Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem4 Structured version   Visualization version   GIF version

Theorem algextdeglem4 33065
Description: Lemma for algextdeg 33070. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸 β†Ύs 𝐹)
algextdeg.l 𝐿 = (𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
algextdeg.d 𝐷 = ( deg1 β€˜πΈ)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (πœ‘ β†’ 𝐸 ∈ Field)
algextdeg.e (πœ‘ β†’ 𝐹 ∈ (SubDRingβ€˜πΈ))
algextdeg.a (πœ‘ β†’ 𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1β€˜πΎ)
algextdeglem.u π‘ˆ = (Baseβ€˜π‘ƒ)
algextdeglem.g 𝐺 = (𝑝 ∈ π‘ˆ ↦ ((π‘‚β€˜π‘)β€˜π΄))
algextdeglem.n 𝑁 = (π‘₯ ∈ π‘ˆ ↦ [π‘₯](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (◑𝐺 β€œ {(0gβ€˜πΏ)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Baseβ€˜π‘„) ↦ βˆͺ (𝐺 β€œ 𝑝))
Assertion
Ref Expression
algextdeglem4 (πœ‘ β†’ (dimβ€˜π‘„) = (𝐿[:]𝐾))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,π‘₯   𝐺,𝑝,π‘₯   𝐽,𝑝,π‘₯   𝐾,𝑝   𝐿,𝑝,π‘₯   π‘₯,𝑁   𝑂,𝑝   𝑃,𝑝,π‘₯   𝑄,𝑝,π‘₯   π‘ˆ,𝑝,π‘₯   𝑍,𝑝,π‘₯   πœ‘,𝑝,π‘₯
Allowed substitution hints:   𝐴(π‘₯)   𝐷(π‘₯,𝑝)   𝐸(π‘₯)   𝐾(π‘₯)   𝑀(π‘₯,𝑝)   𝑁(𝑝)   𝑂(π‘₯)

Proof of Theorem algextdeglem4
Dummy variable π‘ž is distinct from all other variables.
StepHypRef Expression
1 algextdeg.e . . . . . . . 8 (πœ‘ β†’ 𝐹 ∈ (SubDRingβ€˜πΈ))
2 issdrg 20547 . . . . . . . 8 (𝐹 ∈ (SubDRingβ€˜πΈ) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs 𝐹) ∈ DivRing))
31, 2sylib 217 . . . . . . 7 (πœ‘ β†’ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs 𝐹) ∈ DivRing))
43simp2d 1141 . . . . . 6 (πœ‘ β†’ 𝐹 ∈ (SubRingβ€˜πΈ))
5 subrgsubg 20467 . . . . . 6 (𝐹 ∈ (SubRingβ€˜πΈ) β†’ 𝐹 ∈ (SubGrpβ€˜πΈ))
6 eqid 2730 . . . . . . 7 (Baseβ€˜πΈ) = (Baseβ€˜πΈ)
76subgss 19043 . . . . . 6 (𝐹 ∈ (SubGrpβ€˜πΈ) β†’ 𝐹 βŠ† (Baseβ€˜πΈ))
84, 5, 73syl 18 . . . . 5 (πœ‘ β†’ 𝐹 βŠ† (Baseβ€˜πΈ))
9 algextdeg.k . . . . . 6 𝐾 = (𝐸 β†Ύs 𝐹)
109, 6ressbas2 17186 . . . . 5 (𝐹 βŠ† (Baseβ€˜πΈ) β†’ 𝐹 = (Baseβ€˜πΎ))
118, 10syl 17 . . . 4 (πœ‘ β†’ 𝐹 = (Baseβ€˜πΎ))
1211fveq2d 6894 . . 3 (πœ‘ β†’ ((subringAlg β€˜πΏ)β€˜πΉ) = ((subringAlg β€˜πΏ)β€˜(Baseβ€˜πΎ)))
1312fveq2d 6894 . 2 (πœ‘ β†’ (dimβ€˜((subringAlg β€˜πΏ)β€˜πΉ)) = (dimβ€˜((subringAlg β€˜πΏ)β€˜(Baseβ€˜πΎ))))
14 eqid 2730 . . . . 5 (0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ)) = (0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))
15 algextdeg.l . . . . . 6 𝐿 = (𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
16 algextdeg.d . . . . . 6 𝐷 = ( deg1 β€˜πΈ)
17 algextdeg.m . . . . . 6 𝑀 = (𝐸 minPoly 𝐹)
18 algextdeg.f . . . . . 6 (πœ‘ β†’ 𝐸 ∈ Field)
19 algextdeg.a . . . . . 6 (πœ‘ β†’ 𝐴 ∈ (𝐸 IntgRing 𝐹))
20 algextdeglem.o . . . . . 6 𝑂 = (𝐸 evalSub1 𝐹)
21 algextdeglem.y . . . . . 6 𝑃 = (Poly1β€˜πΎ)
22 algextdeglem.u . . . . . 6 π‘ˆ = (Baseβ€˜π‘ƒ)
23 algextdeglem.g . . . . . 6 𝐺 = (𝑝 ∈ π‘ˆ ↦ ((π‘‚β€˜π‘)β€˜π΄))
24 algextdeglem.n . . . . . 6 𝑁 = (π‘₯ ∈ π‘ˆ ↦ [π‘₯](𝑃 ~QG 𝑍))
25 algextdeglem.z . . . . . 6 𝑍 = (◑𝐺 β€œ {(0gβ€˜πΏ)})
26 algextdeglem.q . . . . . 6 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
27 algextdeglem.j . . . . . 6 𝐽 = (𝑝 ∈ (Baseβ€˜π‘„) ↦ βˆͺ (𝐺 β€œ 𝑝))
289, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27algextdeglem2 33063 . . . . 5 (πœ‘ β†’ 𝐺 ∈ (𝑃 LMHom ((subringAlg β€˜πΏ)β€˜πΉ)))
29 eqid 2730 . . . . 5 (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}) = (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})
30 eqid 2730 . . . . 5 (𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))) = (𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))
319fveq2i 6893 . . . . . . . . . . 11 (Poly1β€˜πΎ) = (Poly1β€˜(𝐸 β†Ύs 𝐹))
3221, 31eqtri 2758 . . . . . . . . . 10 𝑃 = (Poly1β€˜(𝐸 β†Ύs 𝐹))
