Step | Hyp | Ref
| Expression |
1 | | algextdeg.e |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
2 | | issdrg 20551 |
. . . . . . . 8
⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
3 | 1, 2 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
4 | 3 | simp2d 1142 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
5 | | subrgsubg 20471 |
. . . . . 6
⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) |
6 | | eqid 2731 |
. . . . . . 7
⊢
(Base‘𝐸) =
(Base‘𝐸) |
7 | 6 | subgss 19047 |
. . . . . 6
⊢ (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) |
8 | 4, 5, 7 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
9 | | algextdeg.k |
. . . . . 6
⊢ 𝐾 = (𝐸 ↾s 𝐹) |
10 | 9, 6 | ressbas2 17189 |
. . . . 5
⊢ (𝐹 ⊆ (Base‘𝐸) → 𝐹 = (Base‘𝐾)) |
11 | 8, 10 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹 = (Base‘𝐾)) |
12 | 11 | fveq2d 6895 |
. . 3
⊢ (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = ((subringAlg ‘𝐿)‘(Base‘𝐾))) |
13 | 12 | fveq2d 6895 |
. 2
⊢ (𝜑 → (dim‘((subringAlg
‘𝐿)‘𝐹)) = (dim‘((subringAlg
‘𝐿)‘(Base‘𝐾)))) |
14 | | eqid 2731 |
. . . . 5
⊢
(0g‘((subringAlg ‘𝐿)‘𝐹)) = (0g‘((subringAlg
‘𝐿)‘𝐹)) |
15 | | algextdeg.l |
. . . . . 6
⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
16 | | algextdeg.d |
. . . . . 6
⊢ 𝐷 = ( deg1
‘𝐸) |
17 | | algextdeg.m |
. . . . . 6
⊢ 𝑀 = (𝐸 minPoly 𝐹) |
18 | | algextdeg.f |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ Field) |
19 | | algextdeg.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
20 | | algextdeglem.o |
. . . . . 6
⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
21 | | algextdeglem.y |
. . . . . 6
⊢ 𝑃 = (Poly1‘𝐾) |
22 | | algextdeglem.u |
. . . . . 6
⊢ 𝑈 = (Base‘𝑃) |
23 | | algextdeglem.g |
. . . . . 6
⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
24 | | algextdeglem.n |
. . . . . 6
⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
25 | | algextdeglem.z |
. . . . . 6
⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
26 | | algextdeglem.q |
. . . . . 6
⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
27 | | algextdeglem.j |
. . . . . 6
⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪
(𝐺 “ 𝑝)) |
28 | 9, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27 | algextdeglem2 33078 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹))) |
29 | | eqid 2731 |
. . . . 5
⊢ (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))}) = (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))}) |
30 | | eqid 2731 |
. . . . 5
⊢ (𝑃 /s (𝑃 ~QG (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))}))) = (𝑃 /s (𝑃 ~QG (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))}))) |
31 | 9 | fveq2i 6894 |
. . . . . . . . . . 11
⊢
(Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
32 | 21, 31 | eqtri 2759 |
. . . . . . . . . 10
⊢ 𝑃 =
(Poly1‘(𝐸
↾s 𝐹)) |
33 | 18 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐸 ∈ Field) |
34 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐹 ∈ (SubDRing‘𝐸)) |
35 | | eqid 2731 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐸) = (0g‘𝐸) |
36 | 18 | fldcrngd 20517 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ∈ CRing) |
37 | 20, 9, 6, 35, 36, 4 | irngssv 33056 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
38 | 37, 19 | sseldd 3983 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
39 | 38 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐴 ∈ (Base‘𝐸)) |
40 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝑝 ∈ 𝑈) |
41 | 6, 20, 32, 22, 33, 34, 39, 40 | evls1fldgencl 33048 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
