Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem4 Structured version   Visualization version   GIF version

Theorem algextdeglem4 33711
Description: Lemma for algextdeg 33716. By lmhmqusker 33410, the surjective module homomorphism 𝐺 described in algextdeglem2 33709 induces an isomorphism with the quotient space. Therefore, the dimension of that quotient space 𝑃 / 𝑍 is the degree of the algebraic field extension. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
Assertion
Ref Expression
algextdeglem4 (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝐸(𝑥)   𝐾(𝑥)   𝑀(𝑥,𝑝)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem4
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 algextdeg.e . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐸))
2 issdrg 20811 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
31, 2sylib 218 . . . . . . 7 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
43simp2d 1143 . . . . . 6 (𝜑𝐹 ∈ (SubRing‘𝐸))
5 subrgsubg 20605 . . . . . 6 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
6 eqid 2740 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
76subgss 19167 . . . . . 6 (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸))
84, 5, 73syl 18 . . . . 5 (𝜑𝐹 ⊆ (Base‘𝐸))
9 algextdeg.k . . . . . 6 𝐾 = (𝐸s 𝐹)
109, 6ressbas2 17296 . . . . 5 (𝐹 ⊆ (Base‘𝐸) → 𝐹 = (Base‘𝐾))
118, 10syl 17 . . . 4 (𝜑𝐹 = (Base‘𝐾))
1211fveq2d 6924 . . 3 (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = ((subringAlg ‘𝐿)‘(Base‘𝐾)))
1312fveq2d 6924 . 2 (𝜑 → (dim‘((subringAlg ‘𝐿)‘𝐹)) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
14 eqid 2740 . . . . 5 (0g‘((subringAlg ‘𝐿)‘𝐹)) = (0g‘((subringAlg ‘𝐿)‘𝐹))
15 algextdeg.l . . . . . 6 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
16 algextdeg.d . . . . . 6 𝐷 = (deg1𝐸)
17 algextdeg.m . . . . . 6 𝑀 = (𝐸 minPoly 𝐹)
18 algextdeg.f . . . . . 6 (𝜑𝐸 ∈ Field)
19 algextdeg.a . . . . . 6 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
20 algextdeglem.o . . . . . 6 𝑂 = (𝐸 evalSub1 𝐹)
21 algextdeglem.y . . . . . 6 𝑃 = (Poly1𝐾)
22 algextdeglem.u . . . . . 6 𝑈 = (Base‘𝑃)
23 algextdeglem.g . . . . . 6 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
24 algextdeglem.n . . . . . 6 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
25 algextdeglem.z . . . . . 6 𝑍 = (𝐺 “ {(0g𝐿)})
26 algextdeglem.q . . . . . 6 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
27 algextdeglem.j . . . . . 6 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
289, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27algextdeglem2 33709 . . . . 5 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)))
29 eqid 2740 . . . . 5 (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}) = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})
30 eqid 2740 . . . . 5 (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))
319fveq2i 6923 . . . . . . . . . . 11 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
3221, 31eqtri 2768 . . . . . . . . . 10 𝑃 = (Poly1‘(𝐸s 𝐹))
3318adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐸 ∈ Field)
341adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐹 ∈ (SubDRing‘𝐸))
35 eqid 2740 . . . . . . . . . . . . 13 (0g𝐸) = (0g𝐸)
3618fldcrngd 20764 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ CRing)
3720, 9, 6, 35, 36, 4irngssv 33688 . . . . . . . . . . . 12 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
3837, 19sseldd 4009 . . . . . . . . . . 11 (𝜑𝐴 ∈ (Base‘𝐸))
