Step | Hyp | Ref
| Expression |
1 | | algextdeg.e |
. . . . . . . 8
β’ (π β πΉ β (SubDRingβπΈ)) |
2 | | issdrg 20547 |
. . . . . . . 8
β’ (πΉ β (SubDRingβπΈ) β (πΈ β DivRing β§ πΉ β (SubRingβπΈ) β§ (πΈ βΎs πΉ) β DivRing)) |
3 | 1, 2 | sylib 217 |
. . . . . . 7
β’ (π β (πΈ β DivRing β§ πΉ β (SubRingβπΈ) β§ (πΈ βΎs πΉ) β DivRing)) |
4 | 3 | simp2d 1141 |
. . . . . 6
β’ (π β πΉ β (SubRingβπΈ)) |
5 | | subrgsubg 20467 |
. . . . . 6
β’ (πΉ β (SubRingβπΈ) β πΉ β (SubGrpβπΈ)) |
6 | | eqid 2730 |
. . . . . . 7
β’
(BaseβπΈ) =
(BaseβπΈ) |
7 | 6 | subgss 19043 |
. . . . . 6
β’ (πΉ β (SubGrpβπΈ) β πΉ β (BaseβπΈ)) |
8 | 4, 5, 7 | 3syl 18 |
. . . . 5
β’ (π β πΉ β (BaseβπΈ)) |
9 | | algextdeg.k |
. . . . . 6
β’ πΎ = (πΈ βΎs πΉ) |
10 | 9, 6 | ressbas2 17186 |
. . . . 5
β’ (πΉ β (BaseβπΈ) β πΉ = (BaseβπΎ)) |
11 | 8, 10 | syl 17 |
. . . 4
β’ (π β πΉ = (BaseβπΎ)) |
12 | 11 | fveq2d 6894 |
. . 3
β’ (π β ((subringAlg βπΏ)βπΉ) = ((subringAlg βπΏ)β(BaseβπΎ))) |
13 | 12 | fveq2d 6894 |
. 2
β’ (π β (dimβ((subringAlg
βπΏ)βπΉ)) = (dimβ((subringAlg
βπΏ)β(BaseβπΎ)))) |
14 | | eqid 2730 |
. . . . 5
β’
(0gβ((subringAlg βπΏ)βπΉ)) = (0gβ((subringAlg
βπΏ)βπΉ)) |
15 | | algextdeg.l |
. . . . . 6
β’ πΏ = (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) |
16 | | algextdeg.d |
. . . . . 6
β’ π· = ( deg1
βπΈ) |
17 | | algextdeg.m |
. . . . . 6
β’ π = (πΈ minPoly πΉ) |
18 | | algextdeg.f |
. . . . . 6
β’ (π β πΈ β Field) |
19 | | algextdeg.a |
. . . . . 6
β’ (π β π΄ β (πΈ IntgRing πΉ)) |
20 | | algextdeglem.o |
. . . . . 6
β’ π = (πΈ evalSub1 πΉ) |
21 | | algextdeglem.y |
. . . . . 6
β’ π = (Poly1βπΎ) |
22 | | algextdeglem.u |
. . . . . 6
β’ π = (Baseβπ) |
23 | | algextdeglem.g |
. . . . . 6
β’ πΊ = (π β π β¦ ((πβπ)βπ΄)) |
24 | | algextdeglem.n |
. . . . . 6
β’ π = (π₯ β π β¦ [π₯](π ~QG π)) |
25 | | algextdeglem.z |
. . . . . 6
β’ π = (β‘πΊ β {(0gβπΏ)}) |
26 | | algextdeglem.q |
. . . . . 6
β’ π = (π /s (π ~QG π)) |
27 | | algextdeglem.j |
. . . . . 6
β’ π½ = (π β (Baseβπ) β¦ βͺ
(πΊ β π)) |
28 | 9, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27 | algextdeglem2 33063 |
. . . . 5
β’ (π β πΊ β (π LMHom ((subringAlg βπΏ)βπΉ))) |
29 | | eqid 2730 |
. . . . 5
β’ (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}) = (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}) |
30 | | eqid 2730 |
. . . . 5
β’ (π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}))) = (π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}))) |
31 | 9 | fveq2i 6893 |
. . . . . . . . . . 11
β’
(Poly1βπΎ) = (Poly1β(πΈ βΎs πΉ)) |
32 | 21, 31 | eqtri 2758 |
. . . . . . . . . 10
β’ π =
(Poly1β(πΈ
βΎs πΉ)) |
33 | 18 | adantr 479 |
. . . . . . . . . 10
β’ ((π β§ π β π) β πΈ β Field) |
34 | 1 | adantr 479 |
. . . . . . . . . 10
β’ ((π β§ π β π) β πΉ β (SubDRingβπΈ)) |
35 | | eqid 2730 |
. . . . . . . . . . . . 13
β’
(0gβπΈ) = (0gβπΈ) |
36 | 18 | fldcrngd 20513 |
. . . . . . . . . . . . 13
β’ (π β πΈ β CRing) |
37 | 20, 9, 6, 35, 36, 4 | irngssv 33041 |
. . . . . . . . . . . 12
β’ (π β (πΈ IntgRing πΉ) β (BaseβπΈ)) |
38 | 37, 19 | sseldd 3982 |
. . . . . . . . . . 11
β’ (π β π΄ β (BaseβπΈ)) |
39 | 38 | adantr 479 |
. . . . . . . . . 10
β’ ((π β§ π β π) β π΄ β (BaseβπΈ)) |
