Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem4 Structured version   Visualization version   GIF version

Theorem algextdeglem4 33759
Description: Lemma for algextdeg 33764. By lmhmqusker 33437, the surjective module homomorphism 𝐺 described in algextdeglem2 33757 induces an isomorphism with the quotient space. Therefore, the dimension of that quotient space 𝑃 / 𝑍 is the degree of the algebraic field extension. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
Assertion
Ref Expression
algextdeglem4 (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝐸(𝑥)   𝐾(𝑥)   𝑀(𝑥,𝑝)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem4
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 algextdeg.e . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐸))
2 issdrg 20753 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
31, 2sylib 218 . . . . . . 7 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
43simp2d 1143 . . . . . 6 (𝜑𝐹 ∈ (SubRing‘𝐸))
5 subrgsubg 20542 . . . . . 6 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
6 eqid 2736 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
76subgss 19115 . . . . . 6 (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸))
84, 5, 73syl 18 . . . . 5 (𝜑𝐹 ⊆ (Base‘𝐸))
9 algextdeg.k . . . . . 6 𝐾 = (𝐸s 𝐹)
109, 6ressbas2 17264 . . . . 5 (𝐹 ⊆ (Base‘𝐸) → 𝐹 = (Base‘𝐾))
118, 10syl 17 . . . 4 (𝜑𝐹 = (Base‘𝐾))
1211fveq2d 6885 . . 3 (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = ((subringAlg ‘𝐿)‘(Base‘𝐾)))
1312fveq2d 6885 . 2 (𝜑 → (dim‘((subringAlg ‘𝐿)‘𝐹)) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
14 eqid 2736 . . . . 5 (0g‘((subringAlg ‘𝐿)‘𝐹)) = (0g‘((subringAlg ‘𝐿)‘𝐹))
15 algextdeg.l . . . . . 6 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
16 algextdeg.d . . . . . 6 𝐷 = (deg1𝐸)
17 algextdeg.m . . . . . 6 𝑀 = (𝐸 minPoly 𝐹)
18 algextdeg.f . . . . . 6 (𝜑𝐸 ∈ Field)
19 algextdeg.a . . . . . 6 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
20 algextdeglem.o . . . . . 6 𝑂 = (𝐸 evalSub1 𝐹)
21 algextdeglem.y . . . . . 6 𝑃 = (Poly1𝐾)
22 algextdeglem.u . . . . . 6 𝑈 = (Base‘𝑃)
23 algextdeglem.g . . . . . 6 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
24 algextdeglem.n . . . . . 6 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
25 algextdeglem.z . . . . . 6 𝑍 = (𝐺 “ {(0g𝐿)})
26 algextdeglem.q . . . . . 6 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
27 algextdeglem.j . . . . . 6 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
289, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27algextdeglem2 33757 . . . . 5 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)))
29 eqid 2736 . . . . 5 (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}) = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})
30 eqid 2736 . . . . 5 (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))
319fveq2i 6884 . . . . . . . . . . 11 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
3221, 31eqtri 2759 . . . . . . . . . 10 𝑃 = (Poly1‘(𝐸s 𝐹))
3318adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐸 ∈ Field)
341adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐹 ∈ (SubDRing‘𝐸))
35 eqid 2736 . . . . . . . . . . . . 13 (0g𝐸) = (0g𝐸)
3618fldcrngd 20707 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ CRing)
3720, 9, 6, 35, 36, 4irngssv 33734 . . . . . . . . . . . 12 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
3837, 19sseldd 3964 . . . . . . . . . . 11 (𝜑𝐴 ∈ (Base‘𝐸))
3938adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐴 ∈ (Base‘𝐸))
