Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem4 Structured version   Visualization version   GIF version

Theorem algextdeglem4 33080
Description: Lemma for algextdeg 33085. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = ( deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
Assertion
Ref Expression
algextdeglem4 (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝐸(𝑥)   𝐾(𝑥)   𝑀(𝑥,𝑝)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem4
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 algextdeg.e . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐸))
2 issdrg 20551 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
31, 2sylib 217 . . . . . . 7 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
43simp2d 1142 . . . . . 6 (𝜑𝐹 ∈ (SubRing‘𝐸))
5 subrgsubg 20471 . . . . . 6 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
6 eqid 2731 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
76subgss 19047 . . . . . 6 (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸))
84, 5, 73syl 18 . . . . 5 (𝜑𝐹 ⊆ (Base‘𝐸))
9 algextdeg.k . . . . . 6 𝐾 = (𝐸s 𝐹)
109, 6ressbas2 17189 . . . . 5 (𝐹 ⊆ (Base‘𝐸) → 𝐹 = (Base‘𝐾))
118, 10syl 17 . . . 4 (𝜑𝐹 = (Base‘𝐾))
1211fveq2d 6895 . . 3 (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = ((subringAlg ‘𝐿)‘(Base‘𝐾)))
1312fveq2d 6895 . 2 (𝜑 → (dim‘((subringAlg ‘𝐿)‘𝐹)) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
14 eqid 2731 . . . . 5 (0g‘((subringAlg ‘𝐿)‘𝐹)) = (0g‘((subringAlg ‘𝐿)‘𝐹))
15 algextdeg.l . . . . . 6 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
16 algextdeg.d . . . . . 6 𝐷 = ( deg1𝐸)
17 algextdeg.m . . . . . 6 𝑀 = (𝐸 minPoly 𝐹)
18 algextdeg.f . . . . . 6 (𝜑𝐸 ∈ Field)
19 algextdeg.a . . . . . 6 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
20 algextdeglem.o . . . . . 6 𝑂 = (𝐸 evalSub1 𝐹)
21 algextdeglem.y . . . . . 6 𝑃 = (Poly1𝐾)
22 algextdeglem.u . . . . . 6 𝑈 = (Base‘𝑃)
23 algextdeglem.g . . . . . 6 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
24 algextdeglem.n . . . . . 6 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
25 algextdeglem.z . . . . . 6 𝑍 = (𝐺 “ {(0g𝐿)})
26 algextdeglem.q . . . . . 6 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
27 algextdeglem.j . . . . . 6 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
289, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27algextdeglem2 33078 . . . . 5 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)))
29 eqid 2731 . . . . 5 (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}) = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})
30 eqid 2731 . . . . 5 (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))
319fveq2i 6894 . . . . . . . . . . 11 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
3221, 31eqtri 2759 . . . . . . . . . 10 𝑃 = (Poly1‘(𝐸s 𝐹))
3318adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐸 ∈ Field)
341adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐹 ∈ (SubDRing‘𝐸))
35 eqid 2731 . . . . . . . . . . . . 13 (0g𝐸) = (0g𝐸)
3618fldcrngd 20517 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ CRing)
3720, 9, 6, 35, 36, 4irngssv 33056 . . . . . . . . . . . 12 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
3837, 19sseldd 3983 . . . . . . . . . . 11 (𝜑𝐴 ∈ (Base‘𝐸))
3938adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝐴 ∈ (Base‘𝐸))
40 simpr 484 . . . . . . . . . 10 ((𝜑𝑝𝑈) → 𝑝𝑈)
416, 20, 32, 22, 33, 34, 39, 40evls1fldgencl 33048 . . . . . . . . 9 ((𝜑𝑝𝑈) → ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4241ralrimiva 3145 . . . . . . . 8 (𝜑 → ∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4323rnmptss 7124 . . . . . . . 8 (∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4442, 43syl 17 . . . . . . 7 (𝜑 → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4518flddrngd 20516 . . . . . . . 8 (𝜑𝐸 ∈ DivRing)
4620, 32, 6, 22, 36, 4, 38, 23evls1maprhm 33063 . . . . . . . . . 10 (𝜑𝐺 ∈ (𝑃 RingHom 𝐸))
47 rnrhmsubrg 20499 . . . . . . . . . 10 (𝐺 ∈ (𝑃 RingHom 𝐸) → ran 𝐺 ∈ (SubRing‘𝐸))
4846, 47syl 17 . . . . . . . . 9 (𝜑 → ran 𝐺 ∈ (SubRing‘𝐸))
4915oveq1i 7422 . . . . . . . . . . 11 (𝐿s ran 𝐺) = ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺)
50 ovex 7445 . . . . . . . . . . . 12 (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V
51 ressabs 17201 . . . . . . . . . . . 12 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺) = (𝐸s ran 𝐺))
5250, 44, 51sylancr 586 . . . . . . . . . . 11 (𝜑 → ((𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s ran 𝐺) = (𝐸s ran 𝐺))
5349, 52eqtrid 2783 . . . . . . . . . 10 (𝜑 → (𝐿s ran 𝐺) = (𝐸s ran 𝐺))
54 eqid 2731 . . . . . . . . . . . . . . 15 (0g𝐿) = (0g𝐿)
5538snssd 4812 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → {𝐴} ⊆ (Base‘𝐸))
568, 55unssd 4186 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸))
576, 45, 56fldgensdrg 32689 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸))
58 issdrg 20551 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
5957, 58sylib 217 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
6059simp2d 1142 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸))
