Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem4 Structured version   Visualization version   GIF version

Theorem algextdeglem4 33683
Description: Lemma for algextdeg 33688. By lmhmqusker 33361, the surjective module homomorphism 𝐺 described in algextdeglem2 33681 induces an isomorphism with the quotient space. Therefore, the dimension of that quotient space 𝑃 / 𝑍 is the degree of the algebraic field extension. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
Assertion
Ref Expression
algextdeglem4 (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝐸(𝑥)   𝐾(𝑥)   𝑀(𝑥,𝑝)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem4
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 algextdeg.e . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐸))
2 issdrg 20673 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
31, 2sylib 218 . . . . . . 7 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
43simp2d 1143 . . . . . 6 (𝜑𝐹 ∈ (SubRing‘𝐸))
5 subrgsubg 20462 . . . . . 6 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
6 eqid 2729 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
76subgss 19035 . . . . . 6 (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸))
84, 5, 73syl 18 . . . . 5 (𝜑𝐹 ⊆ (Base‘𝐸))
9 algextdeg.k . . . . . 6 𝐾 = (𝐸s 𝐹)
109, 6ressbas2 17184 . . . . 5 (𝐹 ⊆ (Base‘𝐸) → 𝐹 = (Base‘𝐾))
118, 10syl 17 . . . 4 (𝜑𝐹 = (Base‘𝐾))
1211fveq2d 6844 . . 3 (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = ((subringAlg ‘𝐿)‘(Base‘𝐾)))
1312fveq2d 6844 . 2 (𝜑 → (dim‘((subringAlg ‘𝐿)‘𝐹)) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
14 eqid 2729 . . . . 5 (0g‘((subringAlg ‘𝐿)‘𝐹)) = (0g‘((subringAlg ‘𝐿)‘𝐹))
15 algextdeg.l . . . . . 6 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
16 algextdeg.d . . . . . 6 𝐷 = (deg1𝐸)
17 algextdeg.m . . . . . 6 𝑀 = (𝐸 minPoly 𝐹)
18 algextdeg.f . . . . . 6 (𝜑𝐸 ∈ Field)
19 algextdeg.a . . . . . 6 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
20 algextdeglem.o . . . . . 6 𝑂 = (𝐸 evalSub1 𝐹)
21 algextdeglem.y . . . . . 6 𝑃 = (Poly1𝐾)
22 algextdeglem.u . . . . . 6 𝑈 = (Base‘𝑃)
23 algextdeglem.g . . . . . 6 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
24 algextdeglem.n . . . . . 6 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
25 algextdeglem.z . . . . . 6 𝑍 = (𝐺 “ {(0g𝐿)})
26 algextdeglem.q . . . . . 6 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
27 algextdeglem.j . . . . . 6 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
289, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27algextdeglem2 33681 . . . . 5 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)))
29 eqid 2729 . . . . 5 (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}) = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})
30 eqid 2729 . . . . 5 (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))
319fveq2i 6843 . . . . . . . . . . 11 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
3221, 31eqtri 2752 . . . . . . . . . 10 𝑃 = (Poly1‘(𝐸s 𝐹))
3318adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐸 ∈ Field)
341adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐹 ∈ (SubDRing‘𝐸))
35 eqid 2729 . . . . . . . . . . . . 13 (0g𝐸) = (0g𝐸)
3618fldcrngd 20627 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ CRing)
3720, 9, 6, 35, 36, 4irngssv 33656 . . . . . . . . . . . 12 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
3837, 19sseldd 3944 . . . . . . . . . . 11 (𝜑𝐴 ∈ (Base‘𝐸))
3938adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐴 ∈ (Base‘𝐸))