42 | 41 | ralrimiva 3145 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑝 ∈ 𝑈 ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
43 | 23 | rnmptss 7124 |
. . . . . . . 8
⊢
(∀𝑝 ∈
𝑈 ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
44 | 42, 43 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
45 | 18 | flddrngd 20516 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ DivRing) |
46 | 20, 32, 6, 22, 36, 4, 38, 23 | evls1maprhm 33063 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ (𝑃 RingHom 𝐸)) |
47 | | rnrhmsubrg 20499 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (𝑃 RingHom 𝐸) → ran 𝐺 ∈ (SubRing‘𝐸)) |
48 | 46, 47 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐺 ∈ (SubRing‘𝐸)) |
49 | 15 | oveq1i 7422 |
. . . . . . . . . . 11
⊢ (𝐿 ↾s ran 𝐺) = ((𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺) |
50 | | ovex 7445 |
. . . . . . . . . . . 12
⊢ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V |
51 | | ressabs 17201 |
. . . . . . . . . . . 12
⊢ (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → ((𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺) = (𝐸 ↾s ran 𝐺)) |
52 | 50, 44, 51 | sylancr 586 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺) = (𝐸 ↾s ran 𝐺)) |
53 | 49, 52 | eqtrid 2783 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿 ↾s ran 𝐺) = (𝐸 ↾s ran 𝐺)) |
54 | | eqid 2731 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝐿) = (0g‘𝐿) |
55 | 38 | snssd 4812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → {𝐴} ⊆ (Base‘𝐸)) |
56 | 8, 55 | unssd 4186 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸)) |
57 | 6, 45, 56 | fldgensdrg 32689 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸)) |
58 | | issdrg 20551 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing)) |
59 | 57, 58 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing)) |
60 | 59 | simp2d 1142 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸)) |
61 | 15 | resrhm2b 20496 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → (𝐺 ∈ (𝑃 RingHom 𝐸) ↔ 𝐺 ∈ (𝑃 RingHom 𝐿))) |
62 | 61 | biimpa 476 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∧ 𝐺 ∈ (𝑃 RingHom 𝐸)) → 𝐺 ∈ (𝑃 RingHom 𝐿)) |
63 | 60, 44, 46, 62 | syl21anc 835 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐺 ∈ (𝑃 RingHom 𝐿)) |
64 | | rhmghm 20379 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ (𝑃 RingHom 𝐿) → 𝐺 ∈ (𝑃 GrpHom 𝐿)) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ (𝑃 GrpHom 𝐿)) |
66 | 54, 65, 25, 26, 27, 22, 24 | ghmquskerco 32818 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 = (𝐽 ∘ 𝑁)) |
67 | 66 | rneqd 5937 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran 𝐺 = ran (𝐽 ∘ 𝑁)) |
68 | 26 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))) |
69 | 22 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑈 = (Base‘𝑃)) |
70 | | ovexd 7447 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑃 ~QG 𝑍) ∈ V) |
71 | 3 | simp3d 1143 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
72 | 32, 71 | ply1lvec 32927 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ LVec) |
73 | 68, 69, 70, 72 | qusbas 17498 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 / (𝑃 ~QG 𝑍)) = (Base‘𝑄)) |
74 | | eqid 2731 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 / (𝑃 ~QG 𝑍)) = (𝑈 / (𝑃 ~QG 𝑍)) |
75 | 54 | ghmker 19160 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ (𝑃 GrpHom 𝐿) → (◡𝐺 “ {(0g‘𝐿)}) ∈ (NrmSGrp‘𝑃)) |
76 | 65, 75 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (◡𝐺 “ {(0g‘𝐿)}) ∈ (NrmSGrp‘𝑃)) |
