Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem4 Structured version   Visualization version   GIF version

Theorem algextdeglem4 33725
Description: Lemma for algextdeg 33730. By lmhmqusker 33374, the surjective module homomorphism 𝐺 described in algextdeglem2 33723 induces an isomorphism with the quotient space. Therefore, the dimension of that quotient space 𝑃 / 𝑍 is the degree of the algebraic field extension. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
Assertion
Ref Expression
algextdeglem4 (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝐸(𝑥)   𝐾(𝑥)   𝑀(𝑥,𝑝)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem4
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 algextdeg.e . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐸))
2 issdrg 20698 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
31, 2sylib 218 . . . . . . 7 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
43simp2d 1143 . . . . . 6 (𝜑𝐹 ∈ (SubRing‘𝐸))
5 subrgsubg 20487 . . . . . 6 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
6 eqid 2731 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
76subgss 19035 . . . . . 6 (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸))
84, 5, 73syl 18 . . . . 5 (𝜑𝐹 ⊆ (Base‘𝐸))
9 algextdeg.k . . . . . 6 𝐾 = (𝐸s 𝐹)
109, 6ressbas2 17144 . . . . 5 (𝐹 ⊆ (Base‘𝐸) → 𝐹 = (Base‘𝐾))
118, 10syl 17 . . . 4 (𝜑𝐹 = (Base‘𝐾))
1211fveq2d 6821 . . 3 (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = ((subringAlg ‘𝐿)‘(Base‘𝐾)))
1312fveq2d 6821 . 2 (𝜑 → (dim‘((subringAlg ‘𝐿)‘𝐹)) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
14 eqid 2731 . . . . 5 (0g‘((subringAlg ‘𝐿)‘𝐹)) = (0g‘((subringAlg ‘𝐿)‘𝐹))
15 algextdeg.l . . . . . 6 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
16 algextdeg.d . . . . . 6 𝐷 = (deg1𝐸)
17 algextdeg.m . . . . . 6 𝑀 = (𝐸 minPoly 𝐹)
18 algextdeg.f . . . . . 6 (𝜑𝐸 ∈ Field)
19 algextdeg.a . . . . . 6 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
20 algextdeglem.o . . . . . 6 𝑂 = (𝐸 evalSub1 𝐹)
21 algextdeglem.y . . . . . 6 𝑃 = (Poly1𝐾)
22 algextdeglem.u . . . . . 6 𝑈 = (Base‘𝑃)
23 algextdeglem.g . . . . . 6 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
24 algextdeglem.n . . . . . 6 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
25 algextdeglem.z . . . . . 6 𝑍 = (𝐺 “ {(0g𝐿)})
26 algextdeglem.q . . . . . 6 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
27 algextdeglem.j . . . . . 6 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
289, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27algextdeglem2 33723 . . . . 5 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)))
29 eqid 2731 . . . . 5 (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}) = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})
30 eqid 2731 . . . . 5 (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))
319fveq2i 6820 . . . . . . . . . . 11 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
3221, 31eqtri 2754 . . . . . . . . . 10 𝑃 = (Poly1‘(𝐸s 𝐹))
3318adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐸 ∈ Field)
341adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐹 ∈ (SubDRing‘𝐸))
35 eqid 2731 . . . . . . . . . . . . 13 (0g𝐸) = (0g𝐸)
3618fldcrngd 20652 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ CRing)
3720, 9, 6, 35, 36, 4irngssv 33693 . . . . . . . . . . . 12 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
3837, 19sseldd 3930 . . . . . . . . . . 11 (𝜑𝐴 ∈ (Base‘𝐸))
3938adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐴 ∈ (Base‘𝐸))