40 simpr 484 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝑝𝑈)
416, 20, 32, 22, 33, 34, 39, 40evls1fldgencl 33638 . . . . . . . . 9 ((𝜑𝑝𝑈) → ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4241ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4323rnmptss 7077 . . . . . . . 8 (∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4442, 43syl 17 . . . . . . 7 (𝜑 → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4518flddrngd 20626 . . . . . . . 8 (𝜑𝐸 ∈ DivRing)
4620, 32, 6, 22, 36, 4, 38, 23evls1maprhm 22239 . . . . . . . . . 10 (𝜑𝐺 ∈ (𝑃 RingHom 𝐸))
47 rnrhmsubrg 20490 . . . . . . . . . 10 (𝐺 ∈ (𝑃 RingHom 𝐸) → ran 𝐺 ∈ (SubRing‘𝐸))
4846, 47syl 17 . . . . . . . . 9 (𝜑 → ran 𝐺 ∈ (SubRing‘𝐸))
4915oveq1i 7379 . . . . . . . . . . 11 (𝐿s ran 𝐺) = ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺)
50 ovex 7402 . . . . . . . . . . . 12 (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V
51 ressabs 17194 . . . . . . . . . . . 12 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺) = (𝐸s ran 𝐺))
5250, 44, 51sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺) = (𝐸s ran 𝐺))
5349, 52eqtrid 2776 . . . . . . . . . 10 (𝜑 → (𝐿s ran 𝐺) = (𝐸s ran 𝐺))
54 eqid 2729 . . . . . . . . . . . . . . 15 (0g𝐿) = (0g𝐿)
5538snssd 4769 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → {𝐴} ⊆ (Base‘𝐸))
568, 55unssd 4151 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸))
576, 45, 56fldgensdrg 33237 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸))
58 issdrg 20673 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
5957, 58sylib 218 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
6059simp2d 1143 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸))
6115resrhm2b 20487 . . . . . . . . . . . . . . . . . 18 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → (𝐺 ∈ (𝑃 RingHom 𝐸) ↔ 𝐺 ∈ (𝑃 RingHom 𝐿)))
6261biimpa 476 . . . . . . . . . . . . . . . . 17 ((((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∧ 𝐺 ∈ (𝑃 RingHom 𝐸)) → 𝐺 ∈ (𝑃 RingHom 𝐿))
6360, 44, 46, 62syl21anc 837 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ (𝑃 RingHom 𝐿))
64 rhmghm 20369 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝑃 RingHom 𝐿) → 𝐺 ∈ (𝑃 GrpHom 𝐿))
6563, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ (𝑃 GrpHom 𝐿))
6654, 65, 25, 26, 27, 22, 24ghmquskerco 19192 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝐽𝑁))
6766rneqd 5891 . . . . . . . . . . . . 13 (𝜑 → ran 𝐺 = ran (𝐽𝑁))
6826a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)))
6922a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑈 = (Base‘𝑃))
70 ovexd 7404 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 ~QG 𝑍) ∈ V)
713simp3d 1144 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
7232, 71ply1lvec 33501 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ LVec)
7368, 69, 70, 72qusbas 17484 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 / (𝑃 ~QG 𝑍)) = (Base‘𝑄))
74 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑈 / (𝑃 ~QG 𝑍)) = (𝑈 / (𝑃 ~QG 𝑍))
7554ghmker 19150 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ (𝑃 GrpHom 𝐿) → (𝐺 “ {(0g𝐿)}) ∈ (NrmSGrp‘𝑃))
7665, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 “ {(0g𝐿)}) ∈ (NrmSGrp‘𝑃))
7725, 76eqeltrid 2832 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ (NrmSGrp‘𝑃))
7822, 74, 24, 77qusrn 33353 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝑁 = (𝑈 / (𝑃 ~QG 𝑍)))
79 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹)