40 | | simpr 483 |
. . . . . . . . . 10
β’ ((π β§ π β π) β π β π) |
41 | 6, 20, 32, 22, 33, 34, 39, 40 | evls1fldgencl 33033 |
. . . . . . . . 9
β’ ((π β§ π β π) β ((πβπ)βπ΄) β (πΈ fldGen (πΉ βͺ {π΄}))) |
42 | 41 | ralrimiva 3144 |
. . . . . . . 8
β’ (π β βπ β π ((πβπ)βπ΄) β (πΈ fldGen (πΉ βͺ {π΄}))) |
43 | 23 | rnmptss 7123 |
. . . . . . . 8
β’
(βπ β
π ((πβπ)βπ΄) β (πΈ fldGen (πΉ βͺ {π΄})) β ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) |
44 | 42, 43 | syl 17 |
. . . . . . 7
β’ (π β ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) |
45 | 18 | flddrngd 20512 |
. . . . . . . 8
β’ (π β πΈ β DivRing) |
46 | 20, 32, 6, 22, 36, 4, 38, 23 | evls1maprhm 33048 |
. . . . . . . . . 10
β’ (π β πΊ β (π RingHom πΈ)) |
47 | | rnrhmsubrg 20495 |
. . . . . . . . . 10
β’ (πΊ β (π RingHom πΈ) β ran πΊ β (SubRingβπΈ)) |
48 | 46, 47 | syl 17 |
. . . . . . . . 9
β’ (π β ran πΊ β (SubRingβπΈ)) |
49 | 15 | oveq1i 7421 |
. . . . . . . . . . 11
β’ (πΏ βΎs ran πΊ) = ((πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) βΎs ran πΊ) |
50 | | ovex 7444 |
. . . . . . . . . . . 12
β’ (πΈ fldGen (πΉ βͺ {π΄})) β V |
51 | | ressabs 17198 |
. . . . . . . . . . . 12
β’ (((πΈ fldGen (πΉ βͺ {π΄})) β V β§ ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) β ((πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) βΎs ran πΊ) = (πΈ βΎs ran πΊ)) |
52 | 50, 44, 51 | sylancr 585 |
. . . . . . . . . . 11
β’ (π β ((πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) βΎs ran πΊ) = (πΈ βΎs ran πΊ)) |
53 | 49, 52 | eqtrid 2782 |
. . . . . . . . . 10
β’ (π β (πΏ βΎs ran πΊ) = (πΈ βΎs ran πΊ)) |
54 | | eqid 2730 |
. . . . . . . . . . . . . . 15
β’
(0gβπΏ) = (0gβπΏ) |
55 | 38 | snssd 4811 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β {π΄} β (BaseβπΈ)) |
56 | 8, 55 | unssd 4185 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (πΉ βͺ {π΄}) β (BaseβπΈ)) |
57 | 6, 45, 56 | fldgensdrg 32674 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (SubDRingβπΈ)) |
58 | | issdrg 20547 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubDRingβπΈ) β (πΈ β DivRing β§ (πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β§ (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) β DivRing)) |
59 | 57, 58 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (πΈ β DivRing β§ (πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β§ (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) β DivRing)) |
60 | 59 | simp2d 1141 |
. . . . . . . . . . . . . . . . 17
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ)) |
61 | 15 | resrhm2b 20492 |
. . . . . . . . . . . . . . . . . 18
β’ (((πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β§ ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) β (πΊ β (π RingHom πΈ) β πΊ β (π RingHom πΏ))) |
62 | 61 | biimpa 475 |
. . . . . . . . . . . . . . . . 17
β’ ((((πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β§ ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) β§ πΊ β (π RingHom πΈ)) β πΊ β (π RingHom πΏ)) |
63 | 60, 44, 46, 62 | syl21anc 834 |
. . . . . . . . . . . . . . . 16
β’ (π β πΊ β (π RingHom πΏ)) |
64 | | rhmghm 20375 |
. . . . . . . . . . . . . . . 16