40 simpr 484 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝑝𝑈)
416, 20, 32, 22, 33, 34, 39, 40evls1fldgencl 33675 . . . . . . . . 9 ((𝜑𝑝𝑈) → ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4241ralrimiva 3124 . . . . . . . 8 (𝜑 → ∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4323rnmptss 7051 . . . . . . . 8 (∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4442, 43syl 17 . . . . . . 7 (𝜑 → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4518flddrngd 20651 . . . . . . . 8 (𝜑𝐸 ∈ DivRing)
4620, 32, 6, 22, 36, 4, 38, 23evls1maprhm 22286 . . . . . . . . . 10 (𝜑𝐺 ∈ (𝑃 RingHom 𝐸))
47 rnrhmsubrg 20515 . . . . . . . . . 10 (𝐺 ∈ (𝑃 RingHom 𝐸) → ran 𝐺 ∈ (SubRing‘𝐸))
4846, 47syl 17 . . . . . . . . 9 (𝜑 → ran 𝐺 ∈ (SubRing‘𝐸))
4915oveq1i 7351 . . . . . . . . . . 11 (𝐿s ran 𝐺) = ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺)
50 ovex 7374 . . . . . . . . . . . 12 (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V
51 ressabs 17154 . . . . . . . . . . . 12 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺) = (𝐸s ran 𝐺))
5250, 44, 51sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺) = (𝐸s ran 𝐺))
5349, 52eqtrid 2778 . . . . . . . . . 10 (𝜑 → (𝐿s ran 𝐺) = (𝐸s ran 𝐺))
54 eqid 2731 . . . . . . . . . . . . . . 15 (0g𝐿) = (0g𝐿)
5538snssd 4756 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → {𝐴} ⊆ (Base‘𝐸))
568, 55unssd 4137 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸))
576, 45, 56fldgensdrg 33272 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸))
58 issdrg 20698 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
5957, 58sylib 218 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
6059simp2d 1143 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸))
6115resrhm2b 20512 . . . . . . . . . . . . . . . . . 18 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → (𝐺 ∈ (𝑃 RingHom 𝐸) ↔ 𝐺 ∈ (𝑃 RingHom 𝐿)))
6261biimpa 476 . . . . . . . . . . . . . . . . 17 ((((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∧ 𝐺 ∈ (𝑃 RingHom 𝐸)) → 𝐺 ∈ (𝑃 RingHom 𝐿))
6360, 44, 46, 62syl21anc 837 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ (𝑃 RingHom 𝐿))
64 rhmghm 20396 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝑃 RingHom 𝐿) → 𝐺 ∈ (𝑃 GrpHom 𝐿))
6563, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ (𝑃 GrpHom 𝐿))
6654, 65, 25, 26, 27, 22, 24ghmquskerco 19191 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝐽𝑁))
6766rneqd 5873 . . . . . . . . . . . . 13 (𝜑 → ran 𝐺 = ran (𝐽𝑁))
6826a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)))
6922a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑈 = (Base‘𝑃))
70 ovexd 7376 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 ~QG 𝑍) ∈ V)
713simp3d 1144 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
7232, 71ply1lvec 33514 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ LVec)
7368, 69, 70, 72qusbas 17444 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 / (𝑃 ~QG 𝑍)) = (Base‘𝑄))
74 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑈 / (𝑃 ~QG 𝑍)) = (𝑈 / (𝑃 ~QG 𝑍))
7554ghmker 19149 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ (𝑃 GrpHom 𝐿) → (𝐺 “ {(0g𝐿)}) ∈ (NrmSGrp‘𝑃))
7665, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 “ {(0g𝐿)}) ∈ (NrmSGrp‘𝑃))
7725, 76eqeltrid 2835 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ (NrmSGrp‘𝑃))
7822, 74, 24, 77qusrn 33366 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝑁 = (𝑈 / (𝑃 ~QG 𝑍)))
79 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹)
8020, 32, 6, 22, 36, 4, 38, 23, 79evls1maplmhm 22287 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)))