40 simpr 484 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝑝𝑈)
416, 20, 32, 22, 33, 34, 39, 40evls1fldgencl 33716 . . . . . . . . 9 ((𝜑𝑝𝑈) → ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4241ralrimiva 3133 . . . . . . . 8 (𝜑 → ∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4323rnmptss 7118 . . . . . . . 8 (∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4442, 43syl 17 . . . . . . 7 (𝜑 → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4518flddrngd 20706 . . . . . . . 8 (𝜑𝐸 ∈ DivRing)
4620, 32, 6, 22, 36, 4, 38, 23evls1maprhm 22319 . . . . . . . . . 10 (𝜑𝐺 ∈ (𝑃 RingHom 𝐸))
47 rnrhmsubrg 20570 . . . . . . . . . 10 (𝐺 ∈ (𝑃 RingHom 𝐸) → ran 𝐺 ∈ (SubRing‘𝐸))
4846, 47syl 17 . . . . . . . . 9 (𝜑 → ran 𝐺 ∈ (SubRing‘𝐸))
4915oveq1i 7420 . . . . . . . . . . 11 (𝐿s ran 𝐺) = ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺)
50 ovex 7443 . . . . . . . . . . . 12 (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V
51 ressabs 17274 . . . . . . . . . . . 12 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺) = (𝐸s ran 𝐺))
5250, 44, 51sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺) = (𝐸s ran 𝐺))
5349, 52eqtrid 2783 . . . . . . . . . 10 (𝜑 → (𝐿s ran 𝐺) = (𝐸s ran 𝐺))
54 eqid 2736 . . . . . . . . . . . . . . 15 (0g𝐿) = (0g𝐿)
5538snssd 4790 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → {𝐴} ⊆ (Base‘𝐸))
568, 55unssd 4172 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸))
576, 45, 56fldgensdrg 33313 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸))
58 issdrg 20753 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
5957, 58sylib 218 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
6059simp2d 1143 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸))
6115resrhm2b 20567 . . . . . . . . . . . . . . . . . 18 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → (𝐺 ∈ (𝑃 RingHom 𝐸) ↔ 𝐺 ∈ (𝑃 RingHom 𝐿)))
6261biimpa 476 . . . . . . . . . . . . . . . . 17 ((((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∧ 𝐺 ∈ (𝑃 RingHom 𝐸)) → 𝐺 ∈ (𝑃 RingHom 𝐿))
6360, 44, 46, 62syl21anc 837 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ (𝑃 RingHom 𝐿))
64 rhmghm 20449 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝑃 RingHom 𝐿) → 𝐺 ∈ (𝑃 GrpHom 𝐿))
6563, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ (𝑃 GrpHom 𝐿))
6654, 65, 25, 26, 27, 22, 24ghmquskerco 19272 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝐽𝑁))
6766rneqd 5923 . . . . . . . . . . . . 13 (𝜑 → ran 𝐺 = ran (𝐽𝑁))
6826a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)))
6922a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑈 = (Base‘𝑃))
70 ovexd 7445 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 ~QG 𝑍) ∈ V)
713simp3d 1144 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
7232, 71ply1lvec 33577 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ LVec)
7368, 69, 70, 72qusbas 17564 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 / (𝑃 ~QG 𝑍)) = (Base‘𝑄))
74 eqid 2736 . . . . . . . . . . . . . . . 16 (𝑈 / (𝑃 ~QG 𝑍)) = (𝑈 / (𝑃 ~QG 𝑍))
7554ghmker 19230 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ (𝑃 GrpHom 𝐿) → (𝐺 “ {(0g𝐿)}) ∈ (NrmSGrp‘𝑃))
7665, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 “ {(0g𝐿)}) ∈ (NrmSGrp‘𝑃))
7725, 76eqeltrid 2839 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ (NrmSGrp‘𝑃))
7822, 74, 24, 77qusrn 33429 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝑁 = (𝑈 / (𝑃 ~QG 𝑍)))
79 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹)