8020, 32, 6, 22, 36, 4, 38, 23, 79evls1maplmhm 22240 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)))
8180elexd 3468 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺 ∈ V)
8281adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (Base‘𝑄)) → 𝐺 ∈ V)
8382imaexd 7872 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘𝑄)) → (𝐺𝑝) ∈ V)
8483uniexd 7698 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘𝑄)) → (𝐺𝑝) ∈ V)
8527, 84dmmptd 6645 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐽 = (Base‘𝑄))
8673, 78, 853eqtr4rd 2775 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐽 = ran 𝑁)
87 rncoeq 5932 . . . . . . . . . . . . . 14 (dom 𝐽 = ran 𝑁 → ran (𝐽𝑁) = ran 𝐽)
8886, 87syl 17 . . . . . . . . . . . . 13 (𝜑 → ran (𝐽𝑁) = ran 𝐽)
8967, 88eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → ran 𝐺 = ran 𝐽)
9089oveq2d 7385 . . . . . . . . . . 11 (𝜑 → (𝐿s ran 𝐺) = (𝐿s ran 𝐽))
91 eqid 2729 . . . . . . . . . . . 12 (𝐿s ran 𝐽) = (𝐿s ran 𝐽)
929subrgcrng 20460 . . . . . . . . . . . . . . 15 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → 𝐾 ∈ CRing)
9336, 4, 92syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ CRing)
9421ply1crng 22059 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → 𝑃 ∈ CRing)
9593, 94syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ CRing)
9654, 63, 25, 26, 27, 95rhmquskerlem 33369 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (𝑄 RingHom 𝐿))
9720, 32, 6, 22, 36, 4, 38, 23evls1maprnss 22241 . . . . . . . . . . . . . . 15 (𝜑𝐹 ⊆ ran 𝐺)
98 eqid 2729 . . . . . . . . . . . . . . . . . 18 (1r𝐸) = (1r𝐸)
999, 98subrg1 20467 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) = (1r𝐾))
1004, 99syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) = (1r𝐾))
10198subrg1cl 20465 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝐹)
1024, 101syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) ∈ 𝐹)
103100, 102eqeltrrd 2829 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐾) ∈ 𝐹)
10497, 103sseldd 3944 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐾) ∈ ran 𝐺)
105 drngnzr 20633 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ DivRing → 𝐸 ∈ NzRing)
10698, 35nzrnz 20400 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ NzRing → (1r𝐸) ≠ (0g𝐸))
10745, 105, 1063syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) ≠ (0g𝐸))
10836crnggrpd 20132 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ Grp)
109108grpmndd 18854 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ Mnd)
110 sdrgsubrg 20676 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸))
111 subrgsubg 20462 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸))
11257, 110, 1113syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸))
11335subg0cl 19042 . . . . . . . . . . . . . . . . . 18 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
114112, 113syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
1156, 45, 56fldgenssv 33238 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸))
11615, 6, 35ress0g 18665 . . . . . . . . . . . . . . . . 17 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) → (0g𝐸) = (0g𝐿))
117109, 114, 115, 116syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝐸) = (0g𝐿))
118107, 100, 1173netr3d 3001 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐾) ≠ (0g𝐿))
119 nelsn 4626 . . . . . . . . . . . . . . 15 ((1r𝐾) ≠ (0g𝐿) → ¬ (1r𝐾) ∈ {(0g𝐿)})
120118, 119syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ (1r𝐾) ∈ {(0g𝐿)})
