn0red 12571 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘((invr‘𝑃)‘𝐶)) ∈ ℝ) |
26 | 24 | nn0ge0d 12573 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 0 ≤ (𝐷‘((invr‘𝑃)‘𝐶))) |
27 | 25, 26 | jca 510 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → ((𝐷‘((invr‘𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr‘𝑃)‘𝐶)))) |
28 | | ply1unit.f |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ (Base‘𝑃)) |
29 | 28 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 𝐶 ∈ (Base‘𝑃)) |
30 | | simpr 483 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 𝐶 ∈ (Unit‘𝑃)) |
31 | 8, 15, 20, 30 | unitnz 32967 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 𝐶 ≠ (0g‘𝑃)) |
32 | 22, 5, 15, 12 | deg1nn0cl 26044 |
. . . . 5
⊢ ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃) ∧ 𝐶 ≠ (0g‘𝑃)) → (𝐷‘𝐶) ∈
ℕ0) |
33 | 4, 29, 31, 32 | syl3anc 1368 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘𝐶) ∈
ℕ0) |
34 | 33 | nn0red 12571 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘𝐶) ∈ ℝ) |
35 | 33 | nn0ge0d 12573 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 0 ≤ (𝐷‘𝐶)) |
36 | | eqid 2728 |
. . . . . . 7
⊢
(.r‘𝑃) = (.r‘𝑃) |
37 | | eqid 2728 |
. . . . . . 7
⊢
(1r‘𝑃) = (1r‘𝑃) |
38 | 8, 9, 36, 37 | unitlinv 20339 |
. . . . . 6
⊢ ((𝑃 ∈ Ring ∧ 𝐶 ∈ (Unit‘𝑃)) →
(((invr‘𝑃)‘𝐶)(.r‘𝑃)𝐶) = (1r‘𝑃)) |
39 | 7, 38 | sylan 578 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (((invr‘𝑃)‘𝐶)(.r‘𝑃)𝐶) = (1r‘𝑃)) |
40 | 39 | fveq2d 6906 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(((invr‘𝑃)‘𝐶)(.r‘𝑃)𝐶)) = (𝐷‘(1r‘𝑃))) |
41 | | eqid 2728 |
. . . . 5
⊢
(RLReg‘𝐹) =
(RLReg‘𝐹) |
42 | | drngdomn 21260 |
. . . . . . . 8
⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Domn) |
43 | 16, 42 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ Domn) |
44 | 43 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → 𝐹 ∈ Domn) |
45 | | eqid 2728 |
. . . . . . . 8
⊢
(coe1‘((invr‘𝑃)‘𝐶)) =
(coe1‘((invr‘𝑃)‘𝐶)) |
46 | | ply1asclunit.3 |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐹) |
47 | 45, 12, 5, 46 | coe1fvalcl 22138 |
. . . . . . 7
⊢
((((invr‘𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ (𝐷‘((invr‘𝑃)‘𝐶)) ∈ ℕ0) →
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ∈ 𝐵) |
48 | 14, 24, 47 | syl2anc 582 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) →
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ∈ 𝐵) |
49 | | ply1asclunit.4 |
. . . . . . . 8
⊢ 0 =
(0g‘𝐹) |
50 | 22, 5, 15, 12, 49, 45 | deg1ldg 26048 |
. . . . . . 7
⊢ ((𝐹 ∈ Ring ∧
((invr‘𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ ((invr‘𝑃)‘𝐶) ≠ (0g‘𝑃)) →