3938adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐴 ∈ (Base‘𝐸))
40 simpr 484 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝑝𝑈)
416, 20, 32, 22, 33, 34, 39, 40evls1fldgencl 33680 . . . . . . . . 9 ((𝜑𝑝𝑈) → ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4241ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4323rnmptss 7157 . . . . . . . 8 (∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4442, 43syl 17 . . . . . . 7 (𝜑 → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4518flddrngd 20763 . . . . . . . 8 (𝜑𝐸 ∈ DivRing)
4620, 32, 6, 22, 36, 4, 38, 23evls1maprhm 22401 . . . . . . . . . 10 (𝜑𝐺 ∈ (𝑃 RingHom 𝐸))
47 rnrhmsubrg 20633 . . . . . . . . . 10 (𝐺 ∈ (𝑃 RingHom 𝐸) → ran 𝐺 ∈ (SubRing‘𝐸))
4846, 47syl 17 . . . . . . . . 9 (𝜑 → ran 𝐺 ∈ (SubRing‘𝐸))
4915oveq1i 7458 . . . . . . . . . . 11 (𝐿s ran 𝐺) = ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺)
50 ovex 7481 . . . . . . . . . . . 12 (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V
51 ressabs 17308 . . . . . . . . . . . 12 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺) = (𝐸s ran 𝐺))
5250, 44, 51sylancr 586 . . . . . . . . . . 11 (𝜑 → ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺) = (𝐸s ran 𝐺))
5349, 52eqtrid 2792 . . . . . . . . . 10 (𝜑 → (𝐿s ran 𝐺) = (𝐸s ran 𝐺))
54 eqid 2740 . . . . . . . . . . . . . . 15 (0g𝐿) = (0g𝐿)
5538snssd 4834 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → {𝐴} ⊆ (Base‘𝐸))
568, 55unssd 4215 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸))
576, 45, 56fldgensdrg 33281 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸))
58 issdrg 20811 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
5957, 58sylib 218 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
6059simp2d 1143 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸))
6115resrhm2b 20630 . . . . . . . . . . . . . . . . . 18 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → (𝐺 ∈ (𝑃 RingHom 𝐸) ↔ 𝐺 ∈ (𝑃 RingHom 𝐿)))
6261biimpa 476 . . . . . . . . . . . . . . . . 17 ((((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∧ 𝐺 ∈ (𝑃 RingHom 𝐸)) → 𝐺 ∈ (𝑃 RingHom 𝐿))
6360, 44, 46, 62syl21anc 837 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ (𝑃 RingHom 𝐿))
64 rhmghm 20510 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝑃 RingHom 𝐿) → 𝐺 ∈ (𝑃 GrpHom 𝐿))
6563, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ (𝑃 GrpHom 𝐿))
6654, 65, 25, 26, 27, 22, 24ghmquskerco 19324 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝐽𝑁))
6766rneqd 5963 . . . . . . . . . . . . 13 (𝜑 → ran 𝐺 = ran (𝐽𝑁))
6826a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)))
6922a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑈 = (Base‘𝑃))
70 ovexd 7483 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 ~QG 𝑍) ∈ V)
713simp3d 1144 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
7232, 71ply1lvec 33550 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ LVec)
7368, 69, 70, 72qusbas 17605 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 / (𝑃 ~QG 𝑍)) = (Base‘𝑄))
74 eqid 2740 . . . . . . . . . . . . . . . 16 (𝑈 / (𝑃 ~QG 𝑍)) = (𝑈 / (𝑃 ~QG 𝑍))
7554ghmker 19282 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ (𝑃 GrpHom 𝐿) → (𝐺 “ {(0g𝐿)}) ∈ (NrmSGrp‘𝑃))
7665, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 “ {(0g𝐿)}) ∈ (NrmSGrp‘𝑃))
7725, 76eqeltrid 2848 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ (NrmSGrp‘𝑃))
7822, 74, 24, 77qusrn 33402 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝑁 = (𝑈 / (𝑃 ~QG 𝑍)))