8180elexd 3460 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺 ∈ V)
8281adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (Base‘𝑄)) → 𝐺 ∈ V)
8382imaexd 7841 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘𝑄)) → (𝐺𝑝) ∈ V)
8483uniexd 7670 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘𝑄)) → (𝐺𝑝) ∈ V)
8527, 84dmmptd 6621 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐽 = (Base‘𝑄))
8673, 78, 853eqtr4rd 2777 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐽 = ran 𝑁)
87 rncoeq 5916 . . . . . . . . . . . . . 14 (dom 𝐽 = ran 𝑁 → ran (𝐽𝑁) = ran 𝐽)
8886, 87syl 17 . . . . . . . . . . . . 13 (𝜑 → ran (𝐽𝑁) = ran 𝐽)
8967, 88eqtrd 2766 . . . . . . . . . . . 12 (𝜑 → ran 𝐺 = ran 𝐽)
9089oveq2d 7357 . . . . . . . . . . 11 (𝜑 → (𝐿s ran 𝐺) = (𝐿s ran 𝐽))
91 eqid 2731 . . . . . . . . . . . 12 (𝐿s ran 𝐽) = (𝐿s ran 𝐽)
929subrgcrng 20485 . . . . . . . . . . . . . . 15 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → 𝐾 ∈ CRing)
9336, 4, 92syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ CRing)
9421ply1crng 22106 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → 𝑃 ∈ CRing)
9593, 94syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ CRing)
9654, 63, 25, 26, 27, 95rhmquskerlem 33382 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (𝑄 RingHom 𝐿))
9720, 32, 6, 22, 36, 4, 38, 23evls1maprnss 22288 . . . . . . . . . . . . . . 15 (𝜑𝐹 ⊆ ran 𝐺)
98 eqid 2731 . . . . . . . . . . . . . . . . . 18 (1r𝐸) = (1r𝐸)
999, 98subrg1 20492 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) = (1r𝐾))
1004, 99syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) = (1r𝐾))
10198subrg1cl 20490 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝐹)
1024, 101syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) ∈ 𝐹)
103100, 102eqeltrrd 2832 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐾) ∈ 𝐹)
10497, 103sseldd 3930 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐾) ∈ ran 𝐺)
105 drngnzr 20658 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ DivRing → 𝐸 ∈ NzRing)
10698, 35nzrnz 20425 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ NzRing → (1r𝐸) ≠ (0g𝐸))
10745, 105, 1063syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) ≠ (0g𝐸))
10836crnggrpd 20160 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ Grp)
109108grpmndd 18854 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ Mnd)
110 sdrgsubrg 20701 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸))
111 subrgsubg 20487 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸))
11257, 110, 1113syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸))
11335subg0cl 19042 . . . . . . . . . . . . . . . . . 18 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
114112, 113syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
1156, 45, 56fldgenssv 33273 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸))
11615, 6, 35ress0g 18665 . . . . . . . . . . . . . . . . 17 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) → (0g𝐸) = (0g𝐿))
117109, 114, 115, 116syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝐸) = (0g𝐿))
118107, 100, 1173netr3d 3004 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐾) ≠ (0g𝐿))
119 nelsn 4614 . . . . . . . . . . . . . . 15 ((1r𝐾) ≠ (0g𝐿) → ¬ (1r𝐾) ∈ {(0g𝐿)})
120118, 119syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ (1r𝐾) ∈ {(0g𝐿)})
121 nelne1 3025 . . . . . . . . . . . . . 14 (((1r𝐾) ∈ ran 𝐺 ∧ ¬ (1r𝐾) ∈ {(0g𝐿)}) → ran 𝐺 ≠ {(0g𝐿)})
122104, 120, 121syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ran 𝐺 ≠ {(0g𝐿)})