β’ (πΊ β (π RingHom πΏ) β πΊ β (π GrpHom πΏ)) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β πΊ β (π GrpHom πΏ)) |
66 | 54, 65, 25, 26, 27, 22, 24 | ghmquskerco 32803 |
. . . . . . . . . . . . . 14
β’ (π β πΊ = (π½ β π)) |
67 | 66 | rneqd 5936 |
. . . . . . . . . . . . 13
β’ (π β ran πΊ = ran (π½ β π)) |
68 | 26 | a1i 11 |
. . . . . . . . . . . . . . . 16
β’ (π β π = (π /s (π ~QG π))) |
69 | 22 | a1i 11 |
. . . . . . . . . . . . . . . 16
β’ (π β π = (Baseβπ)) |
70 | | ovexd 7446 |
. . . . . . . . . . . . . . . 16
β’ (π β (π ~QG π) β V) |
71 | 3 | simp3d 1142 |
. . . . . . . . . . . . . . . . 17
β’ (π β (πΈ βΎs πΉ) β DivRing) |
72 | 32, 71 | ply1lvec 32912 |
. . . . . . . . . . . . . . . 16
β’ (π β π β LVec) |
73 | 68, 69, 70, 72 | qusbas 17495 |
. . . . . . . . . . . . . . 15
β’ (π β (π / (π ~QG π)) = (Baseβπ)) |
74 | | eqid 2730 |
. . . . . . . . . . . . . . . 16
β’ (π / (π ~QG π)) = (π / (π ~QG π)) |
75 | 54 | ghmker 19156 |
. . . . . . . . . . . . . . . . . 18
β’ (πΊ β (π GrpHom πΏ) β (β‘πΊ β {(0gβπΏ)}) β (NrmSGrpβπ)) |
76 | 65, 75 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β (β‘πΊ β {(0gβπΏ)}) β (NrmSGrpβπ)) |
77 | 25, 76 | eqeltrid 2835 |
. . . . . . . . . . . . . . . 16
β’ (π β π β (NrmSGrpβπ)) |
78 | 22, 74, 24, 77 | qusrn 32794 |
. . . . . . . . . . . . . . 15
β’ (π β ran π = (π / (π ~QG π))) |
79 | | eqid 2730 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((subringAlg βπΈ)βπΉ) = ((subringAlg βπΈ)βπΉ) |
80 | 20, 32, 6, 22, 36, 4, 38, 23, 79 | evls1maplmhm 33049 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β πΊ β (π LMHom ((subringAlg βπΈ)βπΉ))) |
81 | 80 | elexd 3493 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β πΊ β V) |
82 | 81 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β (Baseβπ)) β πΊ β V) |
83 | 82 | imaexd 32171 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β (Baseβπ)) β (πΊ β π) β V) |
84 | 83 | uniexd 7734 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β (Baseβπ)) β βͺ
(πΊ β π) β V) |
85 | 27, 84 | dmmptd 6694 |
. . . . . . . . . . . . . . 15
β’ (π β dom π½ = (Baseβπ)) |
86 | 73, 78, 85 | 3eqtr4rd 2781 |
. . . . . . . . . . . . . 14
β’ (π β dom π½ = ran π) |
87 | | rncoeq 5973 |
. . . . . . . . . . . . . 14
β’ (dom
π½ = ran π β ran (π½ β π) = ran π½) |
88 | 86, 87 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β ran (π½ β π) = ran π½) |
89 | 67, 88 | eqtrd 2770 |
. . . . . . . . . . . 12
β’ (π β ran πΊ = ran π½) |
90 | 89 | oveq2d 7427 |
. . . . . . . . . . 11
β’ (π β (πΏ βΎs ran πΊ) = (πΏ βΎs ran π½)) |
91 | | eqid 2730 |
. . . . . . . . . . . 12
β’ (πΏ βΎs ran π½) = (πΏ βΎs ran π½) |
92 | 9 | subrgcrng 20465 |
. . . . . . . . . . . . . . 15
β’ ((πΈ β CRing β§ πΉ β (SubRingβπΈ)) β πΎ β CRing) |
93 | 36, 4, 92 | syl2anc 582 |
. . . . . . . . . . . . . 14
β’ (π β πΎ β CRing) |
94 | 21 | ply1crng 21941 |
. . . . . . . . . . . . . 14
β’ (πΎ β CRing β π β CRing) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π β CRing) |
96 | 54, 63, 25, 26, 27, 95 | rhmquskerlem 32817 |
. . . . . . . . . . . 12
β’ (π β π½ β (π RingHom πΏ)) |
97 | 20, 32, 6, 22, 36, 4, 38, 23 | evls1maprnss 33050 |
. . . . . . . . . . . . . . 15
β’ (π β πΉ β ran πΊ) |