79 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹)
8020, 32, 6, 22, 36, 4, 38, 23, 79evls1maplmhm 22402 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)))
8180elexd 3512 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺 ∈ V)
8281adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (Base‘𝑄)) → 𝐺 ∈ V)
8382imaexd 7956 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘𝑄)) → (𝐺𝑝) ∈ V)
8483uniexd 7777 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘𝑄)) → (𝐺𝑝) ∈ V)
8527, 84dmmptd 6725 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐽 = (Base‘𝑄))
8673, 78, 853eqtr4rd 2791 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐽 = ran 𝑁)
87 rncoeq 6002 . . . . . . . . . . . . . 14 (dom 𝐽 = ran 𝑁 → ran (𝐽𝑁) = ran 𝐽)
8886, 87syl 17 . . . . . . . . . . . . 13 (𝜑 → ran (𝐽𝑁) = ran 𝐽)
8967, 88eqtrd 2780 . . . . . . . . . . . 12 (𝜑 → ran 𝐺 = ran 𝐽)
9089oveq2d 7464 . . . . . . . . . . 11 (𝜑 → (𝐿s ran 𝐺) = (𝐿s ran 𝐽))
91 eqid 2740 . . . . . . . . . . . 12 (𝐿s ran 𝐽) = (𝐿s ran 𝐽)
929subrgcrng 20603 . . . . . . . . . . . . . . 15 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → 𝐾 ∈ CRing)
9336, 4, 92syl2anc 583 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ CRing)
9421ply1crng 22221 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → 𝑃 ∈ CRing)
9593, 94syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ CRing)
9654, 63, 25, 26, 27, 95rhmquskerlem 33418 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (𝑄 RingHom 𝐿))
9720, 32, 6, 22, 36, 4, 38, 23evls1maprnss 22403 . . . . . . . . . . . . . . 15 (𝜑𝐹 ⊆ ran 𝐺)
98 eqid 2740 . . . . . . . . . . . . . . . . . 18 (1r𝐸) = (1r𝐸)
999, 98subrg1 20610 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) = (1r𝐾))
1004, 99syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) = (1r𝐾))
10198subrg1cl 20608 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝐹)
1024, 101syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) ∈ 𝐹)
103100, 102eqeltrrd 2845 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐾) ∈ 𝐹)
10497, 103sseldd 4009 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐾) ∈ ran 𝐺)
105 drngnzr 20770 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ DivRing → 𝐸 ∈ NzRing)
10698, 35nzrnz 20541 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ NzRing → (1r𝐸) ≠ (0g𝐸))
10745, 105, 1063syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) ≠ (0g𝐸))
10836crnggrpd 20274 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ Grp)
109108grpmndd 18986 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ Mnd)
110 sdrgsubrg 20814 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸))
111 subrgsubg 20605 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸))
11257, 110, 1113syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸))
11335subg0cl 19174 . . . . . . . . . . . . . . . . . 18 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
114112, 113syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
1156, 45, 56fldgenssv 33282 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸))
11615, 6, 35ress0g 18800 . . . . . . . . . . . . . . . . 17 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) → (0g𝐸) = (0g𝐿))
117109, 114, 115, 116syl3anc 1371 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝐸) = (0g𝐿))
118107, 100, 1173netr3d 3023 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐾) ≠ (0g𝐿))
119 nelsn 4688 . . . . . . . . . . . . . . 15 ((1r𝐾) ≠ (0g𝐿) → ¬ (1r𝐾) ∈ {(0g𝐿)})