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ≠ 0 ) |
51 | 4, 14, 21, 50 | syl3anc 1368 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) →
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ≠ 0 ) |
52 | 46, 41, 49 | domnrrg 21254 |
. . . . . 6
⊢ ((𝐹 ∈ Domn ∧
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ∈ 𝐵 ∧
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ≠ 0 ) →
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ∈ (RLReg‘𝐹)) |
53 | 44, 48, 51, 52 | syl3anc 1368 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) →
((coe1‘((invr‘𝑃)‘𝐶))‘(𝐷‘((invr‘𝑃)‘𝐶))) ∈ (RLReg‘𝐹)) |
54 | 22, 5, 41, 12, 36, 15, 4, 14, 21, 53, 29, 31 | deg1mul2 26070 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(((invr‘𝑃)‘𝐶)(.r‘𝑃)𝐶)) = ((𝐷‘((invr‘𝑃)‘𝐶)) + (𝐷‘𝐶))) |
55 | | eqid 2728 |
. . . . . . . 8
⊢
(Monic1p‘𝐹) = (Monic1p‘𝐹) |
56 | 5, 37, 55, 22 | mon1pid 26109 |
. . . . . . 7
⊢ (𝐹 ∈ NzRing →
((1r‘𝑃)
∈ (Monic1p‘𝐹) ∧ (𝐷‘(1r‘𝑃)) = 0)) |
57 | 56 | simprd 494 |
. . . . . 6
⊢ (𝐹 ∈ NzRing → (𝐷‘(1r‘𝑃)) = 0) |
58 | 16, 17, 57 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (𝐷‘(1r‘𝑃)) = 0) |
59 | 58 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(1r‘𝑃)) = 0) |
60 | 40, 54, 59 | 3eqtr3d 2776 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → ((𝐷‘((invr‘𝑃)‘𝐶)) + (𝐷‘𝐶)) = 0) |
61 | | add20 11764 |
. . . . 5
⊢ ((((𝐷‘((invr‘𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr‘𝑃)‘𝐶))) ∧ ((𝐷‘𝐶) ∈ ℝ ∧ 0 ≤ (𝐷‘𝐶))) → (((𝐷‘((invr‘𝑃)‘𝐶)) + (𝐷‘𝐶)) = 0 ↔ ((𝐷‘((invr‘𝑃)‘𝐶)) = 0 ∧ (𝐷‘𝐶) = 0))) |
62 | 61 | anassrs 466 |
. . . 4
⊢
(((((𝐷‘((invr‘𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr‘𝑃)‘𝐶))) ∧ (𝐷‘𝐶) ∈ ℝ) ∧ 0 ≤ (𝐷‘𝐶)) → (((𝐷‘((invr‘𝑃)‘𝐶)) + (𝐷‘𝐶)) = 0 ↔ ((𝐷‘((invr‘𝑃)‘𝐶)) = 0 ∧ (𝐷‘𝐶) = 0))) |
63 | 62 | simplbda 498 |
. . 3
⊢
((((((𝐷‘((invr‘𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr‘𝑃)‘𝐶))) ∧ (𝐷‘𝐶) ∈ ℝ) ∧ 0 ≤ (𝐷‘𝐶)) ∧ ((𝐷‘((invr‘𝑃)‘𝐶)) + (𝐷‘𝐶)) = 0) → (𝐷‘𝐶) = 0) |
64 | 27, 34, 35, 60, 63 | syl1111anc 838 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ (Unit‘𝑃)) → (𝐷‘𝐶) = 0) |
65 | 3 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝐹 ∈ Ring) |
66 | 28 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝐶 ∈ (Base‘𝑃)) |
67 | 22, 5, 12 | deg1xrcl 26038 |
. . . . . . 7
⊢ (𝐶 ∈ (Base‘𝑃) → (𝐷‘𝐶) ∈
ℝ*) |
68 | 28, 67 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐷‘𝐶) ∈
ℝ*) |
69 | | 0xr 11299 |
. . . . . 6
⊢ 0 ∈
ℝ* |
70 | | xeqlelt 32565 |
. . . . . 6
⊢ (((𝐷‘𝐶) ∈ ℝ* ∧ 0 ∈
ℝ*) → ((𝐷‘𝐶) = 0 ↔ ((𝐷‘𝐶) ≤ 0 ∧ ¬ (𝐷‘𝐶) < 0))) |
71 | 68, 69, 70 | sylancl 584 |
. . . . 5
⊢ (𝜑 → ((𝐷‘𝐶) = 0 ↔ ((𝐷‘𝐶) ≤ 0 ∧ ¬ (𝐷‘𝐶) < 0))) |