77 | 25, 76 | eqeltrid 2836 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑍 ∈ (NrmSGrp‘𝑃)) |
78 | 22, 74, 24, 77 | qusrn 32809 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ran 𝑁 = (𝑈 / (𝑃 ~QG 𝑍))) |
79 | | eqid 2731 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹) |
80 | 20, 32, 6, 22, 36, 4, 38, 23, 79 | evls1maplmhm 33064 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹))) |
81 | 80 | elexd 3494 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺 ∈ V) |
82 | 81 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑄)) → 𝐺 ∈ V) |
83 | 82 | imaexd 32186 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑄)) → (𝐺 “ 𝑝) ∈ V) |
84 | 83 | uniexd 7736 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑄)) → ∪
(𝐺 “ 𝑝) ∈ V) |
85 | 27, 84 | dmmptd 6695 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom 𝐽 = (Base‘𝑄)) |
86 | 73, 78, 85 | 3eqtr4rd 2782 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐽 = ran 𝑁) |
87 | | rncoeq 5974 |
. . . . . . . . . . . . . 14
⊢ (dom
𝐽 = ran 𝑁 → ran (𝐽 ∘ 𝑁) = ran 𝐽) |
88 | 86, 87 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran (𝐽 ∘ 𝑁) = ran 𝐽) |
89 | 67, 88 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝐺 = ran 𝐽) |
90 | 89 | oveq2d 7428 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐿 ↾s ran 𝐺) = (𝐿 ↾s ran 𝐽)) |
91 | | eqid 2731 |
. . . . . . . . . . . 12
⊢ (𝐿 ↾s ran 𝐽) = (𝐿 ↾s ran 𝐽) |
92 | 9 | subrgcrng 20469 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → 𝐾 ∈ CRing) |
93 | 36, 4, 92 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ CRing) |
94 | 21 | ply1crng 21954 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ CRing → 𝑃 ∈ CRing) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ CRing) |
96 | 54, 63, 25, 26, 27, 95 | rhmquskerlem 32832 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ (𝑄 RingHom 𝐿)) |
97 | 20, 32, 6, 22, 36, 4, 38, 23 | evls1maprnss 33065 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 ⊆ ran 𝐺) |
98 | | eqid 2731 |
. . . . . . . . . . . . . . . . . 18
⊢
(1r‘𝐸) = (1r‘𝐸) |
99 | 9, 98 | subrg1 20476 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ (SubRing‘𝐸) →
(1r‘𝐸) =
(1r‘𝐾)) |
100 | 4, 99 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1r‘𝐸) = (1r‘𝐾)) |
101 | 98 | subrg1cl 20474 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ (SubRing‘𝐸) →
(1r‘𝐸)
∈ 𝐹) |
102 | 4, 101 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1r‘𝐸) ∈ 𝐹) |
103 | 100, 102 | eqeltrrd 2833 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1r‘𝐾) ∈ 𝐹) |
104 | 97, 103 | sseldd 3983 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1r‘𝐾) ∈ ran 𝐺) |
105 | | drngnzr 20524 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐸 ∈ DivRing → 𝐸 ∈ NzRing) |
106 | 98, 35 | nzrnz 20410 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐸 ∈ NzRing →
(1r‘𝐸)
≠ (0g‘𝐸)) |
107 | 45, 105, 106 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1r‘𝐸) ≠
(0g‘𝐸)) |
108 | 36 | crnggrpd 20145 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐸 ∈ Grp) |
109 | 108 | grpmndd 18871 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐸 ∈ Mnd) |
110 | | sdrgsubrg 20554 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸)) |
111 | | subrgsubg 20471 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸)) |
112 | 57, 110, 111 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸)) |
113 | 35 | subg0cl 19054 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸) → (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