12389, 122eqnetrrd 2996 . . . . . . . . . . . 12 (𝜑 → ran 𝐽 ≠ {(0g𝐿)})
124 eqid 2731 . . . . . . . . . . . . 13 (oppr𝑃) = (oppr𝑃)
1259sdrgdrng 20700 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubDRing‘𝐸) → 𝐾 ∈ DivRing)
126 drngnzr 20658 . . . . . . . . . . . . . . 15 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
1271, 125, 1263syl 18 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ NzRing)
12821ply1nz 26049 . . . . . . . . . . . . . 14 (𝐾 ∈ NzRing → 𝑃 ∈ NzRing)
129127, 128syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ NzRing)
130 eqid 2731 . . . . . . . . . . . . . . . 16 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}
131 eqid 2731 . . . . . . . . . . . . . . . 16 (RSpan‘𝑃) = (RSpan‘𝑃)
1329fveq2i 6820 . . . . . . . . . . . . . . . 16 (idlGen1p𝐾) = (idlGen1p‘(𝐸s 𝐹))
13320, 32, 6, 18, 1, 38, 35, 130, 131, 132ply1annig1p 33709 . . . . . . . . . . . . . . 15 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = ((RSpan‘𝑃)‘{((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})}))
134117sneqd 4583 . . . . . . . . . . . . . . . . . 18 (𝜑 → {(0g𝐸)} = {(0g𝐿)})
135134imaeq2d 6004 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 “ {(0g𝐸)}) = (𝐺 “ {(0g𝐿)}))
13625, 135eqtr4id 2785 . . . . . . . . . . . . . . . 16 (𝜑𝑍 = (𝐺 “ {(0g𝐸)}))
13722mpteq1i 5177 . . . . . . . . . . . . . . . . . 18 (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))
13823, 137eqtri 2754 . . . . . . . . . . . . . . . . 17 𝐺 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))
13920, 32, 6, 36, 4, 38, 35, 130, 138ply1annidllem 33706 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = (𝐺 “ {(0g𝐸)}))
140136, 139eqtr4d 2769 . . . . . . . . . . . . . . 15 (𝜑𝑍 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
141 eqid 2731 . . . . . . . . . . . . . . . . . 18 (𝐸 minPoly 𝐹) = (𝐸 minPoly 𝐹)
14220, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141minplyval 33710 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) = ((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}))
143142sneqd 4583 . . . . . . . . . . . . . . . 16 (𝜑 → {((𝐸 minPoly 𝐹)‘𝐴)} = {((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})})
144143fveq2d 6821 . . . . . . . . . . . . . . 15 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) = ((RSpan‘𝑃)‘{((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})}))
145133, 140, 1443eqtr4d 2776 . . . . . . . . . . . . . 14 (𝜑𝑍 = ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}))
146 eqid 2731 . . . . . . . . . . . . . . . 16 (0g𝑃) = (0g𝑃)
147 eqid 2731 . . . . . . . . . . . . . . . . . 18 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
148147, 18, 1, 141, 19irngnminplynz 33717 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ≠ (0g‘(Poly1𝐸)))
149 eqid 2731 . . . . . . . . . . . . . . . . . 18 (Poly1𝐸) = (Poly1𝐸)
150149, 9, 21, 22, 4, 147ressply10g 33522 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g‘(Poly1𝐸)) = (0g𝑃))
151148, 150neeqtrd 2997 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ≠ (0g𝑃))
15220, 32, 6, 18, 1, 38, 141, 146, 151minplyirred 33716 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Irred‘𝑃))
153 eqid 2731 . . . . . . . . . . . . . . . 16 ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) = ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)})
154 fldsdrgfld 20708 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
15518, 1, 154syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸s 𝐹) ∈ Field)
1569, 155eqeltrid 2835 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ Field)