98 | | eqid 2730 |
. . . . . . . . . . . . . . . . . 18
β’
(1rβπΈ) = (1rβπΈ) |
99 | 9, 98 | subrg1 20472 |
. . . . . . . . . . . . . . . . 17
β’ (πΉ β (SubRingβπΈ) β
(1rβπΈ) =
(1rβπΎ)) |
100 | 4, 99 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β (1rβπΈ) = (1rβπΎ)) |
101 | 98 | subrg1cl 20470 |
. . . . . . . . . . . . . . . . 17
β’ (πΉ β (SubRingβπΈ) β
(1rβπΈ)
β πΉ) |
102 | 4, 101 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β (1rβπΈ) β πΉ) |
103 | 100, 102 | eqeltrrd 2832 |
. . . . . . . . . . . . . . 15
β’ (π β (1rβπΎ) β πΉ) |
104 | 97, 103 | sseldd 3982 |
. . . . . . . . . . . . . 14
β’ (π β (1rβπΎ) β ran πΊ) |
105 | | drngnzr 20520 |
. . . . . . . . . . . . . . . . 17
β’ (πΈ β DivRing β πΈ β NzRing) |
106 | 98, 35 | nzrnz 20406 |
. . . . . . . . . . . . . . . . 17
β’ (πΈ β NzRing β
(1rβπΈ)
β (0gβπΈ)) |
107 | 45, 105, 106 | 3syl 18 |
. . . . . . . . . . . . . . . 16
β’ (π β (1rβπΈ) β
(0gβπΈ)) |
108 | 36 | crnggrpd 20141 |
. . . . . . . . . . . . . . . . . 18
β’ (π β πΈ β Grp) |
109 | 108 | grpmndd 18868 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΈ β Mnd) |
110 | | sdrgsubrg 20550 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubDRingβπΈ) β (πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ)) |
111 | | subrgsubg 20467 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β (πΈ fldGen (πΉ βͺ {π΄})) β (SubGrpβπΈ)) |
112 | 57, 110, 111 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (SubGrpβπΈ)) |
113 | 35 | subg0cl 19050 |
. . . . . . . . . . . . . . . . . 18
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubGrpβπΈ) β (0gβπΈ) β (πΈ fldGen (πΉ βͺ {π΄}))) |
114 | 112, 113 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β (0gβπΈ) β (πΈ fldGen (πΉ βͺ {π΄}))) |
115 | 6, 45, 56 | fldgenssv 32675 |
. . . . . . . . . . . . . . . . 17
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (BaseβπΈ)) |
116 | 15, 6, 35 | ress0g 18687 |
. . . . . . . . . . . . . . . . 17
β’ ((πΈ β Mnd β§
(0gβπΈ)
β (πΈ fldGen (πΉ βͺ {π΄})) β§ (πΈ fldGen (πΉ βͺ {π΄})) β (BaseβπΈ)) β (0gβπΈ) = (0gβπΏ)) |
117 | 109, 114,
115, 116 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
β’ (π β (0gβπΈ) = (0gβπΏ)) |
118 | 107, 100,
117 | 3netr3d 3015 |
. . . . . . . . . . . . . . 15
β’ (π β (1rβπΎ) β
(0gβπΏ)) |
119 | | nelsn 4667 |
. . . . . . . . . . . . . . 15
β’
((1rβπΎ) β (0gβπΏ) β Β¬
(1rβπΎ)
β {(0gβπΏ)}) |
120 | 118, 119 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β Β¬
(1rβπΎ)
β {(0gβπΏ)}) |
121 | | nelne1 3037 |
. . . . . . . . . . . . . 14
β’
(((1rβπΎ) β ran πΊ β§ Β¬ (1rβπΎ) β
{(0gβπΏ)})
β ran πΊ β
{(0gβπΏ)}) |
122 | 104, 120,
121 | syl2anc 582 |
. . . . . . . . . . . . 13
β’ (π β ran πΊ β {(0gβπΏ)}) |
123 | 89, 122 | eqnetrrd 3007 |
. . . . . . . . . . . 12
β’ (π β ran π½ β {(0gβπΏ)}) |
124 | | eqid 2730 |
. . . . . . . . . . . . 13
β’
(opprβπ) = (opprβπ) |
125 | 9 | sdrgdrng 20549 |
. . . . . . . . . . . . . . 15
β’ (πΉ β (SubDRingβπΈ) β πΎ β DivRing) |
126 | | drngnzr 20520 |
. . . . . . . . . . . . . . 15
β’ (πΎ β DivRing β πΎ β NzRing) |
127 | 1, 125, 126 | 3syl 18 |
. . . . . . . . . . . . . 14
β’ (π β πΎ β NzRing) |
128 | 21 | ply1nz 25874 |
. . . . . . . . . . . . . 14