121 nelne1 3022 . . . . . . . . . . . . . 14 (((1r𝐾) ∈ ran 𝐺 ∧ ¬ (1r𝐾) ∈ {(0g𝐿)}) → ran 𝐺 ≠ {(0g𝐿)})
122104, 120, 121syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ran 𝐺 ≠ {(0g𝐿)})
12389, 122eqnetrrd 2993 . . . . . . . . . . . 12 (𝜑 → ran 𝐽 ≠ {(0g𝐿)})
124 eqid 2729 . . . . . . . . . . . . 13 (oppr𝑃) = (oppr𝑃)
1259sdrgdrng 20675 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubDRing‘𝐸) → 𝐾 ∈ DivRing)
126 drngnzr 20633 . . . . . . . . . . . . . . 15 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
1271, 125, 1263syl 18 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ NzRing)
12821ply1nz 26003 . . . . . . . . . . . . . 14 (𝐾 ∈ NzRing → 𝑃 ∈ NzRing)
129127, 128syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ NzRing)
130 eqid 2729 . . . . . . . . . . . . . . . 16 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}
131 eqid 2729 . . . . . . . . . . . . . . . 16 (RSpan‘𝑃) = (RSpan‘𝑃)
1329fveq2i 6843 . . . . . . . . . . . . . . . 16 (idlGen1p𝐾) = (idlGen1p‘(𝐸s 𝐹))
13320, 32, 6, 18, 1, 38, 35, 130, 131, 132ply1annig1p 33667 . . . . . . . . . . . . . . 15 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = ((RSpan‘𝑃)‘{((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})}))
134117sneqd 4597 . . . . . . . . . . . . . . . . . 18 (𝜑 → {(0g𝐸)} = {(0g𝐿)})
135134imaeq2d 6020 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 “ {(0g𝐸)}) = (𝐺 “ {(0g𝐿)}))
13625, 135eqtr4id 2783 . . . . . . . . . . . . . . . 16 (𝜑𝑍 = (𝐺 “ {(0g𝐸)}))
13722mpteq1i 5193 . . . . . . . . . . . . . . . . . 18 (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))
13823, 137eqtri 2752 . . . . . . . . . . . . . . . . 17 𝐺 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))
13920, 32, 6, 36, 4, 38, 35, 130, 138ply1annidllem 33664 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = (𝐺 “ {(0g𝐸)}))
140136, 139eqtr4d 2767 . . . . . . . . . . . . . . 15 (𝜑𝑍 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
141 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝐸 minPoly 𝐹) = (𝐸 minPoly 𝐹)
14220, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141minplyval 33668 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) = ((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}))
143142sneqd 4597 . . . . . . . . . . . . . . . 16 (𝜑 → {((𝐸 minPoly 𝐹)‘𝐴)} = {((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})})
144143fveq2d 6844 . . . . . . . . . . . . . . 15 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) = ((RSpan‘𝑃)‘{((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})}))
145133, 140, 1443eqtr4d 2774 . . . . . . . . . . . . . 14 (𝜑𝑍 = ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}))
146 eqid 2729 . . . . . . . . . . . . . . . 16 (0g𝑃) = (0g𝑃)
147 eqid 2729 . . . . . . . . . . . . . . . . . 18 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
148147, 18, 1, 141, 19irngnminplynz 33675 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ≠ (0g‘(Poly1𝐸)))
149 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Poly1𝐸) = (Poly1𝐸)
150149, 9, 21, 22, 4, 147ressply10g 33509 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g‘(Poly1𝐸)) = (0g𝑃))
151148, 150neeqtrd 2994 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ≠ (0g𝑃))
15220, 32, 6, 18, 1, 38, 141, 146, 151minplyirred 33674 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Irred‘𝑃))
153 eqid 2729 . . . . . . . . . . . . . . . 16 ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) = ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)})
154 fldsdrgfld 20683 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