15721ply1pid 26110 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Field → 𝑃 ∈ PID)
158156, 157syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ PID)
15920, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141minplycl 33711 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Base‘𝑃))
160159, 22eleqtrrdi 2842 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ 𝑈)
16195crngringd 20159 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
162160snssd 4756 . . . . . . . . . . . . . . . . 17 (𝜑 → {((𝐸 minPoly 𝐹)‘𝐴)} ⊆ 𝑈)
163 eqid 2731 . . . . . . . . . . . . . . . . . 18 (LIdeal‘𝑃) = (LIdeal‘𝑃)
164131, 22, 163rspcl 21167 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Ring ∧ {((𝐸 minPoly 𝐹)‘𝐴)} ⊆ 𝑈) → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (LIdeal‘𝑃))
165161, 162, 164syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (LIdeal‘𝑃))
16622, 131, 146, 153, 158, 160, 151, 165mxidlirred 33429 . . . . . . . . . . . . . . 15 (𝜑 → (((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (MaxIdeal‘𝑃) ↔ ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Irred‘𝑃)))
167152, 166mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (MaxIdeal‘𝑃))
168145, 167eqeltrd 2831 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ (MaxIdeal‘𝑃))
169 eqid 2731 . . . . . . . . . . . . . . . 16 (MaxIdeal‘𝑃) = (MaxIdeal‘𝑃)
170169, 124crngmxidl 33426 . . . . . . . . . . . . . . 15 (𝑃 ∈ CRing → (MaxIdeal‘𝑃) = (MaxIdeal‘(oppr𝑃)))
17195, 170syl 17 . . . . . . . . . . . . . 14 (𝜑 → (MaxIdeal‘𝑃) = (MaxIdeal‘(oppr𝑃)))
172168, 171eleqtrd 2833 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ (MaxIdeal‘(oppr𝑃)))
173124, 26, 129, 168, 172qsdrngi 33452 . . . . . . . . . . . 12 (𝜑𝑄 ∈ DivRing)
17491, 54, 96, 123, 173rndrhmcl 33254 . . . . . . . . . . 11 (𝜑 → (𝐿s ran 𝐽) ∈ DivRing)
17590, 174eqeltrd 2831 . . . . . . . . . 10 (𝜑 → (𝐿s ran 𝐺) ∈ DivRing)
17653, 175eqeltrrd 2832 . . . . . . . . 9 (𝜑 → (𝐸s ran 𝐺) ∈ DivRing)
177 issdrg 20698 . . . . . . . . 9 (ran 𝐺 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ ran 𝐺 ∈ (SubRing‘𝐸) ∧ (𝐸s ran 𝐺) ∈ DivRing))
17845, 48, 176, 177syl3anbrc 1344 . . . . . . . 8 (𝜑 → ran 𝐺 ∈ (SubDRing‘𝐸))
179 fveq2 6817 . . . . . . . . . . . . . 14 (𝑝 = (var1𝐾) → (𝑂𝑝) = (𝑂‘(var1𝐾)))
180179fveq1d 6819 . . . . . . . . . . . . 13 (𝑝 = (var1𝐾) → ((𝑂𝑝)‘𝐴) = ((𝑂‘(var1𝐾))‘𝐴))
181180eqeq2d 2742 . . . . . . . . . . . 12 (𝑝 = (var1𝐾) → (𝐴 = ((𝑂𝑝)‘𝐴) ↔ 𝐴 = ((𝑂‘(var1𝐾))‘𝐴)))
1829, 71eqeltrid 2835 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ DivRing)
183182drngringd 20647 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
184 eqid 2731 . . . . . . . . . . . . . 14 (var1𝐾) = (var1𝐾)
185184, 21, 22vr1cl 22125 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (var1𝐾) ∈ 𝑈)
186183, 185syl 17 . . . . . . . . . . . 12 (𝜑 → (var1𝐾) ∈ 𝑈)
18720, 184, 9, 6, 36, 4evls1var 22248 . . . . . . . . . . . . . 14 (𝜑 → (𝑂‘(var1𝐾)) = ( I ↾ (Base‘𝐸)))
188187fveq1d 6819 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(var1𝐾))‘𝐴) = (( I ↾ (Base‘𝐸))‘𝐴))
189 fvresi 7102 . . . . . . . . . . . . . 14 (𝐴 ∈ (Base‘𝐸) → (( I ↾ (Base‘𝐸))‘𝐴) = 𝐴)
19038, 189syl 17 . . . . . . . . . . . . 13 (𝜑 → (( I ↾ (Base‘𝐸))‘𝐴) = 𝐴)
191188, 190eqtr2d 2767 . . . . . . . . . . . 12 (𝜑𝐴 = ((𝑂‘(var1𝐾))‘𝐴))
192181, 186, 191rspcedvdw 3575 . . . . . . . . . . 11 (𝜑 → ∃𝑝𝑈 𝐴 = ((𝑂𝑝)‘𝐴))
19323, 192, 19elrnmptd 5898 . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐺)
194193snssd 4756 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ ran 𝐺)