8020, 32, 6, 22, 36, 4, 38, 23, 79evls1maplmhm 22320 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)))
8180elexd 3488 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺 ∈ V)
8281adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (Base‘𝑄)) → 𝐺 ∈ V)
8382imaexd 7917 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘𝑄)) → (𝐺𝑝) ∈ V)
8483uniexd 7741 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘𝑄)) → (𝐺𝑝) ∈ V)
8527, 84dmmptd 6688 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐽 = (Base‘𝑄))
8673, 78, 853eqtr4rd 2782 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐽 = ran 𝑁)
87 rncoeq 5964 . . . . . . . . . . . . . 14 (dom 𝐽 = ran 𝑁 → ran (𝐽𝑁) = ran 𝐽)
8886, 87syl 17 . . . . . . . . . . . . 13 (𝜑 → ran (𝐽𝑁) = ran 𝐽)
8967, 88eqtrd 2771 . . . . . . . . . . . 12 (𝜑 → ran 𝐺 = ran 𝐽)
9089oveq2d 7426 . . . . . . . . . . 11 (𝜑 → (𝐿s ran 𝐺) = (𝐿s ran 𝐽))
91 eqid 2736 . . . . . . . . . . . 12 (𝐿s ran 𝐽) = (𝐿s ran 𝐽)
929subrgcrng 20540 . . . . . . . . . . . . . . 15 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → 𝐾 ∈ CRing)
9336, 4, 92syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ CRing)
9421ply1crng 22139 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → 𝑃 ∈ CRing)
9593, 94syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ CRing)
9654, 63, 25, 26, 27, 95rhmquskerlem 33445 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (𝑄 RingHom 𝐿))
9720, 32, 6, 22, 36, 4, 38, 23evls1maprnss 22321 . . . . . . . . . . . . . . 15 (𝜑𝐹 ⊆ ran 𝐺)
98 eqid 2736 . . . . . . . . . . . . . . . . . 18 (1r𝐸) = (1r𝐸)
999, 98subrg1 20547 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) = (1r𝐾))
1004, 99syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) = (1r𝐾))
10198subrg1cl 20545 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝐹)
1024, 101syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) ∈ 𝐹)
103100, 102eqeltrrd 2836 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐾) ∈ 𝐹)
10497, 103sseldd 3964 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐾) ∈ ran 𝐺)
105 drngnzr 20713 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ DivRing → 𝐸 ∈ NzRing)
10698, 35nzrnz 20480 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ NzRing → (1r𝐸) ≠ (0g𝐸))
10745, 105, 1063syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) ≠ (0g𝐸))
10836crnggrpd 20212 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ Grp)
109108grpmndd 18934 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ Mnd)
110 sdrgsubrg 20756 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸))
111 subrgsubg 20542 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸))
11257, 110, 1113syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸))
11335subg0cl 19122 . . . . . . . . . . . . . . . . . 18 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
114112, 113syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
1156, 45, 56fldgenssv 33314 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸))
11615, 6, 35ress0g 18745 . . . . . . . . . . . . . . . . 17 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) → (0g𝐸) = (0g𝐿))
117109, 114, 115, 116syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝐸) = (0g𝐿))
118107, 100, 1173netr3d 3009 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐾) ≠ (0g𝐿))
119 nelsn 4647 . . . . . . . . . . . . . . 15 ((1r𝐾) ≠ (0g𝐿) → ¬ (1r𝐾) ∈ {(0g𝐿)})
120118, 119syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ (1r𝐾) ∈ {(0g𝐿)})