3318adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ 𝑝 ∈ π‘ˆ) β†’ 𝐸 ∈ Field)
341adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ 𝑝 ∈ π‘ˆ) β†’ 𝐹 ∈ (SubDRingβ€˜πΈ))
35 eqid 2730 . . . . . . . . . . . . 13 (0gβ€˜πΈ) = (0gβ€˜πΈ)
3618fldcrngd 20513 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐸 ∈ CRing)
3720, 9, 6, 35, 36, 4irngssv 33041 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐸 IntgRing 𝐹) βŠ† (Baseβ€˜πΈ))
3837, 19sseldd 3982 . . . . . . . . . . 11 (πœ‘ β†’ 𝐴 ∈ (Baseβ€˜πΈ))
3938adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ 𝑝 ∈ π‘ˆ) β†’ 𝐴 ∈ (Baseβ€˜πΈ))
40 simpr 483 . . . . . . . . . 10 ((πœ‘ ∧ 𝑝 ∈ π‘ˆ) β†’ 𝑝 ∈ π‘ˆ)
416, 20, 32, 22, 33, 34, 39, 40evls1fldgencl 33033 . . . . . . . . 9 ((πœ‘ ∧ 𝑝 ∈ π‘ˆ) β†’ ((π‘‚β€˜π‘)β€˜π΄) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
4241ralrimiva 3144 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘ ∈ π‘ˆ ((π‘‚β€˜π‘)β€˜π΄) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
4323rnmptss 7123 . . . . . . . 8 (βˆ€π‘ ∈ π‘ˆ ((π‘‚β€˜π‘)β€˜π΄) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) β†’ ran 𝐺 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
4442, 43syl 17 . . . . . . 7 (πœ‘ β†’ ran 𝐺 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
4518flddrngd 20512 . . . . . . . 8 (πœ‘ β†’ 𝐸 ∈ DivRing)
4620, 32, 6, 22, 36, 4, 38, 23evls1maprhm 33048 . . . . . . . . . 10 (πœ‘ β†’ 𝐺 ∈ (𝑃 RingHom 𝐸))
47 rnrhmsubrg 20495 . . . . . . . . . 10 (𝐺 ∈ (𝑃 RingHom 𝐸) β†’ ran 𝐺 ∈ (SubRingβ€˜πΈ))
4846, 47syl 17 . . . . . . . . 9 (πœ‘ β†’ ran 𝐺 ∈ (SubRingβ€˜πΈ))
4915oveq1i 7421 . . . . . . . . . . 11 (𝐿 β†Ύs ran 𝐺) = ((𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†Ύs ran 𝐺)
50 ovex 7444 . . . . . . . . . . . 12 (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ V
51 ressabs 17198 . . . . . . . . . . . 12 (((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ V ∧ ran 𝐺 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†’ ((𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†Ύs ran 𝐺) = (𝐸 β†Ύs ran 𝐺))
5250, 44, 51sylancr 585 . . . . . . . . . . 11 (πœ‘ β†’ ((𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†Ύs ran 𝐺) = (𝐸 β†Ύs ran 𝐺))
5349, 52eqtrid 2782 . . . . . . . . . 10 (πœ‘ β†’ (𝐿 β†Ύs ran 𝐺) = (𝐸 β†Ύs ran 𝐺))
54 eqid 2730 . . . . . . . . . . . . . . 15 (0gβ€˜πΏ) = (0gβ€˜πΏ)
5538snssd 4811 . . . . . . . . . . . . . . . . . . . . 21 (πœ‘ β†’ {𝐴} βŠ† (Baseβ€˜πΈ))
568, 55unssd 4185 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ (𝐹 βˆͺ {𝐴}) βŠ† (Baseβ€˜πΈ))
576, 45, 56fldgensdrg 32674 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubDRingβ€˜πΈ))
58 issdrg 20547 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubDRingβ€˜πΈ) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) ∈ DivRing))
5957, 58sylib 217 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) ∈ DivRing))
6059simp2d 1141 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ))
6115resrhm2b 20492 . . . . . . . . . . . . . . . . . 18 (((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) ∧ ran 𝐺 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†’ (𝐺 ∈ (𝑃 RingHom 𝐸) ↔ 𝐺 ∈ (𝑃 RingHom 𝐿)))
6261biimpa 475 . . . . . . . . . . . . . . . . 17 ((((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) ∧ ran 𝐺 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) ∧ 𝐺 ∈ (𝑃 RingHom 𝐸)) β†’ 𝐺 ∈ (𝑃 RingHom 𝐿))
6360, 44, 46, 62syl21anc 834 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝐺 ∈ (𝑃 RingHom 𝐿))
64 rhmghm 20375 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝑃 RingHom 𝐿) β†’ 𝐺 ∈ (𝑃 GrpHom 𝐿))
6563, 64syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐺 ∈ (𝑃 GrpHom 𝐿))