120118, 119syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ (1r𝐾) ∈ {(0g𝐿)})
121 nelne1 3045 . . . . . . . . . . . . . 14 (((1r𝐾) ∈ ran 𝐺 ∧ ¬ (1r𝐾) ∈ {(0g𝐿)}) → ran 𝐺 ≠ {(0g𝐿)})
122104, 120, 121syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → ran 𝐺 ≠ {(0g𝐿)})
12389, 122eqnetrrd 3015 . . . . . . . . . . . 12 (𝜑 → ran 𝐽 ≠ {(0g𝐿)})
124 eqid 2740 . . . . . . . . . . . . 13 (oppr𝑃) = (oppr𝑃)
1259sdrgdrng 20813 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubDRing‘𝐸) → 𝐾 ∈ DivRing)
126 drngnzr 20770 . . . . . . . . . . . . . . 15 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
1271, 125, 1263syl 18 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ NzRing)
12821ply1nz 26181 . . . . . . . . . . . . . 14 (𝐾 ∈ NzRing → 𝑃 ∈ NzRing)
129127, 128syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ NzRing)
130 eqid 2740 . . . . . . . . . . . . . . . 16 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}
131 eqid 2740 . . . . . . . . . . . . . . . 16 (RSpan‘𝑃) = (RSpan‘𝑃)
1329fveq2i 6923 . . . . . . . . . . . . . . . 16 (idlGen1p𝐾) = (idlGen1p‘(𝐸s 𝐹))
13320, 32, 6, 18, 1, 38, 35, 130, 131, 132ply1annig1p 33697 . . . . . . . . . . . . . . 15 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = ((RSpan‘𝑃)‘{((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})}))
134117sneqd 4660 . . . . . . . . . . . . . . . . . 18 (𝜑 → {(0g𝐸)} = {(0g𝐿)})
135134imaeq2d 6089 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 “ {(0g𝐸)}) = (𝐺 “ {(0g𝐿)}))
13625, 135eqtr4id 2799 . . . . . . . . . . . . . . . 16 (𝜑𝑍 = (𝐺 “ {(0g𝐸)}))
13722mpteq1i 5262 . . . . . . . . . . . . . . . . . 18 (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))
13823, 137eqtri 2768 . . . . . . . . . . . . . . . . 17 𝐺 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))
13920, 32, 6, 36, 4, 38, 35, 130, 138ply1annidllem 33694 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = (𝐺 “ {(0g𝐸)}))
140136, 139eqtr4d 2783 . . . . . . . . . . . . . . 15 (𝜑𝑍 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
141 eqid 2740 . . . . . . . . . . . . . . . . . 18 (𝐸 minPoly 𝐹) = (𝐸 minPoly 𝐹)
14220, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141minplyval 33698 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) = ((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}))
143142sneqd 4660 . . . . . . . . . . . . . . . 16 (𝜑 → {((𝐸 minPoly 𝐹)‘𝐴)} = {((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})})
144143fveq2d 6924 . . . . . . . . . . . . . . 15 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) = ((RSpan‘𝑃)‘{((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})}))
145133, 140, 1443eqtr4d 2790 . . . . . . . . . . . . . 14 (𝜑𝑍 = ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}))
146 eqid 2740 . . . . . . . . . . . . . . . 16 (0g𝑃) = (0g𝑃)
147 eqid 2740 . . . . . . . . . . . . . . . . . 18 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
148147, 18, 1, 141, 19irngnminplynz 33705 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ≠ (0g‘(Poly1𝐸)))
149 eqid 2740 . . . . . . . . . . . . . . . . . 18 (Poly1𝐸) = (Poly1𝐸)
150149, 9, 21, 22, 4, 147ressply10g 33557 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g‘(Poly1𝐸)) = (0g𝑃))
151148, 150neeqtrd 3016 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ≠ (0g𝑃))
15220, 32, 6, 18, 1, 38, 141, 146, 151minplyirred 33704 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Irred‘𝑃))