121 nelne1 3030 . . . . . . . . . . . . . 14 (((1r𝐾) ∈ ran 𝐺 ∧ ¬ (1r𝐾) ∈ {(0g𝐿)}) → ran 𝐺 ≠ {(0g𝐿)})
122104, 120, 121syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ran 𝐺 ≠ {(0g𝐿)})
12389, 122eqnetrrd 3001 . . . . . . . . . . . 12 (𝜑 → ran 𝐽 ≠ {(0g𝐿)})
124 eqid 2736 . . . . . . . . . . . . 13 (oppr𝑃) = (oppr𝑃)
1259sdrgdrng 20755 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubDRing‘𝐸) → 𝐾 ∈ DivRing)
126 drngnzr 20713 . . . . . . . . . . . . . . 15 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
1271, 125, 1263syl 18 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ NzRing)
12821ply1nz 26084 . . . . . . . . . . . . . 14 (𝐾 ∈ NzRing → 𝑃 ∈ NzRing)
129127, 128syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ NzRing)
130 eqid 2736 . . . . . . . . . . . . . . . 16 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}
131 eqid 2736 . . . . . . . . . . . . . . . 16 (RSpan‘𝑃) = (RSpan‘𝑃)
1329fveq2i 6884 . . . . . . . . . . . . . . . 16 (idlGen1p𝐾) = (idlGen1p‘(𝐸s 𝐹))
13320, 32, 6, 18, 1, 38, 35, 130, 131, 132ply1annig1p 33743 . . . . . . . . . . . . . . 15 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = ((RSpan‘𝑃)‘{((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})}))
134117sneqd 4618 . . . . . . . . . . . . . . . . . 18 (𝜑 → {(0g𝐸)} = {(0g𝐿)})
135134imaeq2d 6052 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 “ {(0g𝐸)}) = (𝐺 “ {(0g𝐿)}))
13625, 135eqtr4id 2790 . . . . . . . . . . . . . . . 16 (𝜑𝑍 = (𝐺 “ {(0g𝐸)}))
13722mpteq1i 5216 . . . . . . . . . . . . . . . . . 18 (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))
13823, 137eqtri 2759 . . . . . . . . . . . . . . . . 17 𝐺 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))
13920, 32, 6, 36, 4, 38, 35, 130, 138ply1annidllem 33740 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = (𝐺 “ {(0g𝐸)}))
140136, 139eqtr4d 2774 . . . . . . . . . . . . . . 15 (𝜑𝑍 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
141 eqid 2736 . . . . . . . . . . . . . . . . . 18 (𝐸 minPoly 𝐹) = (𝐸 minPoly 𝐹)
14220, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141minplyval 33744 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) = ((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}))
143142sneqd 4618 . . . . . . . . . . . . . . . 16 (𝜑 → {((𝐸 minPoly 𝐹)‘𝐴)} = {((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})})
144143fveq2d 6885 . . . . . . . . . . . . . . 15 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) = ((RSpan‘𝑃)‘{((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})}))
145133, 140, 1443eqtr4d 2781 . . . . . . . . . . . . . 14 (𝜑𝑍 = ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}))
146 eqid 2736 . . . . . . . . . . . . . . . 16 (0g𝑃) = (0g𝑃)
147 eqid 2736 . . . . . . . . . . . . . . . . . 18 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
148147, 18, 1, 141, 19irngnminplynz 33751 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ≠ (0g‘(Poly1𝐸)))
149 eqid 2736 . . . . . . . . . . . . . . . . . 18 (Poly1𝐸) = (Poly1𝐸)
150149, 9, 21, 22, 4, 147ressply10g 33585 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g‘(Poly1𝐸)) = (0g𝑃))
151148, 150neeqtrd 3002 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ≠ (0g𝑃))
15220, 32, 6, 18, 1, 38, 141, 146, 151minplyirred 33750 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Irred‘𝑃))
153 eqid 2736 . . . . . . . . . . . . . . . 16 ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) = ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)})
154 fldsdrgfld 20763 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