β’ (πΎ β NzRing β π β NzRing) |
129 | 127, 128 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π β NzRing) |
130 | | eqid 2730 |
. . . . . . . . . . . . . . . 16
β’ {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} |
131 | | eqid 2730 |
. . . . . . . . . . . . . . . 16
β’
(RSpanβπ) =
(RSpanβπ) |
132 | 9 | fveq2i 6893 |
. . . . . . . . . . . . . . . 16
β’
(idlGen1pβπΎ) = (idlGen1pβ(πΈ βΎs πΉ)) |
133 | 20, 32, 6, 18, 1, 38, 35, 130, 131, 132 | ply1annig1p 33054 |
. . . . . . . . . . . . . . 15
β’ (π β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = ((RSpanβπ)β{((idlGen1pβπΎ)β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})})) |
134 | 117 | sneqd 4639 |
. . . . . . . . . . . . . . . . . 18
β’ (π β
{(0gβπΈ)} =
{(0gβπΏ)}) |
135 | 134 | imaeq2d 6058 |
. . . . . . . . . . . . . . . . 17
β’ (π β (β‘πΊ β {(0gβπΈ)}) = (β‘πΊ β {(0gβπΏ)})) |
136 | 25, 135 | eqtr4id 2789 |
. . . . . . . . . . . . . . . 16
β’ (π β π = (β‘πΊ β {(0gβπΈ)})) |
137 | 22 | mpteq1i 5243 |
. . . . . . . . . . . . . . . . . 18
β’ (π β π β¦ ((πβπ)βπ΄)) = (π β (Baseβπ) β¦ ((πβπ)βπ΄)) |
138 | 23, 137 | eqtri 2758 |
. . . . . . . . . . . . . . . . 17
β’ πΊ = (π β (Baseβπ) β¦ ((πβπ)βπ΄)) |
139 | 20, 32, 6, 36, 4, 38, 35, 130, 138 | ply1annidllem 33051 |
. . . . . . . . . . . . . . . 16
β’ (π β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = (β‘πΊ β {(0gβπΈ)})) |
140 | 136, 139 | eqtr4d 2773 |
. . . . . . . . . . . . . . 15
β’ (π β π = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)}) |
141 | | eqid 2730 |
. . . . . . . . . . . . . . . . . 18
β’ (πΈ minPoly πΉ) = (πΈ minPoly πΉ) |
142 | 20, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141 | minplyval 33055 |
. . . . . . . . . . . . . . . . 17
β’ (π β ((πΈ minPoly πΉ)βπ΄) = ((idlGen1pβπΎ)β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})) |
143 | 142 | sneqd 4639 |
. . . . . . . . . . . . . . . 16
β’ (π β {((πΈ minPoly πΉ)βπ΄)} = {((idlGen1pβπΎ)β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})}) |
144 | 143 | fveq2d 6894 |
. . . . . . . . . . . . . . 15
β’ (π β ((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) = ((RSpanβπ)β{((idlGen1pβπΎ)β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})})) |
145 | 133, 140,
144 | 3eqtr4d 2780 |
. . . . . . . . . . . . . 14
β’ (π β π = ((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)})) |
146 | | eqid 2730 |
. . . . . . . . . . . . . . . 16
β’
(0gβπ) = (0gβπ) |
147 | | eqid 2730 |
. . . . . . . . . . . . . . . . . 18
β’
(0gβ(Poly1βπΈ)) =
(0gβ(Poly1βπΈ)) |
148 | 147, 18, 1, 141, 19 | irngnminplynz 33060 |
. . . . . . . . . . . . . . . . 17
β’ (π β ((πΈ minPoly πΉ)βπ΄) β
(0gβ(Poly1βπΈ))) |
149 | | eqid 2730 |
. . . . . . . . . . . . . . . . . 18
β’
(Poly1βπΈ) = (Poly1βπΈ) |
150 | 149, 9, 21, 22, 4, 147 | ressply10g 32930 |
. . . . . . . . . . . . . . . . 17
β’ (π β
(0gβ(Poly1βπΈ)) = (0gβπ)) |
151 | 148, 150 | neeqtrd 3008 |
. . . . . . . . . . . . . . . 16
β’ (π β ((πΈ minPoly πΉ)βπ΄) β (0gβπ)) |
152 | 20, 32, 6, 18, 1, 38, 141, 146, 151 | minplyirred 33059 |
. . . . . . . . . . . . . . 15
β’ (π β ((πΈ minPoly πΉ)βπ΄) β (Irredβπ)) |
153 | | eqid 2730 |
. . . . . . . . . . . . . . . 16
β’
