Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1unit Structured version   Visualization version   GIF version

Theorem ply1unit 33511
Description: In a field 𝐹, a polynomial 𝐶 is a unit iff it has degree 0. This corresponds to the nonzero scalars, see ply1asclunit 33510. (Contributed by Thierry Arnoux, 25-Apr-2025.)
Hypotheses
Ref Expression
ply1asclunit.1 𝑃 = (Poly1𝐹)
ply1asclunit.2 𝐴 = (algSc‘𝑃)
ply1asclunit.3 𝐵 = (Base‘𝐹)
ply1asclunit.4 0 = (0g𝐹)
ply1asclunit.5 (𝜑𝐹 ∈ Field)
ply1unit.d 𝐷 = (deg1𝐹)
ply1unit.f (𝜑𝐶 ∈ (Base‘𝑃))
Assertion
Ref Expression
ply1unit (𝜑 → (𝐶 ∈ (Unit‘𝑃) ↔ (𝐷𝐶) = 0))

Proof of Theorem ply1unit
StepHypRef Expression
1 ply1asclunit.5 . . . . . . . . 9 (𝜑𝐹 ∈ Field)
21fldcrngd 20627 . . . . . . . 8 (𝜑𝐹 ∈ CRing)
32crngringd 20131 . . . . . . 7 (𝜑𝐹 ∈ Ring)
43adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐹 ∈ Ring)
5 ply1asclunit.1 . . . . . . . . . 10 𝑃 = (Poly1𝐹)
65ply1ring 22130 . . . . . . . . 9 (𝐹 ∈ Ring → 𝑃 ∈ Ring)
73, 6syl 17 . . . . . . . 8 (𝜑𝑃 ∈ Ring)
8 eqid 2729 . . . . . . . . 9 (Unit‘𝑃) = (Unit‘𝑃)
9 eqid 2729 . . . . . . . . 9 (invr𝑃) = (invr𝑃)
108, 9unitinvcl 20275 . . . . . . . 8 ((𝑃 ∈ Ring ∧ 𝐶 ∈ (Unit‘𝑃)) → ((invr𝑃)‘𝐶) ∈ (Unit‘𝑃))
117, 10sylan 580 . . . . . . 7 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((invr𝑃)‘𝐶) ∈ (Unit‘𝑃))
12 eqid 2729 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
1312, 8unitcl 20260 . . . . . . 7 (((invr𝑃)‘𝐶) ∈ (Unit‘𝑃) → ((invr𝑃)‘𝐶) ∈ (Base‘𝑃))
1411, 13syl 17 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((invr𝑃)‘𝐶) ∈ (Base‘𝑃))
15 eqid 2729 . . . . . . 7 (0g𝑃) = (0g𝑃)
161flddrngd 20626 . . . . . . . . 9 (𝜑𝐹 ∈ DivRing)
17 drngnzr 20633 . . . . . . . . 9 (𝐹 ∈ DivRing → 𝐹 ∈ NzRing)
185ply1nz 26025 . . . . . . . . 9 (𝐹 ∈ NzRing → 𝑃 ∈ NzRing)
1916, 17, 183syl 18 . . . . . . . 8 (𝜑𝑃 ∈ NzRing)
2019adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝑃 ∈ NzRing)
218, 15, 20, 11unitnz 33180 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((invr𝑃)‘𝐶) ≠ (0g𝑃))
22 ply1unit.d . . . . . . 7 𝐷 = (deg1𝐹)
2322, 5, 15, 12deg1nn0cl 25991 . . . . . 6 ((𝐹 ∈ Ring ∧ ((invr𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ ((invr𝑃)‘𝐶) ≠ (0g𝑃)) → (𝐷‘((invr𝑃)‘𝐶)) ∈ ℕ0)
244, 14, 21, 23syl3anc 1373 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘((invr𝑃)‘𝐶)) ∈ ℕ0)
2524nn0red 12446 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ)
2624nn0ge0d 12448 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 0 ≤ (𝐷‘((invr𝑃)‘𝐶)))
2725, 26jca 511 . . 3 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr𝑃)‘𝐶))))
28 ply1unit.f . . . . . 6 (𝜑𝐶 ∈ (Base‘𝑃))
2928adantr 480 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐶 ∈ (Base‘𝑃))
30 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐶 ∈ (Unit‘𝑃))
318, 15, 20, 30unitnz 33180 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐶 ≠ (0g𝑃))
3222, 5, 15, 12deg1nn0cl 25991 . . . . 5 ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃) ∧ 𝐶 ≠ (0g𝑃)) → (𝐷𝐶) ∈ ℕ0)
334, 29, 31, 32syl3anc 1373 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷𝐶) ∈ ℕ0)
3433nn0red 12446 . . 3 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷𝐶) ∈ ℝ)
3533nn0ge0d 12448 . . 3 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 0 ≤ (𝐷𝐶))