15518, 1, 154syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸s 𝐹) ∈ Field)
1569, 155eqeltrid 2839 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ Field)
15721ply1pid 26145 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Field → 𝑃 ∈ PID)
158156, 157syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ PID)
15920, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141minplycl 33745 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Base‘𝑃))
160159, 22eleqtrrdi 2846 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ 𝑈)
16195crngringd 20211 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
162160snssd 4790 . . . . . . . . . . . . . . . . 17 (𝜑 → {((𝐸 minPoly 𝐹)‘𝐴)} ⊆ 𝑈)
163 eqid 2736 . . . . . . . . . . . . . . . . . 18 (LIdeal‘𝑃) = (LIdeal‘𝑃)
164131, 22, 163rspcl 21201 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Ring ∧ {((𝐸 minPoly 𝐹)‘𝐴)} ⊆ 𝑈) → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (LIdeal‘𝑃))
165161, 162, 164syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (LIdeal‘𝑃))
16622, 131, 146, 153, 158, 160, 151, 165mxidlirred 33492 . . . . . . . . . . . . . . 15 (𝜑 → (((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (MaxIdeal‘𝑃) ↔ ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Irred‘𝑃)))
167152, 166mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (MaxIdeal‘𝑃))
168145, 167eqeltrd 2835 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ (MaxIdeal‘𝑃))
169 eqid 2736 . . . . . . . . . . . . . . . 16 (MaxIdeal‘𝑃) = (MaxIdeal‘𝑃)
170169, 124crngmxidl 33489 . . . . . . . . . . . . . . 15 (𝑃 ∈ CRing → (MaxIdeal‘𝑃) = (MaxIdeal‘(oppr𝑃)))
17195, 170syl 17 . . . . . . . . . . . . . 14 (𝜑 → (MaxIdeal‘𝑃) = (MaxIdeal‘(oppr𝑃)))
172168, 171eleqtrd 2837 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ (MaxIdeal‘(oppr𝑃)))
173124, 26, 129, 168, 172qsdrngi 33515 . . . . . . . . . . . 12 (𝜑𝑄 ∈ DivRing)
17491, 54, 96, 123, 173rndrhmcl 33295 . . . . . . . . . . 11 (𝜑 → (𝐿s ran 𝐽) ∈ DivRing)
17590, 174eqeltrd 2835 . . . . . . . . . 10 (𝜑 → (𝐿s ran 𝐺) ∈ DivRing)
17653, 175eqeltrrd 2836 . . . . . . . . 9 (𝜑 → (𝐸s ran 𝐺) ∈ DivRing)
177 issdrg 20753 . . . . . . . . 9 (ran 𝐺 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ ran 𝐺 ∈ (SubRing‘𝐸) ∧ (𝐸s ran 𝐺) ∈ DivRing))
17845, 48, 176, 177syl3anbrc 1344 . . . . . . . 8 (𝜑 → ran 𝐺 ∈ (SubDRing‘𝐸))
179 fveq2 6881 . . . . . . . . . . . . . 14 (𝑝 = (var1𝐾) → (𝑂𝑝) = (𝑂‘(var1𝐾)))
180179fveq1d 6883 . . . . . . . . . . . . 13 (𝑝 = (var1𝐾) → ((𝑂𝑝)‘𝐴) = ((𝑂‘(var1𝐾))‘𝐴))
181180eqeq2d 2747 . . . . . . . . . . . 12 (𝑝 = (var1𝐾) → (𝐴 = ((𝑂𝑝)‘𝐴) ↔ 𝐴 = ((𝑂‘(var1𝐾))‘𝐴)))
1829, 71eqeltrid 2839 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ DivRing)
183182drngringd 20702 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
184 eqid 2736 . . . . . . . . . . . . . 14 (var1𝐾) = (var1𝐾)
185184, 21, 22vr1cl 22158 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (var1𝐾) ∈ 𝑈)
186183, 185syl 17 . . . . . . . . . . . 12 (𝜑 → (var1𝐾) ∈ 𝑈)
18720, 184, 9, 6, 36, 4evls1var 22281 . . . . . . . . . . . . . 14 (𝜑 → (𝑂‘(var1𝐾)) = ( I ↾ (Base‘𝐸)))
188187fveq1d 6883 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(var1𝐾))‘𝐴) = (( I ↾ (Base‘𝐸))‘𝐴))
189 fvresi 7170 . . . . . . . . . . . . . 14 (𝐴 ∈ (Base‘𝐸) → (( I ↾ (Base‘𝐸))‘𝐴) = 𝐴)
19038, 189syl 17 . . . . . . . . . . . . 13 (𝜑 → (( I ↾ (Base‘𝐸))‘𝐴) = 𝐴)
191188, 190eqtr2d 2772 . . . . . . . . . . . 12 (𝜑𝐴 = ((𝑂‘(var1𝐾))‘𝐴))
192181, 186, 191rspcedvdw 3609 . . . . . . . . . . 11 (𝜑 → ∃𝑝𝑈 𝐴 = ((𝑂𝑝)‘𝐴))