19597, 194unssd 4137 . . . . . . . 8 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ ran 𝐺)
1966, 45, 178, 195fldgenssp 33276 . . . . . . 7 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ ran 𝐺)
19744, 196eqssd 3947 . . . . . 6 (𝜑 → ran 𝐺 = (𝐸 fldGen (𝐹 ∪ {𝐴})))
19815, 6ressbas2 17144 . . . . . . 7 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿))
199115, 198syl 17 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿))
200 eqidd 2732 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = ((subringAlg ‘𝐿)‘𝐹))
2016, 45, 56fldgenssid 33271 . . . . . . . . 9 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
202201unssad 4138 . . . . . . . 8 (𝜑𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
203202, 199sseqtrd 3966 . . . . . . 7 (𝜑𝐹 ⊆ (Base‘𝐿))
204200, 203srabase 21106 . . . . . 6 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐹)))
205197, 199, 2043eqtrd 2770 . . . . 5 (𝜑 → ran 𝐺 = (Base‘((subringAlg ‘𝐿)‘𝐹)))
206 imaeq2 6000 . . . . . . 7 (𝑞 = 𝑝 → (𝐺𝑞) = (𝐺𝑝))
207206unieqd 4867 . . . . . 6 (𝑞 = 𝑝 (𝐺𝑞) = (𝐺𝑝))
208207cbvmptv 5190 . . . . 5 (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)) = (𝑝 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑝))
20914, 28, 29, 30, 205, 208lmhmqusker 33374 . . . 4 (𝜑 → (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)) ∈ ((𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) LMIso ((subringAlg ‘𝐿)‘𝐹)))
210 eqidd 2732 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐿) = (0g𝐿))
211200, 210, 203sralmod0 21117 . . . . . . . . . . . . 13 (𝜑 → (0g𝐿) = (0g‘((subringAlg ‘𝐿)‘𝐹)))
212211sneqd 4583 . . . . . . . . . . . 12 (𝜑 → {(0g𝐿)} = {(0g‘((subringAlg ‘𝐿)‘𝐹))})
213212imaeq2d 6004 . . . . . . . . . . 11 (𝜑 → (𝐺 “ {(0g𝐿)}) = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))
21425, 213eqtrid 2778 . . . . . . . . . 10 (𝜑𝑍 = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))
215214oveq2d 7357 . . . . . . . . 9 (𝜑 → (𝑃 ~QG 𝑍) = (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))
216215oveq2d 7357 . . . . . . . 8 (𝜑 → (𝑃 /s (𝑃 ~QG 𝑍)) = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))))
21726, 216eqtrid 2778 . . . . . . 7 (𝜑𝑄 = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))))
218217fveq2d 6821 . . . . . 6 (𝜑 → (Base‘𝑄) = (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))))
219218mpteq1d 5176 . . . . 5 (𝜑 → (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝)) = (𝑝 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑝)))
220219, 27, 2083eqtr4g 2791 . . . 4 (𝜑𝐽 = (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)))
221217oveq1d 7356 . . . 4 (𝜑 → (𝑄 LMIso ((subringAlg ‘𝐿)‘𝐹)) = ((𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) LMIso ((subringAlg ‘𝐿)‘𝐹)))
222209, 220, 2213eltr4d 2846 . . 3 (𝜑𝐽 ∈ (𝑄 LMIso ((subringAlg ‘𝐿)‘𝐹)))
2239, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27algextdeglem3 33724 . . 3 (𝜑𝑄 ∈ LVec)
224222, 223lmimdim 33608 . 2 (𝜑 → (dim‘𝑄) = (dim‘((subringAlg ‘𝐿)‘𝐹)))
2256, 18, 56fldgenfld 33278 . . . . 5 (𝜑 → (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ Field)
22615, 225eqeltrid 2835 . . . 4 (𝜑𝐿 ∈ Field)
2279, 15, 16, 17, 18, 1, 19algextdeglem1 33722 . . . . 5 (𝜑 → (𝐿s 𝐹) = 𝐾)
22811oveq2d 7357 . . . . 5 (𝜑 → (𝐿s 𝐹) = (𝐿s (Base‘𝐾)))
229227, 228eqtr3d 2768 . . . 4 (𝜑𝐾 = (𝐿s (Base‘𝐾)))
23015subsubrg 20508 . . . . . . 7 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐹 ∈ (SubRing‘𝐿) ↔ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))))
231230biimpar 477 . . . . . 6 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))) → 𝐹 ∈ (SubRing‘𝐿))