114 | 112, 113 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (0g‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
115 | 6, 45, 56 | fldgenssv 32690 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) |
116 | 15, 6, 35 | ress0g 18690 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸 ∈ Mnd ∧
(0g‘𝐸)
∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) → (0g‘𝐸) = (0g‘𝐿)) |
117 | 109, 114,
115, 116 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (0g‘𝐸) = (0g‘𝐿)) |
118 | 107, 100,
117 | 3netr3d 3016 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1r‘𝐾) ≠
(0g‘𝐿)) |
119 | | nelsn 4668 |
. . . . . . . . . . . . . . 15
⊢
((1r‘𝐾) ≠ (0g‘𝐿) → ¬
(1r‘𝐾)
∈ {(0g‘𝐿)}) |
120 | 118, 119 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬
(1r‘𝐾)
∈ {(0g‘𝐿)}) |
121 | | nelne1 3038 |
. . . . . . . . . . . . . 14
⊢
(((1r‘𝐾) ∈ ran 𝐺 ∧ ¬ (1r‘𝐾) ∈
{(0g‘𝐿)})
→ ran 𝐺 ≠
{(0g‘𝐿)}) |
122 | 104, 120,
121 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran 𝐺 ≠ {(0g‘𝐿)}) |
123 | 89, 122 | eqnetrrd 3008 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝐽 ≠ {(0g‘𝐿)}) |
124 | | eqid 2731 |
. . . . . . . . . . . . 13
⊢
(oppr‘𝑃) = (oppr‘𝑃) |
125 | 9 | sdrgdrng 20553 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐾 ∈ DivRing) |
126 | | drngnzr 20524 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ DivRing → 𝐾 ∈ NzRing) |
127 | 1, 125, 126 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ NzRing) |
128 | 21 | ply1nz 25888 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ NzRing → 𝑃 ∈ NzRing) |
129 | 127, 128 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ NzRing) |
130 | | eqid 2731 |
. . . . . . . . . . . . . . . 16
⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} |
131 | | eqid 2731 |
. . . . . . . . . . . . . . . 16
⊢
(RSpan‘𝑃) =
(RSpan‘𝑃) |
132 | 9 | fveq2i 6894 |
. . . . . . . . . . . . . . . 16
⊢
(idlGen1p‘𝐾) = (idlGen1p‘(𝐸 ↾s 𝐹)) |
133 | 20, 32, 6, 18, 1, 38, 35, 130, 131, 132 | ply1annig1p 33069 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = ((RSpan‘𝑃)‘{((idlGen1p‘𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
134 | 117 | sneqd 4640 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
{(0g‘𝐸)} =
{(0g‘𝐿)}) |
135 | 134 | imaeq2d 6059 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (◡𝐺 “ {(0g‘𝐸)}) = (◡𝐺 “ {(0g‘𝐿)})) |
136 | 25, 135 | eqtr4id 2790 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑍 = (◡𝐺 “ {(0g‘𝐸)})) |
137 | 22 | mpteq1i 5244 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) |
138 | 23, 137 | eqtri 2759 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐺 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) |
139 | 20, 32, 6, 36, 4, 38, 35, 130, 138 | ply1annidllem 33066 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)} = (◡𝐺 “ {(0g‘𝐸)})) |
140 | 136, 139 | eqtr4d 2774 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑍 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)}) |
141 | | eqid 2731 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐸 minPoly 𝐹) = (𝐸 minPoly 𝐹) |
142 | 20, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141 | minplyval 33070 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) = ((idlGen1p‘𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})) |
143 | 142 | sneqd 4640 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {((𝐸 minPoly 𝐹)‘𝐴)} = {((idlGen1p‘𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})}) |
144 | 143 | fveq2d 6895 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) = ((RSpan‘𝑃)‘{((idlGen1p‘𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