19323, 192, 19elrnmptd 5948 . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐺)
194193snssd 4790 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ ran 𝐺)
19597, 194unssd 4172 . . . . . . . 8 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ ran 𝐺)
1966, 45, 178, 195fldgenssp 33317 . . . . . . 7 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ ran 𝐺)
19744, 196eqssd 3981 . . . . . 6 (𝜑 → ran 𝐺 = (𝐸 fldGen (𝐹 ∪ {𝐴})))
19815, 6ressbas2 17264 . . . . . . 7 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿))
199115, 198syl 17 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿))
200 eqidd 2737 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = ((subringAlg ‘𝐿)‘𝐹))
2016, 45, 56fldgenssid 33312 . . . . . . . . 9 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
202201unssad 4173 . . . . . . . 8 (𝜑𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
203202, 199sseqtrd 4000 . . . . . . 7 (𝜑𝐹 ⊆ (Base‘𝐿))
204200, 203srabase 21140 . . . . . 6 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐹)))
205197, 199, 2043eqtrd 2775 . . . . 5 (𝜑 → ran 𝐺 = (Base‘((subringAlg ‘𝐿)‘𝐹)))
206 imaeq2 6048 . . . . . . 7 (𝑞 = 𝑝 → (𝐺𝑞) = (𝐺𝑝))
207206unieqd 4901 . . . . . 6 (𝑞 = 𝑝 (𝐺𝑞) = (𝐺𝑝))
208207cbvmptv 5230 . . . . 5 (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)) = (𝑝 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑝))
20914, 28, 29, 30, 205, 208lmhmqusker 33437 . . . 4 (𝜑 → (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)) ∈ ((𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) LMIso ((subringAlg ‘𝐿)‘𝐹)))
210 eqidd 2737 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐿) = (0g𝐿))
211200, 210, 203sralmod0 21151 . . . . . . . . . . . . 13 (𝜑 → (0g𝐿) = (0g‘((subringAlg ‘𝐿)‘𝐹)))
212211sneqd 4618 . . . . . . . . . . . 12 (𝜑 → {(0g𝐿)} = {(0g‘((subringAlg ‘𝐿)‘𝐹))})
213212imaeq2d 6052 . . . . . . . . . . 11 (𝜑 → (𝐺 “ {(0g𝐿)}) = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))
21425, 213eqtrid 2783 . . . . . . . . . 10 (𝜑𝑍 = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))
215214oveq2d 7426 . . . . . . . . 9 (𝜑 → (𝑃 ~QG 𝑍) = (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))
216215oveq2d 7426 . . . . . . . 8 (𝜑 → (𝑃 /s (𝑃 ~QG 𝑍)) = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))))
21726, 216eqtrid 2783 . . . . . . 7 (𝜑𝑄 = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))))
218217fveq2d 6885 . . . . . 6 (𝜑 → (Base‘𝑄) = (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))))
219218mpteq1d 5215 . . . . 5 (𝜑 → (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝)) = (𝑝 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑝)))
220219, 27, 2083eqtr4g 2796 . . . 4 (𝜑𝐽 = (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)))
221217oveq1d 7425 . . . 4 (𝜑 → (𝑄 LMIso ((subringAlg ‘𝐿)‘𝐹)) = ((𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) LMIso ((subringAlg ‘𝐿)‘𝐹)))
222209, 220, 2213eltr4d 2850 . . 3 (𝜑𝐽 ∈ (𝑄 LMIso ((subringAlg ‘𝐿)‘𝐹)))
2239, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27algextdeglem3 33758 . . 3 (𝜑𝑄 ∈ LVec)
224222, 223lmimdim 33648 . 2 (𝜑 → (dim‘𝑄) = (dim‘((subringAlg ‘𝐿)‘𝐹)))
2256, 18, 56fldgenfld 33319 . . . . 5 (𝜑 → (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ Field)
22615, 225eqeltrid 2839 . . . 4 (𝜑𝐿 ∈ Field)
2279, 15, 16, 17, 18, 1, 19algextdeglem1 33756 . . . . 5 (𝜑 → (𝐿s 𝐹) = 𝐾)
22811oveq2d 7426 . . . . 5 (𝜑 → (𝐿s 𝐹) = (𝐿s (Base‘𝐾)))
229227, 228eqtr3d 2773 . . . 4 (𝜑𝐾 = (𝐿s (Base‘𝐾)))