((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) = ((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) |
154 | | fldsdrgfld 20557 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΈ β Field β§ πΉ β (SubDRingβπΈ)) β (πΈ βΎs πΉ) β Field) |
155 | 18, 1, 154 | syl2anc 582 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (πΈ βΎs πΉ) β Field) |
156 | 9, 155 | eqeltrid 2835 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΎ β Field) |
157 | 21 | ply1pid 25932 |
. . . . . . . . . . . . . . . . 17
β’ (πΎ β Field β π β PID) |
158 | 156, 157 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β π β PID) |
159 | 20, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141 | minplycl 33056 |
. . . . . . . . . . . . . . . . 17
β’ (π β ((πΈ minPoly πΉ)βπ΄) β (Baseβπ)) |
160 | 159, 22 | eleqtrrdi 2842 |
. . . . . . . . . . . . . . . 16
β’ (π β ((πΈ minPoly πΉ)βπ΄) β π) |
161 | 95 | crngringd 20140 |
. . . . . . . . . . . . . . . . 17
β’ (π β π β Ring) |
162 | 160 | snssd 4811 |
. . . . . . . . . . . . . . . . 17
β’ (π β {((πΈ minPoly πΉ)βπ΄)} β π) |
163 | | eqid 2730 |
. . . . . . . . . . . . . . . . . 18
β’
(LIdealβπ) =
(LIdealβπ) |
164 | 131, 22, 163 | rspcl 20996 |
. . . . . . . . . . . . . . . . 17
β’ ((π β Ring β§ {((πΈ minPoly πΉ)βπ΄)} β π) β ((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) β (LIdealβπ)) |
165 | 161, 162,
164 | syl2anc 582 |
. . . . . . . . . . . . . . . 16
β’ (π β ((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) β (LIdealβπ)) |
166 | 22, 131, 146, 153, 158, 160, 151, 165 | mxidlirred 32862 |
. . . . . . . . . . . . . . 15
β’ (π β (((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) β (MaxIdealβπ) β ((πΈ minPoly πΉ)βπ΄) β (Irredβπ))) |
167 | 152, 166 | mpbird 256 |
. . . . . . . . . . . . . 14
β’ (π β ((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) β (MaxIdealβπ)) |
168 | 145, 167 | eqeltrd 2831 |
. . . . . . . . . . . . 13
β’ (π β π β (MaxIdealβπ)) |
169 | | eqid 2730 |
. . . . . . . . . . . . . . . 16
β’
(MaxIdealβπ) =
(MaxIdealβπ) |
170 | 169, 124 | crngmxidl 32859 |
. . . . . . . . . . . . . . 15
β’ (π β CRing β
(MaxIdealβπ) =
(MaxIdealβ(opprβπ))) |
171 | 95, 170 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (MaxIdealβπ) =
(MaxIdealβ(opprβπ))) |
172 | 168, 171 | eleqtrd 2833 |
. . . . . . . . . . . . 13
β’ (π β π β
(MaxIdealβ(opprβπ))) |
173 | 124, 26, 129, 168, 172 | qsdrngi 32883 |
. . . . . . . . . . . 12
β’ (π β π β DivRing) |
174 | 91, 54, 96, 123, 173 | rndrhmcl 32666 |
. . . . . . . . . . 11
β’ (π β (πΏ βΎs ran π½) β DivRing) |
175 | 90, 174 | eqeltrd 2831 |
. . . . . . . . . 10
β’ (π β (πΏ βΎs ran πΊ) β DivRing) |
176 | 53, 175 | eqeltrrd 2832 |
. . . . . . . . 9
β’ (π β (πΈ βΎs ran πΊ) β DivRing) |
177 | | issdrg 20547 |
. . . . . . . . 9
β’ (ran
πΊ β
(SubDRingβπΈ) β
(πΈ β DivRing β§ ran
πΊ β
(SubRingβπΈ) β§
(πΈ βΎs ran
πΊ) β
DivRing)) |
178 | 45, 48, 176, 177 | syl3anbrc 1341 |
. . . . . . . 8
β’ (π β ran πΊ β (SubDRingβπΈ)) |
179 | | fveq2 6890 |
. . . . . . . . . . . . . 14
β’ (π = (var1βπΎ) β (πβπ) = (πβ(var1βπΎ))) |
180 | 179 | fveq1d 6892 |
. . . . . . . . . . . . 13
β’ (π = (var1βπΎ) β ((πβπ)βπ΄) = ((πβ(var1βπΎ))βπ΄)) |
181 | 180 | eqeq2d 2741 |