6654, 65, 25, 26, 27, 22, 24ghmquskerco 32803 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐺 = (𝐽 ∘ 𝑁))
6766rneqd 5936 . . . . . . . . . . . . 13 (πœ‘ β†’ ran 𝐺 = ran (𝐽 ∘ 𝑁))
6826a1i 11 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)))
6922a1i 11 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ π‘ˆ = (Baseβ€˜π‘ƒ))
70 ovexd 7446 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (𝑃 ~QG 𝑍) ∈ V)
713simp3d 1142 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ DivRing)
7232, 71ply1lvec 32912 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑃 ∈ LVec)
7368, 69, 70, 72qusbas 17495 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (π‘ˆ / (𝑃 ~QG 𝑍)) = (Baseβ€˜π‘„))
74 eqid 2730 . . . . . . . . . . . . . . . 16 (π‘ˆ / (𝑃 ~QG 𝑍)) = (π‘ˆ / (𝑃 ~QG 𝑍))
7554ghmker 19156 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ (𝑃 GrpHom 𝐿) β†’ (◑𝐺 β€œ {(0gβ€˜πΏ)}) ∈ (NrmSGrpβ€˜π‘ƒ))
7665, 75syl 17 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (◑𝐺 β€œ {(0gβ€˜πΏ)}) ∈ (NrmSGrpβ€˜π‘ƒ))
7725, 76eqeltrid 2835 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑍 ∈ (NrmSGrpβ€˜π‘ƒ))
7822, 74, 24, 77qusrn 32794 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ran 𝑁 = (π‘ˆ / (𝑃 ~QG 𝑍)))
79 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 ((subringAlg β€˜πΈ)β€˜πΉ) = ((subringAlg β€˜πΈ)β€˜πΉ)
8020, 32, 6, 22, 36, 4, 38, 23, 79evls1maplmhm 33049 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ 𝐺 ∈ (𝑃 LMHom ((subringAlg β€˜πΈ)β€˜πΉ)))
8180elexd 3493 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ 𝐺 ∈ V)
8281adantr 479 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑝 ∈ (Baseβ€˜π‘„)) β†’ 𝐺 ∈ V)
8382imaexd 32171 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑝 ∈ (Baseβ€˜π‘„)) β†’ (𝐺 β€œ 𝑝) ∈ V)
8483uniexd 7734 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑝 ∈ (Baseβ€˜π‘„)) β†’ βˆͺ (𝐺 β€œ 𝑝) ∈ V)
8527, 84dmmptd 6694 . . . . . . . . . . . . . . 15 (πœ‘ β†’ dom 𝐽 = (Baseβ€˜π‘„))
8673, 78, 853eqtr4rd 2781 . . . . . . . . . . . . . 14 (πœ‘ β†’ dom 𝐽 = ran 𝑁)
87 rncoeq 5973 . . . . . . . . . . . . . 14 (dom 𝐽 = ran 𝑁 β†’ ran (𝐽 ∘ 𝑁) = ran 𝐽)
8886, 87syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ ran (𝐽 ∘ 𝑁) = ran 𝐽)
8967, 88eqtrd 2770 . . . . . . . . . . . 12 (πœ‘ β†’ ran 𝐺 = ran 𝐽)
9089oveq2d 7427 . . . . . . . . . . 11 (πœ‘ β†’ (𝐿 β†Ύs ran 𝐺) = (𝐿 β†Ύs ran 𝐽))
91 eqid 2730 . . . . . . . . . . . 12 (𝐿 β†Ύs ran 𝐽) = (𝐿 β†Ύs ran 𝐽)
929subrgcrng 20465 . . . . . . . . . . . . . . 15 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRingβ€˜πΈ)) β†’ 𝐾 ∈ CRing)
9336, 4, 92syl2anc 582 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐾 ∈ CRing)
9421ply1crng 21941 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing β†’ 𝑃 ∈ CRing)
9593, 94syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑃 ∈ CRing)
9654, 63, 25, 26, 27, 95rhmquskerlem 32817 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐽 ∈ (𝑄 RingHom 𝐿))
9720, 32, 6, 22, 36, 4, 38, 23evls1maprnss 33050 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐹 βŠ† ran 𝐺)
98 eqid 2730 . . . . . . . . . . . . . . . . . 18 (1rβ€˜πΈ) = (1rβ€˜πΈ)
999, 98subrg1 20472 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRingβ€˜πΈ) β†’ (1rβ€˜πΈ) = (1rβ€˜πΎ))
1004, 99syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (1rβ€˜πΈ) = (1rβ€˜πΎ))
10198subrg1cl 20470 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRingβ€˜πΈ) β†’ (1rβ€˜πΈ) ∈ 𝐹)
1024, 101syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (1rβ€˜πΈ) ∈ 𝐹)
103100, 102eqeltrrd 2832 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (1rβ€˜πΎ) ∈ 𝐹)
10497, 103sseldd 3982 . . . . . . . . . . . . . 14 (πœ‘ β†’ (1rβ€˜πΎ) ∈ ran 𝐺)