145 | 133, 140,
144 | 3eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑍 = ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)})) |
146 | | eqid 2731 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘𝑃) = (0g‘𝑃) |
147 | | eqid 2731 |
. . . . . . . . . . . . . . . . . 18
⊢
(0g‘(Poly1‘𝐸)) =
(0g‘(Poly1‘𝐸)) |
148 | 147, 18, 1, 141, 19 | irngnminplynz 33075 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ≠
(0g‘(Poly1‘𝐸))) |
149 | | eqid 2731 |
. . . . . . . . . . . . . . . . . 18
⊢
(Poly1‘𝐸) = (Poly1‘𝐸) |
150 | 149, 9, 21, 22, 4, 147 | ressply10g 32945 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(0g‘(Poly1‘𝐸)) = (0g‘𝑃)) |
151 | 148, 150 | neeqtrd 3009 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ≠ (0g‘𝑃)) |
152 | 20, 32, 6, 18, 1, 38, 141, 146, 151 | minplyirred 33074 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Irred‘𝑃)) |
153 | | eqid 2731 |
. . . . . . . . . . . . . . . 16
⊢
((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) = ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) |
154 | | fldsdrgfld 20561 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) |
155 | 18, 1, 154 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) |
156 | 9, 155 | eqeltrid 2836 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈ Field) |
157 | 21 | ply1pid 25946 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ Field → 𝑃 ∈ PID) |
158 | 156, 157 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ PID) |
159 | 20, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141 | minplycl 33071 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Base‘𝑃)) |
160 | 159, 22 | eleqtrrdi 2843 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ 𝑈) |
161 | 95 | crngringd 20144 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈ Ring) |
162 | 160 | snssd 4812 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → {((𝐸 minPoly 𝐹)‘𝐴)} ⊆ 𝑈) |
163 | | eqid 2731 |
. . . . . . . . . . . . . . . . . 18
⊢
(LIdeal‘𝑃) =
(LIdeal‘𝑃) |
164 | 131, 22, 163 | rspcl 21000 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ Ring ∧ {((𝐸 minPoly 𝐹)‘𝐴)} ⊆ 𝑈) → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (LIdeal‘𝑃)) |
165 | 161, 162,
164 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (LIdeal‘𝑃)) |
166 | 22, 131, 146, 153, 158, 160, 151, 165 | mxidlirred 32877 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (MaxIdeal‘𝑃) ↔ ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Irred‘𝑃))) |
167 | 152, 166 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (MaxIdeal‘𝑃)) |
168 | 145, 167 | eqeltrd 2832 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍 ∈ (MaxIdeal‘𝑃)) |
169 | | eqid 2731 |
. . . . . . . . . . . . . . . 16
⊢
(MaxIdeal‘𝑃) =
(MaxIdeal‘𝑃) |
170 | 169, 124 | crngmxidl 32874 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ CRing →
(MaxIdeal‘𝑃) =
(MaxIdeal‘(oppr‘𝑃))) |
171 | 95, 170 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (MaxIdeal‘𝑃) =
(MaxIdeal‘(oppr‘𝑃))) |
172 | 168, 171 | eleqtrd 2834 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍 ∈
(MaxIdeal‘(oppr‘𝑃))) |
173 | 124, 26, 129, 168, 172 | qsdrngi 32898 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ DivRing) |
174 | 91, 54, 96, 123, 173 | rndrhmcl 32681 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐿 ↾s ran 𝐽) ∈ DivRing) |
175 | 90, 174 | eqeltrd 2832 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿 ↾s ran 𝐺) ∈ DivRing) |
176 | 53, 175 | eqeltrrd 2833 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 ↾s ran 𝐺) ∈ DivRing) |
177 | | issdrg 20551 |