15518, 1, 154syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸s 𝐹) ∈ Field)
1569, 155eqeltrid 2832 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ Field)
15721ply1pid 26064 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Field → 𝑃 ∈ PID)
158156, 157syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ PID)
15920, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141minplycl 33669 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Base‘𝑃))
160159, 22eleqtrrdi 2839 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ 𝑈)
16195crngringd 20131 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
162160snssd 4769 . . . . . . . . . . . . . . . . 17 (𝜑 → {((𝐸 minPoly 𝐹)‘𝐴)} ⊆ 𝑈)
163 eqid 2729 . . . . . . . . . . . . . . . . . 18 (LIdeal‘𝑃) = (LIdeal‘𝑃)
164131, 22, 163rspcl 21121 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Ring ∧ {((𝐸 minPoly 𝐹)‘𝐴)} ⊆ 𝑈) → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (LIdeal‘𝑃))
165161, 162, 164syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (LIdeal‘𝑃))
16622, 131, 146, 153, 158, 160, 151, 165mxidlirred 33416 . . . . . . . . . . . . . . 15 (𝜑 → (((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (MaxIdeal‘𝑃) ↔ ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Irred‘𝑃)))
167152, 166mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (MaxIdeal‘𝑃))
168145, 167eqeltrd 2828 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ (MaxIdeal‘𝑃))
169 eqid 2729 . . . . . . . . . . . . . . . 16 (MaxIdeal‘𝑃) = (MaxIdeal‘𝑃)
170169, 124crngmxidl 33413 . . . . . . . . . . . . . . 15 (𝑃 ∈ CRing → (MaxIdeal‘𝑃) = (MaxIdeal‘(oppr𝑃)))
17195, 170syl 17 . . . . . . . . . . . . . 14 (𝜑 → (MaxIdeal‘𝑃) = (MaxIdeal‘(oppr𝑃)))
172168, 171eleqtrd 2830 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ (MaxIdeal‘(oppr𝑃)))
173124, 26, 129, 168, 172qsdrngi 33439 . . . . . . . . . . . 12 (𝜑𝑄 ∈ DivRing)
17491, 54, 96, 123, 173rndrhmcl 33219 . . . . . . . . . . 11 (𝜑 → (𝐿s ran 𝐽) ∈ DivRing)
17590, 174eqeltrd 2828 . . . . . . . . . 10 (𝜑 → (𝐿s ran 𝐺) ∈ DivRing)
17653, 175eqeltrrd 2829 . . . . . . . . 9 (𝜑 → (𝐸s ran 𝐺) ∈ DivRing)
177 issdrg 20673 . . . . . . . . 9 (ran 𝐺 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ ran 𝐺 ∈ (SubRing‘𝐸) ∧ (𝐸s ran 𝐺) ∈ DivRing))
17845, 48, 176, 177syl3anbrc 1344 . . . . . . . 8 (𝜑 → ran 𝐺 ∈ (SubDRing‘𝐸))
179 fveq2 6840 . . . . . . . . . . . . . 14 (𝑝 = (var1𝐾) → (𝑂𝑝) = (𝑂‘(var1𝐾)))
180179fveq1d 6842 . . . . . . . . . . . . 13 (𝑝 = (var1𝐾) → ((𝑂𝑝)‘𝐴) = ((𝑂‘(var1𝐾))‘𝐴))
181180eqeq2d 2740 . . . . . . . . . . . 12 (𝑝 = (var1𝐾) → (𝐴 = ((𝑂𝑝)‘𝐴) ↔ 𝐴 = ((𝑂‘(var1𝐾))‘𝐴)))
1829, 71eqeltrid 2832 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ DivRing)
183182drngringd 20622 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
184 eqid 2729 . . . . . . . . . . . . . 14 (var1𝐾) = (var1𝐾)
185184, 21, 22vr1cl 22078 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (var1𝐾) ∈ 𝑈)
186183, 185syl 17 . . . . . . . . . . . 12 (𝜑 → (var1𝐾) ∈ 𝑈)
18720, 184, 9, 6, 36, 4evls1var 22201 . . . . . . . . . . . . . 14 (𝜑 → (𝑂‘(var1𝐾)) = ( I ↾ (Base‘𝐸)))
188187fveq1d 6842 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(var1𝐾))‘𝐴) = (( I ↾ (Base‘𝐸))‘𝐴))
189 fvresi 7129 . . . . . . . . . . . . . 14 (𝐴 ∈ (Base‘𝐸) → (( I ↾ (Base‘𝐸))‘𝐴) = 𝐴)
19038, 189syl 17 . . . . . . . . . . . . 13 (𝜑 → (( I ↾ (Base‘𝐸))‘𝐴) = 𝐴)
191188, 190eqtr2d 2765 . . . . . . . . . . . 12 (𝜑𝐴 = ((𝑂‘(var1𝐾))‘𝐴))
192181, 186, 191rspcedvdw 3588 . . . . . . . . . . 11 (𝜑 → ∃𝑝𝑈 𝐴 = ((𝑂𝑝)‘𝐴))