153 eqid 2740 . . . . . . . . . . . . . . . 16 ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) = ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)})
154 fldsdrgfld 20821 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
15518, 1, 154syl2anc 583 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸s 𝐹) ∈ Field)
1569, 155eqeltrid 2848 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ Field)
15721ply1pid 26242 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Field → 𝑃 ∈ PID)
158156, 157syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ PID)
15920, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141minplycl 33699 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Base‘𝑃))
160159, 22eleqtrrdi 2855 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ 𝑈)
16195crngringd 20273 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
162160snssd 4834 . . . . . . . . . . . . . . . . 17 (𝜑 → {((𝐸 minPoly 𝐹)‘𝐴)} ⊆ 𝑈)
163 eqid 2740 . . . . . . . . . . . . . . . . . 18 (LIdeal‘𝑃) = (LIdeal‘𝑃)
164131, 22, 163rspcl 21268 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Ring ∧ {((𝐸 minPoly 𝐹)‘𝐴)} ⊆ 𝑈) → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (LIdeal‘𝑃))
165161, 162, 164syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (LIdeal‘𝑃))
16622, 131, 146, 153, 158, 160, 151, 165mxidlirred 33465 . . . . . . . . . . . . . . 15 (𝜑 → (((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (MaxIdeal‘𝑃) ↔ ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Irred‘𝑃)))
167152, 166mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (MaxIdeal‘𝑃))
168145, 167eqeltrd 2844 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ (MaxIdeal‘𝑃))
169 eqid 2740 . . . . . . . . . . . . . . . 16 (MaxIdeal‘𝑃) = (MaxIdeal‘𝑃)
170169, 124crngmxidl 33462 . . . . . . . . . . . . . . 15 (𝑃 ∈ CRing → (MaxIdeal‘𝑃) = (MaxIdeal‘(oppr𝑃)))
17195, 170syl 17 . . . . . . . . . . . . . 14 (𝜑 → (MaxIdeal‘𝑃) = (MaxIdeal‘(oppr𝑃)))
172168, 171eleqtrd 2846 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ (MaxIdeal‘(oppr𝑃)))
173124, 26, 129, 168, 172qsdrngi 33488 . . . . . . . . . . . 12 (𝜑𝑄 ∈ DivRing)
17491, 54, 96, 123, 173rndrhmcl 33265 . . . . . . . . . . 11 (𝜑 → (𝐿s ran 𝐽) ∈ DivRing)
17590, 174eqeltrd 2844 . . . . . . . . . 10 (𝜑 → (𝐿s ran 𝐺) ∈ DivRing)
17653, 175eqeltrrd 2845 . . . . . . . . 9 (𝜑 → (𝐸s ran 𝐺) ∈ DivRing)
177 issdrg 20811 . . . . . . . . 9 (ran 𝐺 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ ran 𝐺 ∈ (SubRing‘𝐸) ∧ (𝐸s ran 𝐺) ∈ DivRing))
17845, 48, 176, 177syl3anbrc 1343 . . . . . . . 8 (𝜑 → ran 𝐺 ∈ (SubDRing‘𝐸))
179 fveq2 6920 . . . . . . . . . . . . . 14 (𝑝 = (var1𝐾) → (𝑂𝑝) = (𝑂‘(var1𝐾)))
180179fveq1d 6922 . . . . . . . . . . . . 13 (𝑝 = (var1𝐾) → ((𝑂𝑝)‘𝐴) = ((𝑂‘(var1𝐾))‘𝐴))
181180eqeq2d 2751 . . . . . . . . . . . 12 (𝑝 = (var1𝐾) → (𝐴 = ((𝑂𝑝)‘𝐴) ↔ 𝐴 = ((𝑂‘(var1𝐾))‘𝐴)))
1829, 71eqeltrid 2848 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ DivRing)
183182drngringd 20759 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
184 eqid 2740 . . . . . . . . . . . . . 14 (var1𝐾) = (var1𝐾)
185184, 21, 22vr1cl 22240 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (var1𝐾) ∈ 𝑈)
186183, 185syl 17 . . . . . . . . . . . 12 (𝜑 → (var1𝐾) ∈ 𝑈)
18720, 184, 9, 6, 36, 4evls1var 22363 . . . . . . . . . . . . . 14 (𝜑 → (𝑂‘(var1𝐾)) = ( I ↾ (Base‘𝐸)))
188187fveq1d 6922 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(var1𝐾))‘𝐴) = (( I ↾ (Base‘𝐸))‘𝐴))
189 fvresi 7207 . . . . . . . . . . . . . 14 (𝐴 ∈ (Base‘𝐸) → (( I ↾ (Base‘𝐸))‘𝐴) = 𝐴)
19038, 189syl 17 . . . . . . . . . . . . 13 (𝜑 → (( I ↾ (Base‘𝐸))‘𝐴) = 𝐴)