105 drngnzr 20520 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ DivRing β†’ 𝐸 ∈ NzRing)
10698, 35nzrnz 20406 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ NzRing β†’ (1rβ€˜πΈ) β‰  (0gβ€˜πΈ))
10745, 105, 1063syl 18 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (1rβ€˜πΈ) β‰  (0gβ€˜πΈ))
10836crnggrpd 20141 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 𝐸 ∈ Grp)
109108grpmndd 18868 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝐸 ∈ Mnd)
110 sdrgsubrg 20550 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubDRingβ€˜πΈ) β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ))
111 subrgsubg 20467 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubGrpβ€˜πΈ))
11257, 110, 1113syl 18 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubGrpβ€˜πΈ))
11335subg0cl 19050 . . . . . . . . . . . . . . . . . 18 ((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubGrpβ€˜πΈ) β†’ (0gβ€˜πΈ) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
114112, 113syl 17 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (0gβ€˜πΈ) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
1156, 45, 56fldgenssv 32675 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) βŠ† (Baseβ€˜πΈ))
11615, 6, 35ress0g 18687 . . . . . . . . . . . . . . . . 17 ((𝐸 ∈ Mnd ∧ (0gβ€˜πΈ) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∧ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) βŠ† (Baseβ€˜πΈ)) β†’ (0gβ€˜πΈ) = (0gβ€˜πΏ))
117109, 114, 115, 116syl3anc 1369 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (0gβ€˜πΈ) = (0gβ€˜πΏ))
118107, 100, 1173netr3d 3015 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (1rβ€˜πΎ) β‰  (0gβ€˜πΏ))
119 nelsn 4667 . . . . . . . . . . . . . . 15 ((1rβ€˜πΎ) β‰  (0gβ€˜πΏ) β†’ Β¬ (1rβ€˜πΎ) ∈ {(0gβ€˜πΏ)})
120118, 119syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ Β¬ (1rβ€˜πΎ) ∈ {(0gβ€˜πΏ)})
121 nelne1 3037 . . . . . . . . . . . . . 14 (((1rβ€˜πΎ) ∈ ran 𝐺 ∧ Β¬ (1rβ€˜πΎ) ∈ {(0gβ€˜πΏ)}) β†’ ran 𝐺 β‰  {(0gβ€˜πΏ)})
122104, 120, 121syl2anc 582 . . . . . . . . . . . . 13 (πœ‘ β†’ ran 𝐺 β‰  {(0gβ€˜πΏ)})
12389, 122eqnetrrd 3007 . . . . . . . . . . . 12 (πœ‘ β†’ ran 𝐽 β‰  {(0gβ€˜πΏ)})
124 eqid 2730 . . . . . . . . . . . . 13 (opprβ€˜π‘ƒ) = (opprβ€˜π‘ƒ)
1259sdrgdrng 20549 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubDRingβ€˜πΈ) β†’ 𝐾 ∈ DivRing)
126 drngnzr 20520 . . . . . . . . . . . . . . 15 (𝐾 ∈ DivRing β†’ 𝐾 ∈ NzRing)
1271, 125, 1263syl 18 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐾 ∈ NzRing)
12821ply1nz 25874 . . . . . . . . . . . . . 14 (𝐾 ∈ NzRing β†’ 𝑃 ∈ NzRing)
129127, 128syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑃 ∈ NzRing)
130 eqid 2730 . . . . . . . . . . . . . . . 16 {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)} = {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)}
131 eqid 2730 . . . . . . . . . . . . . . . 16 (RSpanβ€˜π‘ƒ) = (RSpanβ€˜π‘ƒ)
1329fveq2i 6893 . . . . . . . . . . . . . . . 16 (idlGen1pβ€˜πΎ) = (idlGen1pβ€˜(𝐸 β†Ύs 𝐹))
13320, 32, 6, 18, 1, 38, 35, 130, 131, 132ply1annig1p 33054 . . . . . . . . . . . . . . 15 (πœ‘ β†’ {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)} = ((RSpanβ€˜π‘ƒ)β€˜{((idlGen1pβ€˜πΎ)β€˜{π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)})}))
134117sneqd 4639 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ {(0gβ€˜πΈ)} = {(0gβ€˜πΏ)})
135134imaeq2d 6058 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (◑𝐺 β€œ {(0gβ€˜πΈ)}) = (◑𝐺 β€œ {(0gβ€˜πΏ)}))
13625, 135eqtr4id 2789 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑍 = (◑𝐺 β€œ {(0gβ€˜πΈ)}))
13722mpteq1i 5243 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ π‘ˆ ↦ ((π‘‚β€˜π‘)β€˜π΄)) = (𝑝 ∈ (Baseβ€˜π‘ƒ) ↦ ((π‘‚β€˜π‘)β€˜π΄))