. . . . . . . . 9
⊢ (ran
𝐺 ∈
(SubDRing‘𝐸) ↔
(𝐸 ∈ DivRing ∧ ran
𝐺 ∈
(SubRing‘𝐸) ∧
(𝐸 ↾s ran
𝐺) ∈
DivRing)) |
178 | 45, 48, 176, 177 | syl3anbrc 1342 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐺 ∈ (SubDRing‘𝐸)) |
179 | | fveq2 6891 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = (var1‘𝐾) → (𝑂‘𝑝) = (𝑂‘(var1‘𝐾))) |
180 | 179 | fveq1d 6893 |
. . . . . . . . . . . . 13
⊢ (𝑝 = (var1‘𝐾) → ((𝑂‘𝑝)‘𝐴) = ((𝑂‘(var1‘𝐾))‘𝐴)) |
181 | 180 | eqeq2d 2742 |
. . . . . . . . . . . 12
⊢ (𝑝 = (var1‘𝐾) → (𝐴 = ((𝑂‘𝑝)‘𝐴) ↔ 𝐴 = ((𝑂‘(var1‘𝐾))‘𝐴))) |
182 | 9, 71 | eqeltrid 2836 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ DivRing) |
183 | 182 | drngringd 20512 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ Ring) |
184 | | eqid 2731 |
. . . . . . . . . . . . . 14
⊢
(var1‘𝐾) = (var1‘𝐾) |
185 | 184, 21, 22 | vr1cl 21973 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Ring →
(var1‘𝐾)
∈ 𝑈) |
186 | 183, 185 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(var1‘𝐾)
∈ 𝑈) |
187 | 20, 184, 9, 6, 36, 4 | evls1var 22090 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑂‘(var1‘𝐾)) = ( I ↾
(Base‘𝐸))) |
188 | 187 | fveq1d 6893 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑂‘(var1‘𝐾))‘𝐴) = (( I ↾ (Base‘𝐸))‘𝐴)) |
189 | | fvresi 7173 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (Base‘𝐸) → (( I ↾
(Base‘𝐸))‘𝐴) = 𝐴) |
190 | 38, 189 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (( I ↾
(Base‘𝐸))‘𝐴) = 𝐴) |
191 | 188, 190 | eqtr2d 2772 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 = ((𝑂‘(var1‘𝐾))‘𝐴)) |
192 | 181, 186,
191 | rspcedvdw 3615 |
. . . . . . . . . . 11
⊢ (𝜑 → ∃𝑝 ∈ 𝑈 𝐴 = ((𝑂‘𝑝)‘𝐴)) |
193 | 23, 192, 19 | elrnmptd 5960 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ran 𝐺) |
194 | 193 | snssd 4812 |
. . . . . . . . 9
⊢ (𝜑 → {𝐴} ⊆ ran 𝐺) |
195 | 97, 194 | unssd 4186 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ ran 𝐺) |
196 | 6, 45, 178, 195 | fldgenssp 32693 |
. . . . . . 7
⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ ran 𝐺) |
197 | 44, 196 | eqssd 3999 |
. . . . . 6
⊢ (𝜑 → ran 𝐺 = (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
198 | 15, 6 | ressbas2 17189 |
. . . . . . 7
⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿)) |
199 | 115, 198 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿)) |
200 | | eqidd 2732 |
. . . . . . 7
⊢ (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = ((subringAlg ‘𝐿)‘𝐹)) |
201 | 6, 45, 56 | fldgenssid 32688 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
202 | 201 | unssad 4187 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
203 | 202, 199 | sseqtrd 4022 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐿)) |
204 | 200, 203 | srabase 20941 |
. . . . . 6
⊢ (𝜑 → (Base‘𝐿) = (Base‘((subringAlg
‘𝐿)‘𝐹))) |
205 | 197, 199,
204 | 3eqtrd 2775 |
. . . . 5
⊢ (𝜑 → ran 𝐺 = (Base‘((subringAlg ‘𝐿)‘𝐹))) |
206 | | imaeq2 6055 |
. . . . . . 7
⊢ (𝑞 = 𝑝 → (𝐺 “ 𝑞) = (𝐺 “ 𝑝)) |
207 | 206 | unieqd 4922 |
. . . . . 6
⊢ (𝑞 = 𝑝 → ∪ (𝐺 “ 𝑞) = ∪ (𝐺 “ 𝑝)) |
208 | 207 | cbvmptv 5261 |
. . . . 5
⊢ (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))})))) ↦ ∪ (𝐺
“ 𝑞)) = (𝑝 ∈ (Base‘(𝑃 /s (𝑃 ~QG (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))})))) ↦ ∪ (𝐺
“ 𝑝)) |
209 | 14, 28, 29, 30, 205, 208 | lmhmqusker 32823 |
. . . 4
⊢ (𝜑 → (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))})))) ↦ ∪ (𝐺
“ 𝑞)) ∈ ((𝑃 /s (𝑃 ~QG (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))}))) LMIso ((subringAlg
‘𝐿)‘𝐹))) |
210 | | eqidd 2732 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0g‘𝐿) = (0g‘𝐿)) |