. . . . . . . . . . . 12
β’ (π = (var1βπΎ) β (π΄ = ((πβπ)βπ΄) β π΄ = ((πβ(var1βπΎ))βπ΄))) |
182 | 9, 71 | eqeltrid 2835 |
. . . . . . . . . . . . . 14
β’ (π β πΎ β DivRing) |
183 | 182 | drngringd 20508 |
. . . . . . . . . . . . 13
β’ (π β πΎ β Ring) |
184 | | eqid 2730 |
. . . . . . . . . . . . . 14
β’
(var1βπΎ) = (var1βπΎ) |
185 | 184, 21, 22 | vr1cl 21960 |
. . . . . . . . . . . . 13
β’ (πΎ β Ring β
(var1βπΎ)
β π) |
186 | 183, 185 | syl 17 |
. . . . . . . . . . . 12
β’ (π β
(var1βπΎ)
β π) |
187 | 20, 184, 9, 6, 36, 4 | evls1var 22077 |
. . . . . . . . . . . . . 14
β’ (π β (πβ(var1βπΎ)) = ( I βΎ
(BaseβπΈ))) |
188 | 187 | fveq1d 6892 |
. . . . . . . . . . . . 13
β’ (π β ((πβ(var1βπΎ))βπ΄) = (( I βΎ (BaseβπΈ))βπ΄)) |
189 | | fvresi 7172 |
. . . . . . . . . . . . . 14
β’ (π΄ β (BaseβπΈ) β (( I βΎ
(BaseβπΈ))βπ΄) = π΄) |
190 | 38, 189 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β (( I βΎ
(BaseβπΈ))βπ΄) = π΄) |
191 | 188, 190 | eqtr2d 2771 |
. . . . . . . . . . . 12
β’ (π β π΄ = ((πβ(var1βπΎ))βπ΄)) |
192 | 181, 186,
191 | rspcedvdw 3614 |
. . . . . . . . . . 11
β’ (π β βπ β π π΄ = ((πβπ)βπ΄)) |
193 | 23, 192, 19 | elrnmptd 5959 |
. . . . . . . . . 10
β’ (π β π΄ β ran πΊ) |
194 | 193 | snssd 4811 |
. . . . . . . . 9
β’ (π β {π΄} β ran πΊ) |
195 | 97, 194 | unssd 4185 |
. . . . . . . 8
β’ (π β (πΉ βͺ {π΄}) β ran πΊ) |
196 | 6, 45, 178, 195 | fldgenssp 32678 |
. . . . . . 7
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β ran πΊ) |
197 | 44, 196 | eqssd 3998 |
. . . . . 6
β’ (π β ran πΊ = (πΈ fldGen (πΉ βͺ {π΄}))) |
198 | 15, 6 | ressbas2 17186 |
. . . . . . 7
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (BaseβπΈ) β (πΈ fldGen (πΉ βͺ {π΄})) = (BaseβπΏ)) |
199 | 115, 198 | syl 17 |
. . . . . 6
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) = (BaseβπΏ)) |
200 | | eqidd 2731 |
. . . . . . 7
β’ (π β ((subringAlg βπΏ)βπΉ) = ((subringAlg βπΏ)βπΉ)) |
201 | 6, 45, 56 | fldgenssid 32673 |
. . . . . . . . 9
β’ (π β (πΉ βͺ {π΄}) β (πΈ fldGen (πΉ βͺ {π΄}))) |
202 | 201 | unssad 4186 |
. . . . . . . 8
β’ (π β πΉ β (πΈ fldGen (πΉ βͺ {π΄}))) |
203 | 202, 199 | sseqtrd 4021 |
. . . . . . 7
β’ (π β πΉ β (BaseβπΏ)) |
204 | 200, 203 | srabase 20937 |
. . . . . 6
β’ (π β (BaseβπΏ) = (Baseβ((subringAlg
βπΏ)βπΉ))) |
205 | 197, 199,
204 | 3eqtrd 2774 |
. . . . 5
β’ (π β ran πΊ = (Baseβ((subringAlg βπΏ)βπΉ))) |
206 | | imaeq2 6054 |
. . . . . . 7
β’ (π = π β (πΊ β π) = (πΊ β π)) |
207 | 206 | unieqd 4921 |
. . . . . 6
β’ (π = π β βͺ (πΊ β π) = βͺ (πΊ β π)) |
208 | 207 | cbvmptv 5260 |
. . . . 5
β’ (π β (Baseβ(π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) β¦ βͺ (πΊ
β π)) = (π β (Baseβ(π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) β¦ βͺ (πΊ
β π)) |
209 | 14, 28, 29, 30, 205, 208 | lmhmqusker 32808 |
. . . 4
β’ (π β (π β (Baseβ(π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) β¦ βͺ (πΊ
β π)) β ((π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}))) LMIso ((subringAlg
βπΏ)βπΉ))) |
210 | | eqidd 2731 |
. . . . . . . . . . . . . 14
β’ (π β (0gβπΏ) = (0gβπΏ)) |
211 | 200, 210,
203 | sralmod0 20955 |
. . . . . . . . . . . . 13
β’ (π β (0gβπΏ) =
(0gβ((subringAlg βπΏ)βπΉ))) |