36 eqid 2729 . . . . . . 7 (.r𝑃) = (.r𝑃)
37 eqid 2729 . . . . . . 7 (1r𝑃) = (1r𝑃)
388, 9, 36, 37unitlinv 20278 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝐶 ∈ (Unit‘𝑃)) → (((invr𝑃)‘𝐶)(.r𝑃)𝐶) = (1r𝑃))
397, 38sylan 580 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (((invr𝑃)‘𝐶)(.r𝑃)𝐶) = (1r𝑃))
4039fveq2d 6826 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(((invr𝑃)‘𝐶)(.r𝑃)𝐶)) = (𝐷‘(1r𝑃)))
41 eqid 2729 . . . . 5 (RLReg‘𝐹) = (RLReg‘𝐹)
42 drngdomn 20634 . . . . . . . 8 (𝐹 ∈ DivRing → 𝐹 ∈ Domn)
4316, 42syl 17 . . . . . . 7 (𝜑𝐹 ∈ Domn)
4443adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → 𝐹 ∈ Domn)
45 eqid 2729 . . . . . . . 8 (coe1‘((invr𝑃)‘𝐶)) = (coe1‘((invr𝑃)‘𝐶))
46 ply1asclunit.3 . . . . . . . 8 𝐵 = (Base‘𝐹)
4745, 12, 5, 46coe1fvalcl 22095 . . . . . . 7 ((((invr𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ (𝐷‘((invr𝑃)‘𝐶)) ∈ ℕ0) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ 𝐵)
4814, 24, 47syl2anc 584 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ 𝐵)
49 ply1asclunit.4 . . . . . . . 8 0 = (0g𝐹)
5022, 5, 15, 12, 49, 45deg1ldg 25995 . . . . . . 7 ((𝐹 ∈ Ring ∧ ((invr𝑃)‘𝐶) ∈ (Base‘𝑃) ∧ ((invr𝑃)‘𝐶) ≠ (0g𝑃)) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ≠ 0 )
514, 14, 21, 50syl3anc 1373 . . . . . 6 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ≠ 0 )
5246, 41, 49domnrrg 20598 . . . . . 6 ((𝐹 ∈ Domn ∧ ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ 𝐵 ∧ ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ≠ 0 ) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ (RLReg‘𝐹))
5344, 48, 51, 52syl3anc 1373 . . . . 5 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((coe1‘((invr𝑃)‘𝐶))‘(𝐷‘((invr𝑃)‘𝐶))) ∈ (RLReg‘𝐹))
5422, 5, 41, 12, 36, 15, 4, 14, 21, 53, 29, 31deg1mul2 26017 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(((invr𝑃)‘𝐶)(.r𝑃)𝐶)) = ((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)))
55 eqid 2729 . . . . . . . 8 (Monic1p𝐹) = (Monic1p𝐹)
565, 37, 55, 22mon1pid 26057 . . . . . . 7 (𝐹 ∈ NzRing → ((1r𝑃) ∈ (Monic1p𝐹) ∧ (𝐷‘(1r𝑃)) = 0))
5756simprd 495 . . . . . 6 (𝐹 ∈ NzRing → (𝐷‘(1r𝑃)) = 0)
5816, 17, 573syl 18 . . . . 5 (𝜑 → (𝐷‘(1r𝑃)) = 0)
5958adantr 480 . . . 4 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷‘(1r𝑃)) = 0)
6040, 54, 593eqtr3d 2772 . . 3 ((𝜑𝐶 ∈ (Unit‘𝑃)) → ((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)) = 0)
61 add20 11632 . . . . 5 ((((𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr𝑃)‘𝐶))) ∧ ((𝐷𝐶) ∈ ℝ ∧ 0 ≤ (𝐷𝐶))) → (((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)) = 0 ↔ ((𝐷‘((invr𝑃)‘𝐶)) = 0 ∧ (𝐷𝐶) = 0)))
6261anassrs 467 . . . 4 (((((𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr𝑃)‘𝐶))) ∧ (𝐷𝐶) ∈ ℝ) ∧ 0 ≤ (𝐷𝐶)) → (((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)) = 0 ↔ ((𝐷‘((invr𝑃)‘𝐶)) = 0 ∧ (𝐷𝐶) = 0)))
6362simplbda 499 . . 3 ((((((𝐷‘((invr𝑃)‘𝐶)) ∈ ℝ ∧ 0 ≤ (𝐷‘((invr𝑃)‘𝐶))) ∧ (𝐷𝐶) ∈ ℝ) ∧ 0 ≤ (𝐷𝐶)) ∧ ((𝐷‘((invr𝑃)‘𝐶)) + (𝐷𝐶)) = 0) → (𝐷𝐶) = 0)
6427, 34, 35, 60, 63syl1111anc 840 . 2 ((𝜑𝐶 ∈ (Unit‘𝑃)) → (𝐷𝐶) = 0)
653adantr 480 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐹 ∈ Ring)
6628adantr 480 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐶 ∈ (Base‘𝑃))
6722, 5, 12deg1xrcl 25985 . . . . . . 7 (𝐶 ∈ (Base‘𝑃) → (𝐷𝐶) ∈ ℝ*)