211 | 200, 210,
203 | sralmod0 20959 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0g‘𝐿) =
(0g‘((subringAlg ‘𝐿)‘𝐹))) |
212 | 211 | sneqd 4640 |
. . . . . . . . . . . 12
⊢ (𝜑 →
{(0g‘𝐿)} =
{(0g‘((subringAlg ‘𝐿)‘𝐹))}) |
213 | 212 | imaeq2d 6059 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐺 “ {(0g‘𝐿)}) = (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))})) |
214 | 25, 213 | eqtrid 2783 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 = (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))})) |
215 | 214 | oveq2d 7428 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 ~QG 𝑍) = (𝑃 ~QG (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))}))) |
216 | 215 | oveq2d 7428 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 /s (𝑃 ~QG 𝑍)) = (𝑃 /s (𝑃 ~QG (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))})))) |
217 | 26, 216 | eqtrid 2783 |
. . . . . . 7
⊢ (𝜑 → 𝑄 = (𝑃 /s (𝑃 ~QG (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))})))) |
218 | 217 | fveq2d 6895 |
. . . . . 6
⊢ (𝜑 → (Base‘𝑄) = (Base‘(𝑃 /s (𝑃 ~QG (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))}))))) |
219 | 218 | mpteq1d 5243 |
. . . . 5
⊢ (𝜑 → (𝑝 ∈ (Base‘𝑄) ↦ ∪
(𝐺 “ 𝑝)) = (𝑝 ∈ (Base‘(𝑃 /s (𝑃 ~QG (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))})))) ↦ ∪ (𝐺
“ 𝑝))) |
220 | 219, 27, 208 | 3eqtr4g 2796 |
. . . 4
⊢ (𝜑 → 𝐽 = (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))})))) ↦ ∪ (𝐺
“ 𝑞))) |
221 | 217 | oveq1d 7427 |
. . . 4
⊢ (𝜑 → (𝑄 LMIso ((subringAlg ‘𝐿)‘𝐹)) = ((𝑃 /s (𝑃 ~QG (◡𝐺 “ {(0g‘((subringAlg
‘𝐿)‘𝐹))}))) LMIso ((subringAlg
‘𝐿)‘𝐹))) |
222 | 209, 220,
221 | 3eltr4d 2847 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (𝑄 LMIso ((subringAlg ‘𝐿)‘𝐹))) |
223 | 9, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27 | algextdeglem3 33079 |
. . 3
⊢ (𝜑 → 𝑄 ∈ LVec) |
224 | 222, 223 | lmimdim 32991 |
. 2
⊢ (𝜑 → (dim‘𝑄) = (dim‘((subringAlg
‘𝐿)‘𝐹))) |
225 | 6, 18, 56 | fldgenfld 32695 |
. . . . 5
⊢ (𝜑 → (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ Field) |
226 | 15, 225 | eqeltrid 2836 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ Field) |
227 | 9, 15, 16, 17, 18, 1, 19 | algextdeglem1 33077 |
. . . . 5
⊢ (𝜑 → (𝐿 ↾s 𝐹) = 𝐾) |
228 | 11 | oveq2d 7428 |
. . . . 5
⊢ (𝜑 → (𝐿 ↾s 𝐹) = (𝐿 ↾s (Base‘𝐾))) |
229 | 227, 228 | eqtr3d 2773 |
. . . 4
⊢ (𝜑 → 𝐾 = (𝐿 ↾s (Base‘𝐾))) |
230 | 15 | subsubrg 20492 |
. . . . . . 7
⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐹 ∈ (SubRing‘𝐿) ↔ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
231 | 230 | biimpar 477 |
. . . . . 6
⊢ (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))) → 𝐹 ∈ (SubRing‘𝐿)) |
232 | 60, 4, 202, 231 | syl12anc 834 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐿)) |
233 | 11, 232 | eqeltrrd 2833 |
. . . 4
⊢ (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐿)) |
234 | | brfldext 33029 |
. . . . 5
⊢ ((𝐿 ∈ Field ∧ 𝐾 ∈ Field) → (𝐿/FldExt𝐾 ↔ (𝐾 = (𝐿 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿)))) |
235 | 234 | biimpar 477 |
. . . 4
⊢ (((𝐿 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐿 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))) → 𝐿/FldExt𝐾) |
236 | 226, 156,
229, 233, 235 | syl22anc 836 |
. . 3
⊢ (𝜑 → 𝐿/FldExt𝐾) |
237 | | extdgval 33036 |
. . 3
⊢ (𝐿/FldExt𝐾 → (𝐿[:]𝐾) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾)))) |
238 | 236, 237 | syl 17 |
. 2
⊢ (𝜑 → (𝐿[:]𝐾) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾)))) |
239 | 13, 224, 238 | 3eqtr4d 2781 |
1
⊢ (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾)) |