13823, 137eqtri 2758 . . . . . . . . . . . . . . . . 17 𝐺 = (𝑝 ∈ (Baseβ€˜π‘ƒ) ↦ ((π‘‚β€˜π‘)β€˜π΄))
13920, 32, 6, 36, 4, 38, 35, 130, 138ply1annidllem 33051 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)} = (◑𝐺 β€œ {(0gβ€˜πΈ)}))
140136, 139eqtr4d 2773 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝑍 = {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)})
141 eqid 2730 . . . . . . . . . . . . . . . . . 18 (𝐸 minPoly 𝐹) = (𝐸 minPoly 𝐹)
14220, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141minplyval 33055 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ ((𝐸 minPoly 𝐹)β€˜π΄) = ((idlGen1pβ€˜πΎ)β€˜{π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)}))
143142sneqd 4639 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ {((𝐸 minPoly 𝐹)β€˜π΄)} = {((idlGen1pβ€˜πΎ)β€˜{π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)})})
144143fveq2d 6894 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}) = ((RSpanβ€˜π‘ƒ)β€˜{((idlGen1pβ€˜πΎ)β€˜{π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)})}))
145133, 140, 1443eqtr4d 2780 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑍 = ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}))
146 eqid 2730 . . . . . . . . . . . . . . . 16 (0gβ€˜π‘ƒ) = (0gβ€˜π‘ƒ)
147 eqid 2730 . . . . . . . . . . . . . . . . . 18 (0gβ€˜(Poly1β€˜πΈ)) = (0gβ€˜(Poly1β€˜πΈ))
148147, 18, 1, 141, 19irngnminplynz 33060 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ ((𝐸 minPoly 𝐹)β€˜π΄) β‰  (0gβ€˜(Poly1β€˜πΈ)))
149 eqid 2730 . . . . . . . . . . . . . . . . . 18 (Poly1β€˜πΈ) = (Poly1β€˜πΈ)
150149, 9, 21, 22, 4, 147ressply10g 32930 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (0gβ€˜(Poly1β€˜πΈ)) = (0gβ€˜π‘ƒ))
151148, 150neeqtrd 3008 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ ((𝐸 minPoly 𝐹)β€˜π΄) β‰  (0gβ€˜π‘ƒ))
15220, 32, 6, 18, 1, 38, 141, 146, 151minplyirred 33059 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ((𝐸 minPoly 𝐹)β€˜π΄) ∈ (Irredβ€˜π‘ƒ))
153 eqid 2730 . . . . . . . . . . . . . . . 16 ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}) = ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)})
154 fldsdrgfld 20557 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRingβ€˜πΈ)) β†’ (𝐸 β†Ύs 𝐹) ∈ Field)
15518, 1, 154syl2anc 582 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ Field)
1569, 155eqeltrid 2835 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝐾 ∈ Field)
15721ply1pid 25932 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Field β†’ 𝑃 ∈ PID)
158156, 157syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑃 ∈ PID)
15920, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141minplycl 33056 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ ((𝐸 minPoly 𝐹)β€˜π΄) ∈ (Baseβ€˜π‘ƒ))
160159, 22eleqtrrdi 2842 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ ((𝐸 minPoly 𝐹)β€˜π΄) ∈ π‘ˆ)
16195crngringd 20140 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝑃 ∈ Ring)
162160snssd 4811 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ {((𝐸 minPoly 𝐹)β€˜π΄)} βŠ† π‘ˆ)
163 eqid 2730 . . . . . . . . . . . . . . . . . 18 (LIdealβ€˜π‘ƒ) = (LIdealβ€˜π‘ƒ)
164131, 22, 163rspcl 20996 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Ring ∧ {((𝐸 minPoly 𝐹)β€˜π΄)} βŠ† π‘ˆ) β†’ ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}) ∈ (LIdealβ€˜π‘ƒ))
165161, 162, 164syl2anc 582 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}) ∈ (LIdealβ€˜π‘ƒ))
16622, 131, 146, 153, 158, 160, 151, 165mxidlirred 32862 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}) ∈ (MaxIdealβ€˜π‘ƒ) ↔ ((𝐸 minPoly 𝐹)β€˜π΄) ∈ (Irredβ€˜π‘ƒ)))
167152, 166mpbird 256 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}) ∈ (MaxIdealβ€˜π‘ƒ))