212 | 211 | sneqd 4639 |
. . . . . . . . . . . 12
β’ (π β
{(0gβπΏ)} =
{(0gβ((subringAlg βπΏ)βπΉ))}) |
213 | 212 | imaeq2d 6058 |
. . . . . . . . . . 11
β’ (π β (β‘πΊ β {(0gβπΏ)}) = (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})) |
214 | 25, 213 | eqtrid 2782 |
. . . . . . . . . 10
β’ (π β π = (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})) |
215 | 214 | oveq2d 7427 |
. . . . . . . . 9
β’ (π β (π ~QG π) = (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}))) |
216 | 215 | oveq2d 7427 |
. . . . . . . 8
β’ (π β (π /s (π ~QG π)) = (π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) |
217 | 26, 216 | eqtrid 2782 |
. . . . . . 7
β’ (π β π = (π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) |
218 | 217 | fveq2d 6894 |
. . . . . 6
β’ (π β (Baseβπ) = (Baseβ(π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}))))) |
219 | 218 | mpteq1d 5242 |
. . . . 5
β’ (π β (π β (Baseβπ) β¦ βͺ
(πΊ β π)) = (π β (Baseβ(π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) β¦ βͺ (πΊ
β π))) |
220 | 219, 27, 208 | 3eqtr4g 2795 |
. . . 4
β’ (π β π½ = (π β (Baseβ(π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) β¦ βͺ (πΊ
β π))) |
221 | 217 | oveq1d 7426 |
. . . 4
β’ (π β (π LMIso ((subringAlg βπΏ)βπΉ)) = ((π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}))) LMIso ((subringAlg
βπΏ)βπΉ))) |
222 | 209, 220,
221 | 3eltr4d 2846 |
. . 3
β’ (π β π½ β (π LMIso ((subringAlg βπΏ)βπΉ))) |
223 | 9, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27 | algextdeglem3 33064 |
. . 3
β’ (π β π β LVec) |
224 | 222, 223 | lmimdim 32976 |
. 2
β’ (π β (dimβπ) = (dimβ((subringAlg
βπΏ)βπΉ))) |
225 | 6, 18, 56 | fldgenfld 32680 |
. . . . 5
β’ (π β (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) β Field) |
226 | 15, 225 | eqeltrid 2835 |
. . . 4
β’ (π β πΏ β Field) |
227 | 9, 15, 16, 17, 18, 1, 19 | algextdeglem1 33062 |
. . . . 5
β’ (π β (πΏ βΎs πΉ) = πΎ) |
228 | 11 | oveq2d 7427 |
. . . . 5
β’ (π β (πΏ βΎs πΉ) = (πΏ βΎs (BaseβπΎ))) |
229 | 227, 228 | eqtr3d 2772 |
. . . 4
β’ (π β πΎ = (πΏ βΎs (BaseβπΎ))) |
230 | 15 | subsubrg 20488 |
. . . . . . 7
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β (πΉ β (SubRingβπΏ) β (πΉ β (SubRingβπΈ) β§ πΉ β (πΈ fldGen (πΉ βͺ {π΄}))))) |
231 | 230 | biimpar 476 |
. . . . . 6
β’ (((πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β§ (πΉ β (SubRingβπΈ) β§ πΉ β (πΈ fldGen (πΉ βͺ {π΄})))) β πΉ β (SubRingβπΏ)) |
232 | 60, 4, 202, 231 | syl12anc 833 |
. . . . 5
β’ (π β πΉ β (SubRingβπΏ)) |
233 | 11, 232 | eqeltrrd 2832 |
. . . 4
β’ (π β (BaseβπΎ) β (SubRingβπΏ)) |
234 | | brfldext 33014 |
. . . . 5
β’ ((πΏ β Field β§ πΎ β Field) β (πΏ/FldExtπΎ β (πΎ = (πΏ βΎs (BaseβπΎ)) β§ (BaseβπΎ) β (SubRingβπΏ)))) |
235 | 234 | biimpar 476 |
. . . 4
β’ (((πΏ β Field β§ πΎ β Field) β§ (πΎ = (πΏ βΎs (BaseβπΎ)) β§ (BaseβπΎ) β (SubRingβπΏ))) β πΏ/FldExtπΎ) |
236 | 226, 156,
229, 233, 235 | syl22anc 835 |
. . 3
β’ (π β πΏ/FldExtπΎ) |
237 | | extdgval 33021 |
. . 3
β’ (πΏ/FldExtπΎ β (πΏ[:]πΎ) = (dimβ((subringAlg βπΏ)β(BaseβπΎ)))) |
238 | 236, 237 | syl 17 |
. 2
β’ (π β (πΏ[:]πΎ) = (dimβ((subringAlg βπΏ)β(BaseβπΎ)))) |
239 | 13, 224, 238 | 3eqtr4d 2780 |
1
β’ (π β (dimβπ) = (πΏ[:]πΎ)) |