72 | 71 | simprbda 497 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → (𝐷‘𝐶) ≤ 0) |
73 | | ply1asclunit.2 |
. . . . . 6
⊢ 𝐴 = (algSc‘𝑃) |
74 | 22, 5, 12, 73 | deg1le0 26067 |
. . . . 5
⊢ ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → ((𝐷‘𝐶) ≤ 0 ↔ 𝐶 = (𝐴‘((coe1‘𝐶)‘0)))) |
75 | 74 | biimpa 475 |
. . . 4
⊢ (((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) ∧ (𝐷‘𝐶) ≤ 0) → 𝐶 = (𝐴‘((coe1‘𝐶)‘0))) |
76 | 65, 66, 72, 75 | syl21anc 836 |
. . 3
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝐶 = (𝐴‘((coe1‘𝐶)‘0))) |
77 | 1 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝐹 ∈ Field) |
78 | | 0nn0 12525 |
. . . . 5
⊢ 0 ∈
ℕ0 |
79 | | eqid 2728 |
. . . . . 6
⊢
(coe1‘𝐶) = (coe1‘𝐶) |
80 | 79, 12, 5, 46 | coe1fvalcl 22138 |
. . . . 5
⊢ ((𝐶 ∈ (Base‘𝑃) ∧ 0 ∈
ℕ0) → ((coe1‘𝐶)‘0) ∈ 𝐵) |
81 | 66, 78, 80 | sylancl 584 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → ((coe1‘𝐶)‘0) ∈ 𝐵) |
82 | | simpl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝜑) |
83 | 71 | simplbda 498 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → ¬ (𝐷‘𝐶) < 0) |
84 | 22, 5, 15, 12 | deg1lt0 26047 |
. . . . . . . 8
⊢ ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → ((𝐷‘𝐶) < 0 ↔ 𝐶 = (0g‘𝑃))) |
85 | 84 | necon3bbid 2975 |
. . . . . . 7
⊢ ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → (¬ (𝐷‘𝐶) < 0 ↔ 𝐶 ≠ (0g‘𝑃))) |
86 | 85 | biimpa 475 |
. . . . . 6
⊢ (((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) ∧ ¬ (𝐷‘𝐶) < 0) → 𝐶 ≠ (0g‘𝑃)) |
87 | 65, 66, 83, 86 | syl21anc 836 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝐶 ≠ (0g‘𝑃)) |
88 | 3 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐷‘𝐶) ≤ 0) → 𝐹 ∈ Ring) |
89 | 28 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐷‘𝐶) ≤ 0) → 𝐶 ∈ (Base‘𝑃)) |
90 | | simpr 483 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐷‘𝐶) ≤ 0) → (𝐷‘𝐶) ≤ 0) |
91 | 22, 5, 49, 12, 15, 88, 89, 90 | deg1le0eq0 33291 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐷‘𝐶) ≤ 0) → (𝐶 = (0g‘𝑃) ↔ ((coe1‘𝐶)‘0) = 0 )) |
92 | 91 | necon3bid 2982 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐷‘𝐶) ≤ 0) → (𝐶 ≠ (0g‘𝑃) ↔ ((coe1‘𝐶)‘0) ≠ 0
)) |
93 | 92 | biimpa 475 |
. . . . 5
⊢ (((𝜑 ∧ (𝐷‘𝐶) ≤ 0) ∧ 𝐶 ≠ (0g‘𝑃)) → ((coe1‘𝐶)‘0) ≠ 0
) |
94 | 82, 72, 87, 93 | syl21anc 836 |
. . . 4
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → ((coe1‘𝐶)‘0) ≠ 0
) |
95 | 5, 73, 46, 49, 77, 81, 94 | ply1asclunit 33292 |
. . 3
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → (𝐴‘((coe1‘𝐶)‘0)) ∈
(Unit‘𝑃)) |
96 | 76, 95 | eqeltrd 2829 |
. 2
⊢ ((𝜑 ∧ (𝐷‘𝐶) = 0) → 𝐶 ∈ (Unit‘𝑃)) |
97 | 64, 96 | impbida 799 |
1
⊢ (𝜑 → (𝐶 ∈ (Unit‘𝑃) ↔ (𝐷‘𝐶) = 0)) |