168145, 167eqeltrd 2831 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑍 ∈ (MaxIdealβ€˜π‘ƒ))
169 eqid 2730 . . . . . . . . . . . . . . . 16 (MaxIdealβ€˜π‘ƒ) = (MaxIdealβ€˜π‘ƒ)
170169, 124crngmxidl 32859 . . . . . . . . . . . . . . 15 (𝑃 ∈ CRing β†’ (MaxIdealβ€˜π‘ƒ) = (MaxIdealβ€˜(opprβ€˜π‘ƒ)))
17195, 170syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ (MaxIdealβ€˜π‘ƒ) = (MaxIdealβ€˜(opprβ€˜π‘ƒ)))
172168, 171eleqtrd 2833 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑍 ∈ (MaxIdealβ€˜(opprβ€˜π‘ƒ)))
173124, 26, 129, 168, 172qsdrngi 32883 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑄 ∈ DivRing)
17491, 54, 96, 123, 173rndrhmcl 32666 . . . . . . . . . . 11 (πœ‘ β†’ (𝐿 β†Ύs ran 𝐽) ∈ DivRing)
17590, 174eqeltrd 2831 . . . . . . . . . 10 (πœ‘ β†’ (𝐿 β†Ύs ran 𝐺) ∈ DivRing)
17653, 175eqeltrrd 2832 . . . . . . . . 9 (πœ‘ β†’ (𝐸 β†Ύs ran 𝐺) ∈ DivRing)
177 issdrg 20547 . . . . . . . . 9 (ran 𝐺 ∈ (SubDRingβ€˜πΈ) ↔ (𝐸 ∈ DivRing ∧ ran 𝐺 ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs ran 𝐺) ∈ DivRing))
17845, 48, 176, 177syl3anbrc 1341 . . . . . . . 8 (πœ‘ β†’ ran 𝐺 ∈ (SubDRingβ€˜πΈ))
179 fveq2 6890 . . . . . . . . . . . . . 14 (𝑝 = (var1β€˜πΎ) β†’ (π‘‚β€˜π‘) = (π‘‚β€˜(var1β€˜πΎ)))
180179fveq1d 6892 . . . . . . . . . . . . 13 (𝑝 = (var1β€˜πΎ) β†’ ((π‘‚β€˜π‘)β€˜π΄) = ((π‘‚β€˜(var1β€˜πΎ))β€˜π΄))
181180eqeq2d 2741 . . . . . . . . . . . 12 (𝑝 = (var1β€˜πΎ) β†’ (𝐴 = ((π‘‚β€˜π‘)β€˜π΄) ↔ 𝐴 = ((π‘‚β€˜(var1β€˜πΎ))β€˜π΄)))
1829, 71eqeltrid 2835 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐾 ∈ DivRing)
183182drngringd 20508 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐾 ∈ Ring)
184 eqid 2730 . . . . . . . . . . . . . 14 (var1β€˜πΎ) = (var1β€˜πΎ)
185184, 21, 22vr1cl 21960 . . . . . . . . . . . . 13 (𝐾 ∈ Ring β†’ (var1β€˜πΎ) ∈ π‘ˆ)
186183, 185syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ (var1β€˜πΎ) ∈ π‘ˆ)
18720, 184, 9, 6, 36, 4evls1var 22077 . . . . . . . . . . . . . 14 (πœ‘ β†’ (π‘‚β€˜(var1β€˜πΎ)) = ( I β†Ύ (Baseβ€˜πΈ)))
188187fveq1d 6892 . . . . . . . . . . . . 13 (πœ‘ β†’ ((π‘‚β€˜(var1β€˜πΎ))β€˜π΄) = (( I β†Ύ (Baseβ€˜πΈ))β€˜π΄))
189 fvresi 7172 . . . . . . . . . . . . . 14 (𝐴 ∈ (Baseβ€˜πΈ) β†’ (( I β†Ύ (Baseβ€˜πΈ))β€˜π΄) = 𝐴)
19038, 189syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ (( I β†Ύ (Baseβ€˜πΈ))β€˜π΄) = 𝐴)
191188, 190eqtr2d 2771 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐴 = ((π‘‚β€˜(var1β€˜πΎ))β€˜π΄))
192181, 186, 191rspcedvdw 3614 . . . . . . . . . . 11 (πœ‘ β†’ βˆƒπ‘ ∈ π‘ˆ 𝐴 = ((π‘‚β€˜π‘)β€˜π΄))
19323, 192, 19elrnmptd 5959 . . . . . . . . . 10 (πœ‘ β†’ 𝐴 ∈ ran 𝐺)
194193snssd 4811 . . . . . . . . 9 (πœ‘ β†’ {𝐴} βŠ† ran 𝐺)
19597, 194unssd 4185 . . . . . . . 8 (πœ‘ β†’ (𝐹 βˆͺ {𝐴}) βŠ† ran 𝐺)
1966, 45, 178, 195fldgenssp 32678 . . . . . . 7 (πœ‘ β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) βŠ† ran 𝐺)
19744, 196eqssd 3998 . . . . . 6 (πœ‘ β†’ ran 𝐺 = (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
19815, 6ressbas2 17186 . . . . . . 7 ((𝐸 fldGen (𝐹 βˆͺ {𝐴})) βŠ† (Baseβ€˜πΈ) β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) = (Baseβ€˜πΏ))
199115, 198syl 17 . . . . . 6 (πœ‘ β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) = (Baseβ€˜πΏ))
200 eqidd 2731 . . . . . . 7 (πœ‘ β†’ ((subringAlg β€˜πΏ)β€˜πΉ) = ((subringAlg β€˜πΏ)β€˜πΉ))
2016, 45, 56fldgenssid 32673 . . . . . . . . 9 (πœ‘ β†’ (𝐹 βˆͺ {𝐴}) βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
202201unssad 4186 . . . . . . . 8 (πœ‘ β†’ 𝐹 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
203202, 199sseqtrd 4021 . . . . . . 7 (πœ‘ β†’ 𝐹 βŠ† (Baseβ€˜πΏ))
204200, 203srabase 20937 . . . . . 6 (πœ‘ β†’ (Baseβ€˜πΏ) = (Baseβ€˜((subringAlg β€˜πΏ)β€˜πΉ)))