23260, 4, 202, 231syl12anc 836 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐿))
23311, 232eqeltrrd 2832 . . . 4 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐿))
234 brfldext 33650 . . . . 5 ((𝐿 ∈ Field ∧ 𝐾 ∈ Field) → (𝐿/FldExt𝐾 ↔ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))))
235234biimpar 477 . . . 4 (((𝐿 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))) → 𝐿/FldExt𝐾)
236226, 156, 229, 233, 235syl22anc 838 . . 3 (𝜑𝐿/FldExt𝐾)
237 extdgval 33658 . . 3 (𝐿/FldExt𝐾 → (𝐿[:]𝐾) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
238236, 237syl 17 . 2 (𝜑 → (𝐿[:]𝐾) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
23913, 224, 2383eqtr4d 2776 1 (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  cun 3895  wss 3897  {csn 4571   cuni 4854   class class class wbr 5086  cmpt 5167   I cid 5505  ccnv 5610  dom cdm 5611  ran crn 5612  cres 5613  cima 5614  ccom 5615  cfv 6476  (class class class)co 7341  [cec 8615   / cqs 8616  Basecbs 17115  s cress 17136  0gc0g 17338   /s cqus 17404  Mndcmnd 18637  SubGrpcsubg 19028  NrmSGrpcnsg 19029   ~QG cqg 19030   GrpHom cghm 19119  1rcur 20094  Ringcrg 20146  CRingccrg 20147  opprcoppr 20249  Irredcir 20269   RingHom crh 20382  NzRingcnzr 20422  SubRingcsubrg 20479  DivRingcdr 20639  Fieldcfield 20640  SubDRingcsdrg 20696   LMHom clmhm 20948   LMIso clmim 20949  LVecclvec 21031  subringAlg csra 21100  LIdealclidl 21138  RSpancrsp 21139  PIDcpid 21268  var1cv1 22083  Poly1cpl1 22084   evalSub1 ces1 22223  deg1cdg1 25981  idlGen1pcig1p 26057   fldGen cfldgen 33268  MaxIdealcmxidl 33416  dimcldim 33603  /FldExtcfldext 33643  [:]cextdg 33645   IntgRing cirng 33688   minPoly cminply 33704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-reg 9473  ax-inf2 9526  ax-ac2 10349  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-rpss 7651  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-inf 9322  df-oi 9391  df-r1 9652  df-rank 9653  df-dju 9789  df-card 9827  df-acn 9830  df-ac 10002  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ocomp 17177  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-imas 17407  df-qus 17408  df-mre 17483  df-mrc 17484  df-mri 17485  df-acs 17486  df-proset 18195  df-drs 18196  df-poset 18214  df-ipo 18429  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-nsg 19032  df-eqg 19033  df-ghm 19120  df-gim 19166  df-cntz 19224  df-oppg 19253  df-lsm 19543  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-srg 20100  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-irred 20272  df-invr 20301  df-dvr 20314  df-rhm 20385  df-nzr 20423  df-subrng 20456  df-subrg 20480  df-rlreg 20604  df-domn 20605  df-idom 20606  df-drng 20641  df-field 20642  df-sdrg 20697  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lmhm 20951  df-lmim 20952  df-lbs 21004  df-lvec 21032  df-sra 21102  df-rgmod 21103  df-lidl 21140  df-rsp 21141  df-2idl 21182  df-lpidl 21254  df-lpir 21255  df-pid 21269  df-cnfld 21287  df-dsmm 21664  df-frlm 21679  df-uvc 21715  df-lindf 21738  df-linds 21739  df-assa 21785  df-asp 21786  df-ascl 21787  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-evls 22004  df-evl 22005  df-psr1 22087  df-vr1 22088  df-ply1 22089  df-coe1 22090  df-evls1 22225  df-evl1 22226  df-mdeg 25982  df-deg1 25983  df-mon1 26058  df-uc1p 26059  df-q1p 26060  df-r1p 26061  df-ig1p 26062  df-fldgen 33269  df-mxidl 33417  df-dim 33604  df-fldext 33646  df-extdg 33647  df-irng 33689  df-minply 33705
This theorem is referenced by:  algextdeg  33730
  Copyright terms: Public domain W3C validator