19323, 192, 19elrnmptd 5916 . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐺)
194193snssd 4769 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ ran 𝐺)
19597, 194unssd 4151 . . . . . . . 8 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ ran 𝐺)
1966, 45, 178, 195fldgenssp 33241 . . . . . . 7 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ ran 𝐺)
19744, 196eqssd 3961 . . . . . 6 (𝜑 → ran 𝐺 = (𝐸 fldGen (𝐹 ∪ {𝐴})))
19815, 6ressbas2 17184 . . . . . . 7 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿))
199115, 198syl 17 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿))
200 eqidd 2730 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = ((subringAlg ‘𝐿)‘𝐹))
2016, 45, 56fldgenssid 33236 . . . . . . . . 9 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
202201unssad 4152 . . . . . . . 8 (𝜑𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
203202, 199sseqtrd 3980 . . . . . . 7 (𝜑𝐹 ⊆ (Base‘𝐿))
204200, 203srabase 21060 . . . . . 6 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐹)))
205197, 199, 2043eqtrd 2768 . . . . 5 (𝜑 → ran 𝐺 = (Base‘((subringAlg ‘𝐿)‘𝐹)))
206 imaeq2 6016 . . . . . . 7 (𝑞 = 𝑝 → (𝐺𝑞) = (𝐺𝑝))
207206unieqd 4880 . . . . . 6 (𝑞 = 𝑝 (𝐺𝑞) = (𝐺𝑝))
208207cbvmptv 5206 . . . . 5 (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)) = (𝑝 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑝))
20914, 28, 29, 30, 205, 208lmhmqusker 33361 . . . 4 (𝜑 → (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)) ∈ ((𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) LMIso ((subringAlg ‘𝐿)‘𝐹)))
210 eqidd 2730 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐿) = (0g𝐿))
211200, 210, 203sralmod0 21071 . . . . . . . . . . . . 13 (𝜑 → (0g𝐿) = (0g‘((subringAlg ‘𝐿)‘𝐹)))
212211sneqd 4597 . . . . . . . . . . . 12 (𝜑 → {(0g𝐿)} = {(0g‘((subringAlg ‘𝐿)‘𝐹))})
213212imaeq2d 6020 . . . . . . . . . . 11 (𝜑 → (𝐺 “ {(0g𝐿)}) = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))
21425, 213eqtrid 2776 . . . . . . . . . 10 (𝜑𝑍 = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))
215214oveq2d 7385 . . . . . . . . 9 (𝜑 → (𝑃 ~QG 𝑍) = (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))
216215oveq2d 7385 . . . . . . . 8 (𝜑 → (𝑃 /s (𝑃 ~QG 𝑍)) = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))))
21726, 216eqtrid 2776 . . . . . . 7 (𝜑𝑄 = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))))
218217fveq2d 6844 . . . . . 6 (𝜑 → (Base‘𝑄) = (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))))
219218mpteq1d 5192 . . . . 5 (𝜑 → (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝)) = (𝑝 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑝)))
220219, 27, 2083eqtr4g 2789 . . . 4 (𝜑𝐽 = (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)))
221217oveq1d 7384 . . . 4 (𝜑 → (𝑄 LMIso ((subringAlg ‘𝐿)‘𝐹)) = ((𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) LMIso ((subringAlg ‘𝐿)‘𝐹)))
222209, 220, 2213eltr4d 2843 . . 3 (𝜑𝐽 ∈ (𝑄 LMIso ((subringAlg ‘𝐿)‘𝐹)))
2239, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27algextdeglem3 33682 . . 3 (𝜑𝑄 ∈ LVec)
224222, 223lmimdim 33572 . 2 (𝜑 → (dim‘𝑄) = (dim‘((subringAlg ‘𝐿)‘𝐹)))
2256, 18, 56fldgenfld 33243 . . . . 5 (𝜑 → (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ Field)
22615, 225eqeltrid 2832 . . . 4 (𝜑𝐿 ∈ Field)
2279, 15, 16, 17, 18, 1, 19algextdeglem1 33680 . . . . 5 (𝜑 → (𝐿s 𝐹) = 𝐾)
22811oveq2d 7385 . . . . 5 (𝜑 → (𝐿s 𝐹) = (𝐿s (Base‘𝐾)))
229227, 228eqtr3d 2766 . . . 4 (𝜑𝐾 = (𝐿s (Base‘𝐾)))