205197, 199, 2043eqtrd 2774 . . . . 5 (πœ‘ β†’ ran 𝐺 = (Baseβ€˜((subringAlg β€˜πΏ)β€˜πΉ)))
206 imaeq2 6054 . . . . . . 7 (π‘ž = 𝑝 β†’ (𝐺 β€œ π‘ž) = (𝐺 β€œ 𝑝))
207206unieqd 4921 . . . . . 6 (π‘ž = 𝑝 β†’ βˆͺ (𝐺 β€œ π‘ž) = βˆͺ (𝐺 β€œ 𝑝))
208207cbvmptv 5260 . . . . 5 (π‘ž ∈ (Baseβ€˜(𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))) ↦ βˆͺ (𝐺 β€œ π‘ž)) = (𝑝 ∈ (Baseβ€˜(𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))) ↦ βˆͺ (𝐺 β€œ 𝑝))
20914, 28, 29, 30, 205, 208lmhmqusker 32808 . . . 4 (πœ‘ β†’ (π‘ž ∈ (Baseβ€˜(𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))) ↦ βˆͺ (𝐺 β€œ π‘ž)) ∈ ((𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))) LMIso ((subringAlg β€˜πΏ)β€˜πΉ)))
210 eqidd 2731 . . . . . . . . . . . . . 14 (πœ‘ β†’ (0gβ€˜πΏ) = (0gβ€˜πΏ))
211200, 210, 203sralmod0 20955 . . . . . . . . . . . . 13 (πœ‘ β†’ (0gβ€˜πΏ) = (0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ)))
212211sneqd 4639 . . . . . . . . . . . 12 (πœ‘ β†’ {(0gβ€˜πΏ)} = {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})
213212imaeq2d 6058 . . . . . . . . . . 11 (πœ‘ β†’ (◑𝐺 β€œ {(0gβ€˜πΏ)}) = (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))
21425, 213eqtrid 2782 . . . . . . . . . 10 (πœ‘ β†’ 𝑍 = (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))
215214oveq2d 7427 . . . . . . . . 9 (πœ‘ β†’ (𝑃 ~QG 𝑍) = (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))
216215oveq2d 7427 . . . . . . . 8 (πœ‘ β†’ (𝑃 /s (𝑃 ~QG 𝑍)) = (𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))))
21726, 216eqtrid 2782 . . . . . . 7 (πœ‘ β†’ 𝑄 = (𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))))
218217fveq2d 6894 . . . . . 6 (πœ‘ β†’ (Baseβ€˜π‘„) = (Baseβ€˜(𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))))
219218mpteq1d 5242 . . . . 5 (πœ‘ β†’ (𝑝 ∈ (Baseβ€˜π‘„) ↦ βˆͺ (𝐺 β€œ 𝑝)) = (𝑝 ∈ (Baseβ€˜(𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))) ↦ βˆͺ (𝐺 β€œ 𝑝)))
220219, 27, 2083eqtr4g 2795 . . . 4 (πœ‘ β†’ 𝐽 = (π‘ž ∈ (Baseβ€˜(𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))) ↦ βˆͺ (𝐺 β€œ π‘ž)))
221217oveq1d 7426 . . . 4 (πœ‘ β†’ (𝑄 LMIso ((subringAlg β€˜πΏ)β€˜πΉ)) = ((𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))) LMIso ((subringAlg β€˜πΏ)β€˜πΉ)))
222209, 220, 2213eltr4d 2846 . . 3 (πœ‘ β†’ 𝐽 ∈ (𝑄 LMIso ((subringAlg β€˜πΏ)β€˜πΉ)))
2239, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27algextdeglem3 33064 . . 3 (πœ‘ β†’ 𝑄 ∈ LVec)
224222, 223lmimdim 32976 . 2 (πœ‘ β†’ (dimβ€˜π‘„) = (dimβ€˜((subringAlg β€˜πΏ)β€˜πΉ)))
2256, 18, 56fldgenfld 32680 . . . . 5 (πœ‘ β†’ (𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) ∈ Field)
22615, 225eqeltrid 2835 . . . 4 (πœ‘ β†’ 𝐿 ∈ Field)
2279, 15, 16, 17, 18, 1, 19algextdeglem1 33062 . . . . 5 (πœ‘ β†’ (𝐿 β†Ύs 𝐹) = 𝐾)
22811oveq2d 7427 . . . . 5 (πœ‘ β†’ (𝐿 β†Ύs 𝐹) = (𝐿 β†Ύs (Baseβ€˜πΎ)))
229227, 228eqtr3d 2772 . . . 4 (πœ‘ β†’ 𝐾 = (𝐿 β†Ύs (Baseβ€˜πΎ)))
23015subsubrg 20488 . . . . . . 7 ((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) β†’ (𝐹 ∈ (SubRingβ€˜πΏ) ↔ (𝐹 ∈ (SubRingβ€˜πΈ) ∧ 𝐹 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴})))))
231230biimpar 476 . . . . . 6 (((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) ∧ (𝐹 ∈ (SubRingβ€˜πΈ) ∧ 𝐹 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴})))) β†’ 𝐹 ∈ (SubRingβ€˜πΏ))
23260, 4, 202, 231syl12anc 833 . . . . 5 (πœ‘ β†’ 𝐹 ∈ (SubRingβ€˜πΏ))
23311, 232eqeltrrd 2832 . . . 4 (πœ‘ β†’ (Baseβ€˜πΎ) ∈ (SubRingβ€˜πΏ))
234 brfldext 33014 . . . . 5 ((𝐿 ∈ Field ∧ 𝐾 ∈ Field) β†’ (𝐿/FldExt𝐾 ↔ (𝐾 = (𝐿 β†Ύs (Baseβ€˜πΎ)) ∧ (Baseβ€˜πΎ) ∈ (SubRingβ€˜πΏ))))
235234biimpar 476 . . . 4 (((𝐿 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐿 β†Ύs (Baseβ€˜πΎ)) ∧ (Baseβ€˜πΎ) ∈ (SubRingβ€˜πΏ))) β†’ 𝐿/FldExt𝐾)