191188, 190eqtr2d 2781 . . . . . . . . . . . 12 (𝜑𝐴 = ((𝑂‘(var1𝐾))‘𝐴))
192181, 186, 191rspcedvdw 3638 . . . . . . . . . . 11 (𝜑 → ∃𝑝𝑈 𝐴 = ((𝑂𝑝)‘𝐴))
19323, 192, 19elrnmptd 5986 . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐺)
194193snssd 4834 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ ran 𝐺)
19597, 194unssd 4215 . . . . . . . 8 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ ran 𝐺)
1966, 45, 178, 195fldgenssp 33285 . . . . . . 7 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ ran 𝐺)
19744, 196eqssd 4026 . . . . . 6 (𝜑 → ran 𝐺 = (𝐸 fldGen (𝐹 ∪ {𝐴})))
19815, 6ressbas2 17296 . . . . . . 7 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿))
199115, 198syl 17 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿))
200 eqidd 2741 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = ((subringAlg ‘𝐿)‘𝐹))
2016, 45, 56fldgenssid 33280 . . . . . . . . 9 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
202201unssad 4216 . . . . . . . 8 (𝜑𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
203202, 199sseqtrd 4049 . . . . . . 7 (𝜑𝐹 ⊆ (Base‘𝐿))
204200, 203srabase 21200 . . . . . 6 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐹)))
205197, 199, 2043eqtrd 2784 . . . . 5 (𝜑 → ran 𝐺 = (Base‘((subringAlg ‘𝐿)‘𝐹)))
206 imaeq2 6085 . . . . . . 7 (𝑞 = 𝑝 → (𝐺𝑞) = (𝐺𝑝))
207206unieqd 4944 . . . . . 6 (𝑞 = 𝑝 (𝐺𝑞) = (𝐺𝑝))
208207cbvmptv 5279 . . . . 5 (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)) = (𝑝 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑝))
20914, 28, 29, 30, 205, 208lmhmqusker 33410 . . . 4 (𝜑 → (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)) ∈ ((𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) LMIso ((subringAlg ‘𝐿)‘𝐹)))
210 eqidd 2741 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐿) = (0g𝐿))
211200, 210, 203sralmod0 21218 . . . . . . . . . . . . 13 (𝜑 → (0g𝐿) = (0g‘((subringAlg ‘𝐿)‘𝐹)))
212211sneqd 4660 . . . . . . . . . . . 12 (𝜑 → {(0g𝐿)} = {(0g‘((subringAlg ‘𝐿)‘𝐹))})
213212imaeq2d 6089 . . . . . . . . . . 11 (𝜑 → (𝐺 “ {(0g𝐿)}) = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))
21425, 213eqtrid 2792 . . . . . . . . . 10 (𝜑𝑍 = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))
215214oveq2d 7464 . . . . . . . . 9 (𝜑 → (𝑃 ~QG 𝑍) = (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))
216215oveq2d 7464 . . . . . . . 8 (𝜑 → (𝑃 /s (𝑃 ~QG 𝑍)) = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))))
21726, 216eqtrid 2792 . . . . . . 7 (𝜑𝑄 = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))))
218217fveq2d 6924 . . . . . 6 (𝜑 → (Base‘𝑄) = (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))))
219218mpteq1d 5261 . . . . 5 (𝜑 → (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝)) = (𝑝 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑝)))
220219, 27, 2083eqtr4g 2805 . . . 4 (𝜑𝐽 = (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)))
221217oveq1d 7463 . . . 4 (𝜑 → (𝑄 LMIso ((subringAlg ‘𝐿)‘𝐹)) = ((𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) LMIso ((subringAlg ‘𝐿)‘𝐹)))
222209, 220, 2213eltr4d 2859 . . 3 (𝜑𝐽 ∈ (𝑄 LMIso ((subringAlg ‘𝐿)‘𝐹)))
2239, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27algextdeglem3 33710 . . 3 (𝜑𝑄 ∈ LVec)
224222, 223lmimdim 33616 . 2 (𝜑 → (dim‘𝑄) = (dim‘((subringAlg ‘𝐿)‘𝐹)))
2256, 18, 56fldgenfld 33287 . . . . 5 (𝜑 → (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ Field)
22615, 225eqeltrid 2848 . . . 4 (𝜑𝐿 ∈ Field)