23015subsubrg 20483 . . . . . . 7 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐹 ∈ (SubRing‘𝐿) ↔ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))))
231230biimpar 477 . . . . . 6 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))) → 𝐹 ∈ (SubRing‘𝐿))
23260, 4, 202, 231syl12anc 836 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐿))
23311, 232eqeltrrd 2829 . . . 4 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐿))
234 brfldext 33614 . . . . 5 ((𝐿 ∈ Field ∧ 𝐾 ∈ Field) → (𝐿/FldExt𝐾 ↔ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))))
235234biimpar 477 . . . 4 (((𝐿 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))) → 𝐿/FldExt𝐾)
236226, 156, 229, 233, 235syl22anc 838 . . 3 (𝜑𝐿/FldExt𝐾)
237 extdgval 33622 . . 3 (𝐿/FldExt𝐾 → (𝐿[:]𝐾) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
238236, 237syl 17 . 2 (𝜑 → (𝐿[:]𝐾) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
23913, 224, 2383eqtr4d 2774 1 (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  Vcvv 3444  cun 3909  wss 3911  {csn 4585   cuni 4867   class class class wbr 5102  cmpt 5183   I cid 5525  ccnv 5630  dom cdm 5631  ran crn 5632  cres 5633  cima 5634  ccom 5635  cfv 6499  (class class class)co 7369  [cec 8646   / cqs 8647  Basecbs 17155  s cress 17176  0gc0g 17378   /s cqus 17444  Mndcmnd 18637  SubGrpcsubg 19028  NrmSGrpcnsg 19029   ~QG cqg 19030   GrpHom cghm 19120  1rcur 20066  Ringcrg 20118  CRingccrg 20119  opprcoppr 20221  Irredcir 20241   RingHom crh 20354  NzRingcnzr 20397  SubRingcsubrg 20454  DivRingcdr 20614  Fieldcfield 20615  SubDRingcsdrg 20671   LMHom clmhm 20902   LMIso clmim 20903  LVecclvec 20985  subringAlg csra 21054  LIdealclidl 21092  RSpancrsp 21093  PIDcpid 21222  var1cv1 22036  Poly1cpl1 22037   evalSub1 ces1 22176  deg1cdg1 25935  idlGen1pcig1p 26011   fldGen cfldgen 33233  MaxIdealcmxidl 33403  dimcldim 33567  /FldExtcfldext 33607  [:]cextdg 33609   IntgRing cirng 33651   minPoly cminply 33662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-rpss 7679  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-r1 9693  df-rank 9694  df-dju 9830  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ocomp 17217  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-imas 17447  df-qus 17448  df-mre 17523  df-mrc 17524  df-mri 17525  df-acs 17526  df-proset 18231  df-drs 18232  df-poset 18250  df-ipo 18463  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-nsg 19032  df-eqg 19033  df-ghm 19121  df-gim 19167  df-cntz 19225  df-oppg 19254  df-lsm 19542  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-irred 20244  df-invr 20273  df-dvr 20286  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-sdrg 20672  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lmhm 20905  df-lmim 20906  df-lbs 20958  df-lvec 20986  df-sra 21056  df-rgmod 21057  df-lidl 21094  df-rsp 21095  df-2idl 21136  df-lpidl 21208  df-lpir 21209  df-pid 21223  df-cnfld 21241  df-dsmm 21617  df-frlm 21632  df-uvc 21668  df-lindf 21691  df-linds 21692  df-assa 21738  df-asp 21739  df-ascl 21740  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-evls 21957  df-evl 21958  df-psr1 22040  df-vr1 22041  df-ply1 22042  df-coe1 22043  df-evls1 22178  df-evl1 22179  df-mdeg 25936  df-deg1 25937  df-mon1 26012  df-uc1p 26013  df-q1p 26014  df-r1p 26015  df-ig1p 26016  df-fldgen 33234  df-mxidl 33404  df-dim 33568  df-fldext 33610  df-extdg 33611  df-irng 33652  df-minply 33663
This theorem is referenced by:  algextdeg  33688
  Copyright terms: Public domain W3C validator