236226, 156, 229, 233, 235syl22anc 835 . . 3 (πœ‘ β†’ 𝐿/FldExt𝐾)
237 extdgval 33021 . . 3 (𝐿/FldExt𝐾 β†’ (𝐿[:]𝐾) = (dimβ€˜((subringAlg β€˜πΏ)β€˜(Baseβ€˜πΎ))))
238236, 237syl 17 . 2 (πœ‘ β†’ (𝐿[:]𝐾) = (dimβ€˜((subringAlg β€˜πΏ)β€˜(Baseβ€˜πΎ))))
23913, 224, 2383eqtr4d 2780 1 (πœ‘ β†’ (dimβ€˜π‘„) = (𝐿[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  {crab 3430  Vcvv 3472   βˆͺ cun 3945   βŠ† wss 3947  {csn 4627  βˆͺ cuni 4907   class class class wbr 5147   ↦ cmpt 5230   I cid 5572  β—‘ccnv 5674  dom cdm 5675  ran crn 5676   β†Ύ cres 5677   β€œ cima 5678   ∘ ccom 5679  β€˜cfv 6542  (class class class)co 7411  [cec 8703   / cqs 8704  Basecbs 17148   β†Ύs cress 17177  0gc0g 17389   /s cqus 17455  Mndcmnd 18659  SubGrpcsubg 19036  NrmSGrpcnsg 19037   ~QG cqg 19038   GrpHom cghm 19127  1rcur 20075  Ringcrg 20127  CRingccrg 20128  opprcoppr 20224  Irredcir 20247   RingHom crh 20360  NzRingcnzr 20403  SubRingcsubrg 20457  DivRingcdr 20500  Fieldcfield 20501  SubDRingcsdrg 20545   LMHom clmhm 20774   LMIso clmim 20775  LVecclvec 20857  subringAlg csra 20926  LIdealclidl 20928  RSpancrsp 20929  PIDcpid 21098  var1cv1 21919  Poly1cpl1 21920   evalSub1 ces1 22052   deg1 cdg1 25804  idlGen1pcig1p 25882   fldGen cfldgen 32670  MaxIdealcmxidl 32849  dimcldim 32971  /FldExtcfldext 33005  [:]cextdg 33008   IntgRing cirng 33036   minPoly cminply 33045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-reg 9589  ax-inf2 9638  ax-ac2 10460  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-ofr 7673  df-rpss 7715  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-ec 8707  df-qs 8711  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-inf 9440  df-oi 9507  df-r1 9761  df-rank 9762  df-dju 9898  df-card 9936  df-acn 9939  df-ac 10113  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-xnn0 12549  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13489  df-fzo 13632  df-seq 13971  df-hash 14295  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ocomp 17222  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-0g 17391  df-gsum 17392  df-prds 17397  df-pws 17399  df-imas 17458  df-qus 17459  df-mre 17534  df-mrc 17535  df-mri 17536  df-acs 17537  df-proset 18252  df-drs 18253  df-poset 18270  df-ipo 18485  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-grp 18858  df-minusg 18859  df-sbg 18860  df-mulg 18987  df-subg 19039  df-nsg 19040  df-eqg 19041  df-ghm 19128  df-gim 19173  df-cntz 19222  df-oppg 19251  df-lsm 19545  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-srg 20081  df-ring 20129  df-cring 20130  df-oppr 20225  df-dvdsr 20248  df-unit 20249  df-irred 20250  df-invr 20279  df-dvr 20292  df-rhm 20363  df-nzr 20404  df-subrng 20434  df-subrg 20459  df-drng 20502  df-field 20503  df-sdrg 20546  df-lmod 20616  df-lss 20687  df-lsp 20727  df-lmhm 20777  df-lmim 20778  df-lbs 20830  df-lvec 20858  df-sra 20930  df-rgmod 20931  df-lidl 20932  df-rsp 20933  df-2idl 21006  df-lpidl 21081  df-lpir 21082  df-rlreg 21099  df-domn 21100  df-idom 21101  df-pid 21102  df-cnfld 21145  df-dsmm 21506  df-frlm 21521  df-uvc 21557  df-lindf 21580  df-linds 21581  df-assa 21627  df-asp 21628  df-ascl 21629  df-psr 21681  df-mvr 21682  df-mpl 21683  df-opsr 21685  df-evls 21854  df-evl 21855  df-psr1 21923  df-vr1 21924  df-ply1 21925  df-coe1 21926  df-evls1 22054  df-evl1 22055  df-mdeg 25805  df-deg1 25806  df-mon1 25883  df-uc1p 25884  df-q1p 25885  df-r1p 25886  df-ig1p 25887  df-fldgen 32671  df-mxidl 32850  df-dim 32972  df-fldext 33009  df-extdg 33010  df-irng 33037  df-minply 33046
This theorem is referenced by:  algextdeg  33070
  Copyright terms: Public domain W3C validator