2279, 15, 16, 17, 18, 1, 19algextdeglem1 33708 . . . . 5 (𝜑 → (𝐿s 𝐹) = 𝐾)
22811oveq2d 7464 . . . . 5 (𝜑 → (𝐿s 𝐹) = (𝐿s (Base‘𝐾)))
229227, 228eqtr3d 2782 . . . 4 (𝜑𝐾 = (𝐿s (Base‘𝐾)))
23015subsubrg 20626 . . . . . . 7 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐹 ∈ (SubRing‘𝐿) ↔ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))))
231230biimpar 477 . . . . . 6 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))) → 𝐹 ∈ (SubRing‘𝐿))
23260, 4, 202, 231syl12anc 836 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐿))
23311, 232eqeltrrd 2845 . . . 4 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐿))
234 brfldext 33660 . . . . 5 ((𝐿 ∈ Field ∧ 𝐾 ∈ Field) → (𝐿/FldExt𝐾 ↔ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))))
235234biimpar 477 . . . 4 (((𝐿 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))) → 𝐿/FldExt𝐾)
236226, 156, 229, 233, 235syl22anc 838 . . 3 (𝜑𝐿/FldExt𝐾)
237 extdgval 33667 . . 3 (𝐿/FldExt𝐾 → (𝐿[:]𝐾) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
238236, 237syl 17 . 2 (𝜑 → (𝐿[:]𝐾) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
23913, 224, 2383eqtr4d 2790 1 (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  cun 3974  wss 3976  {csn 4648   cuni 4931   class class class wbr 5166  cmpt 5249   I cid 5592  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  ccom 5704  cfv 6573  (class class class)co 7448  [cec 8761   / cqs 8762  Basecbs 17258  s cress 17287  0gc0g 17499   /s cqus 17565  Mndcmnd 18772  SubGrpcsubg 19160  NrmSGrpcnsg 19161   ~QG cqg 19162   GrpHom cghm 19252  1rcur 20208  Ringcrg 20260  CRingccrg 20261  opprcoppr 20359  Irredcir 20382   RingHom crh 20495  NzRingcnzr 20538  SubRingcsubrg 20595  DivRingcdr 20751  Fieldcfield 20752  SubDRingcsdrg 20809   LMHom clmhm 21041   LMIso clmim 21042  LVecclvec 21124  subringAlg csra 21193  LIdealclidl 21239  RSpancrsp 21240  PIDcpid 21369  var1cv1 22198  Poly1cpl1 22199   evalSub1 ces1 22338  deg1cdg1 26113  idlGen1pcig1p 26189   fldGen cfldgen 33277  MaxIdealcmxidl 33452  dimcldim 33611  /FldExtcfldext 33651  [:]cextdg 33654   IntgRing cirng 33683   minPoly cminply 33692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-r1 9833  df-rank 9834  df-dju 9970  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ocomp 17332  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-imas 17568  df-qus 17569  df-mre 17644  df-mrc 17645  df-mri 17646  df-acs 17647  df-proset 18365  df-drs 18366  df-poset 18383  df-ipo 18598  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-gim 19299  df-cntz 19357  df-oppg 19386  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-irred 20385  df-invr 20414  df-dvr 20427  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-domn 20717  df-idom 20718  df-drng 20753  df-field 20754  df-sdrg 20810  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lmhm 21044  df-lmim 21045  df-lbs 21097  df-lvec 21125  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-lpidl 21355  df-lpir 21356  df-pid 21370  df-cnfld 21388  df-dsmm 21775  df-frlm 21790  df-uvc 21826  df-lindf 21849  df-linds 21850  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evls1 22340  df-evl1 22341  df-mdeg 26114  df-deg1 26115  df-mon1 26190  df-uc1p 26191  df-q1p 26192  df-r1p 26193  df-ig1p 26194  df-fldgen 33278  df-mxidl 33453  df-dim 33612  df-fldext 33655  df-extdg 33656  df-irng 33684  df-minply 33693
This theorem is referenced by:  algextdeg  33716
  Copyright terms: Public domain W3C validator