23015subsubrg 20563 . . . . . . 7 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐹 ∈ (SubRing‘𝐿) ↔ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))))
231230biimpar 477 . . . . . 6 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))) → 𝐹 ∈ (SubRing‘𝐿))
23260, 4, 202, 231syl12anc 836 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐿))
23311, 232eqeltrrd 2836 . . . 4 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐿))
234 brfldext 33692 . . . . 5 ((𝐿 ∈ Field ∧ 𝐾 ∈ Field) → (𝐿/FldExt𝐾 ↔ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))))
235234biimpar 477 . . . 4 (((𝐿 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))) → 𝐿/FldExt𝐾)
236226, 156, 229, 233, 235syl22anc 838 . . 3 (𝜑𝐿/FldExt𝐾)
237 extdgval 33700 . . 3 (𝐿/FldExt𝐾 → (𝐿[:]𝐾) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
238236, 237syl 17 . 2 (𝜑 → (𝐿[:]𝐾) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
23913, 224, 2383eqtr4d 2781 1 (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  {crab 3420  Vcvv 3464  cun 3929  wss 3931  {csn 4606   cuni 4888   class class class wbr 5124  cmpt 5206   I cid 5552  ccnv 5658  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  ccom 5663  cfv 6536  (class class class)co 7410  [cec 8722   / cqs 8723  Basecbs 17233  s cress 17256  0gc0g 17458   /s cqus 17524  Mndcmnd 18717  SubGrpcsubg 19108  NrmSGrpcnsg 19109   ~QG cqg 19110   GrpHom cghm 19200  1rcur 20146  Ringcrg 20198  CRingccrg 20199  opprcoppr 20301  Irredcir 20321   RingHom crh 20434  NzRingcnzr 20477  SubRingcsubrg 20534  DivRingcdr 20694  Fieldcfield 20695  SubDRingcsdrg 20751   LMHom clmhm 20982   LMIso clmim 20983  LVecclvec 21065  subringAlg csra 21134  LIdealclidl 21172  RSpancrsp 21173  PIDcpid 21302  var1cv1 22116  Poly1cpl1 22117   evalSub1 ces1 22256  deg1cdg1 26016  idlGen1pcig1p 26092   fldGen cfldgen 33309  MaxIdealcmxidl 33479  dimcldim 33643  /FldExtcfldext 33683  [:]cextdg 33686   IntgRing cirng 33729   minPoly cminply 33738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-rpss 7722  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-inf 9460  df-oi 9529  df-r1 9783  df-rank 9784  df-dju 9920  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ocomp 17297  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-imas 17527  df-qus 17528  df-mre 17603  df-mrc 17604  df-mri 17605  df-acs 17606  df-proset 18311  df-drs 18312  df-poset 18330  df-ipo 18543  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-gim 19247  df-cntz 19305  df-oppg 19334  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-irred 20324  df-invr 20353  df-dvr 20366  df-rhm 20437  df-nzr 20478  df-subrng 20511  df-subrg 20535  df-rlreg 20659  df-domn 20660  df-idom 20661  df-drng 20696  df-field 20697  df-sdrg 20752  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lmim 20986  df-lbs 21038  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-2idl 21216  df-lpidl 21288  df-lpir 21289  df-pid 21303  df-cnfld 21321  df-dsmm 21697  df-frlm 21712  df-uvc 21748  df-lindf 21771  df-linds 21772  df-assa 21818  df-asp 21819  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-evls 22037  df-evl 22038  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-evls1 22258  df-evl1 22259  df-mdeg 26017  df-deg1 26018  df-mon1 26093  df-uc1p 26094  df-q1p 26095  df-r1p 26096  df-ig1p 26097  df-fldgen 33310  df-mxidl 33480  df-dim 33644  df-fldext 33687  df-extdg 33688  df-irng 33730  df-minply 33739
This theorem is referenced by:  algextdeg  33764
  Copyright terms: Public domain W3C validator