6828, 67syl 17 . . . . . 6 (𝜑 → (𝐷𝐶) ∈ ℝ*)
69 0xr 11162 . . . . . 6 0 ∈ ℝ*
70 xeqlelt 32720 . . . . . 6 (((𝐷𝐶) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝐷𝐶) = 0 ↔ ((𝐷𝐶) ≤ 0 ∧ ¬ (𝐷𝐶) < 0)))
7168, 69, 70sylancl 586 . . . . 5 (𝜑 → ((𝐷𝐶) = 0 ↔ ((𝐷𝐶) ≤ 0 ∧ ¬ (𝐷𝐶) < 0)))
7271simprbda 498 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → (𝐷𝐶) ≤ 0)
73 ply1asclunit.2 . . . . . 6 𝐴 = (algSc‘𝑃)
7422, 5, 12, 73deg1le0 26014 . . . . 5 ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → ((𝐷𝐶) ≤ 0 ↔ 𝐶 = (𝐴‘((coe1𝐶)‘0))))
7574biimpa 476 . . . 4 (((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) ∧ (𝐷𝐶) ≤ 0) → 𝐶 = (𝐴‘((coe1𝐶)‘0)))
7665, 66, 72, 75syl21anc 837 . . 3 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐶 = (𝐴‘((coe1𝐶)‘0)))
771adantr 480 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐹 ∈ Field)
78 0nn0 12399 . . . . 5 0 ∈ ℕ0
79 eqid 2729 . . . . . 6 (coe1𝐶) = (coe1𝐶)
8079, 12, 5, 46coe1fvalcl 22095 . . . . 5 ((𝐶 ∈ (Base‘𝑃) ∧ 0 ∈ ℕ0) → ((coe1𝐶)‘0) ∈ 𝐵)
8166, 78, 80sylancl 586 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → ((coe1𝐶)‘0) ∈ 𝐵)
82 simpl 482 . . . . 5 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝜑)
8371simplbda 499 . . . . . 6 ((𝜑 ∧ (𝐷𝐶) = 0) → ¬ (𝐷𝐶) < 0)
8422, 5, 15, 12deg1lt0 25994 . . . . . . . 8 ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → ((𝐷𝐶) < 0 ↔ 𝐶 = (0g𝑃)))
8584necon3bbid 2962 . . . . . . 7 ((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) → (¬ (𝐷𝐶) < 0 ↔ 𝐶 ≠ (0g𝑃)))
8685biimpa 476 . . . . . 6 (((𝐹 ∈ Ring ∧ 𝐶 ∈ (Base‘𝑃)) ∧ ¬ (𝐷𝐶) < 0) → 𝐶 ≠ (0g𝑃))
8765, 66, 83, 86syl21anc 837 . . . . 5 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐶 ≠ (0g𝑃))
883adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → 𝐹 ∈ Ring)
8928adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → 𝐶 ∈ (Base‘𝑃))
90 simpr 484 . . . . . . . 8 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → (𝐷𝐶) ≤ 0)
9122, 5, 49, 12, 15, 88, 89, 90deg1le0eq0 33509 . . . . . . 7 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → (𝐶 = (0g𝑃) ↔ ((coe1𝐶)‘0) = 0 ))
9291necon3bid 2969 . . . . . 6 ((𝜑 ∧ (𝐷𝐶) ≤ 0) → (𝐶 ≠ (0g𝑃) ↔ ((coe1𝐶)‘0) ≠ 0 ))
9392biimpa 476 . . . . 5 (((𝜑 ∧ (𝐷𝐶) ≤ 0) ∧ 𝐶 ≠ (0g𝑃)) → ((coe1𝐶)‘0) ≠ 0 )
9482, 72, 87, 93syl21anc 837 . . . 4 ((𝜑 ∧ (𝐷𝐶) = 0) → ((coe1𝐶)‘0) ≠ 0 )
955, 73, 46, 49, 77, 81, 94ply1asclunit 33510 . . 3 ((𝜑 ∧ (𝐷𝐶) = 0) → (𝐴‘((coe1𝐶)‘0)) ∈ (Unit‘𝑃))
9676, 95eqeltrd 2828 . 2 ((𝜑 ∧ (𝐷𝐶) = 0) → 𝐶 ∈ (Unit‘𝑃))
9764, 96impbida 800 1 (𝜑 → (𝐶 ∈ (Unit‘𝑃) ↔ (𝐷𝐶) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009   + caddc 11012  *cxr 11148   < clt 11149  cle 11150  0cn0 12384  Basecbs 17120  .rcmulr 17162  0gc0g 17343  1rcur 20066  Ringcrg 20118  Unitcui 20240  invrcinvr 20272  NzRingcnzr 20397  RLRegcrlreg 20576  Domncdomn 20577  DivRingcdr 20614  Fieldcfield 20615  algSccascl 21759  Poly1cpl1 22059  coe1cco1 22060  deg1cdg1 25957  Monic1pcmn1 26029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-drng 20616  df-field 20617  df-lmod 20765  df-lss 20835  df-cnfld 21262  df-assa 21760  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-mdeg 25958  df-deg1 25959  df-mon1 26034
This theorem is referenced by:  ply1dg3rt0irred  33519  m1pmeq  33520
  Copyright terms: Public domain W3C validator