6115resrhm2b 20496 . . . . . . . . . . . . . . . . . 18 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → (𝐺 ∈ (𝑃 RingHom 𝐸) ↔ 𝐺 ∈ (𝑃 RingHom 𝐿)))
6261biimpa 476 . . . . . . . . . . . . . . . . 17 ((((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∧ 𝐺 ∈ (𝑃 RingHom 𝐸)) → 𝐺 ∈ (𝑃 RingHom 𝐿))
6360, 44, 46, 62syl21anc 835 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ (𝑃 RingHom 𝐿))
64 rhmghm 20379 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝑃 RingHom 𝐿) → 𝐺 ∈ (𝑃 GrpHom 𝐿))
6563, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ (𝑃 GrpHom 𝐿))
6654, 65, 25, 26, 27, 22, 24ghmquskerco 32818 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝐽𝑁))
6766rneqd 5937 . . . . . . . . . . . . 13 (𝜑 → ran 𝐺 = ran (𝐽𝑁))
6826a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)))
6922a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑈 = (Base‘𝑃))
70 ovexd 7447 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 ~QG 𝑍) ∈ V)
713simp3d 1143 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
7232, 71ply1lvec 32927 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ LVec)
7368, 69, 70, 72qusbas 17498 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 / (𝑃 ~QG 𝑍)) = (Base‘𝑄))
74 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑈 / (𝑃 ~QG 𝑍)) = (𝑈 / (𝑃 ~QG 𝑍))
7554ghmker 19160 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ (𝑃 GrpHom 𝐿) → (𝐺 “ {(0g𝐿)}) ∈ (NrmSGrp‘𝑃))
7665, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 “ {(0g𝐿)}) ∈ (NrmSGrp‘𝑃))
7725, 76eqeltrid 2836 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ (NrmSGrp‘𝑃))
7822, 74, 24, 77qusrn 32809 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝑁 = (𝑈 / (𝑃 ~QG 𝑍)))
79 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹)
8020, 32, 6, 22, 36, 4, 38, 23, 79evls1maplmhm 33064 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)))
8180elexd 3494 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺 ∈ V)
8281adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (Base‘𝑄)) → 𝐺 ∈ V)
8382imaexd 32186 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (Base‘𝑄)) → (𝐺𝑝) ∈ V)
8483uniexd 7736 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Base‘𝑄)) → (𝐺𝑝) ∈ V)
8527, 84dmmptd 6695 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐽 = (Base‘𝑄))
8673, 78, 853eqtr4rd 2782 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐽 = ran 𝑁)
87 rncoeq 5974 . . . . . . . . . . . . . 14 (dom 𝐽 = ran 𝑁 → ran (𝐽𝑁) = ran 𝐽)
8886, 87syl 17 . . . . . . . . . . . . 13 (𝜑 → ran (𝐽𝑁) = ran 𝐽)
8967, 88eqtrd 2771 . . . . . . . . . . . 12 (𝜑 → ran 𝐺 = ran 𝐽)
9089oveq2d 7428 . . . . . . . . . . 11 (𝜑 → (𝐿s ran 𝐺) = (𝐿s ran 𝐽))
91 eqid 2731 . . . . . . . . . . . 12 (𝐿s ran 𝐽) = (𝐿s ran 𝐽)
929subrgcrng 20469 . . . . . . . . . . . . . . 15 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → 𝐾 ∈ CRing)
9336, 4, 92syl2anc 583 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ CRing)
9421ply1crng 21954 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → 𝑃 ∈ CRing)
9593, 94syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ CRing)
9654, 63, 25, 26, 27, 95rhmquskerlem 32832 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (𝑄 RingHom 𝐿))
9720, 32, 6, 22, 36, 4, 38, 23evls1maprnss 33065 . . . . . . . . . . . . . . 15 (𝜑𝐹 ⊆ ran 𝐺)
98 eqid 2731 . . . . . . . . . . . . . . . . . 18 (1r𝐸) = (1r𝐸)
999, 98subrg1 20476 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) = (1r𝐾))
1004, 99syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) = (1r𝐾))
10198subrg1cl 20474 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝐹)
1024, 101syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) ∈ 𝐹)
103100, 102eqeltrrd 2833 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐾) ∈ 𝐹)
10497, 103sseldd 3983 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐾) ∈ ran 𝐺)
105 drngnzr 20524 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ DivRing → 𝐸 ∈ NzRing)
10698, 35nzrnz 20410 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ NzRing → (1r𝐸) ≠ (0g𝐸))
10745, 105, 1063syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐸) ≠ (0g𝐸))
10836crnggrpd 20145 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ Grp)
109108grpmndd 18871 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ Mnd)
110 sdrgsubrg 20554 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸))
111 subrgsubg 20471 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸))
11257, 110, 1113syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸))
11335subg0cl 19054 . . . . . . . . . . . . . . . . . 18 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
114112, 113syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
1156, 45, 56fldgenssv 32690 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸))
11615, 6, 35ress0g 18690 . . . . . . . . . . . . . . . . 17 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) → (0g𝐸) = (0g𝐿))
117109, 114, 115, 116syl3anc 1370 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝐸) = (0g𝐿))
118107, 100, 1173netr3d 3016 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐾) ≠ (0g𝐿))
119 nelsn 4668 . . . . . . . . . . . . . . 15 ((1r𝐾) ≠ (0g𝐿) → ¬ (1r𝐾) ∈ {(0g𝐿)})
120118, 119syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ (1r𝐾) ∈ {(0g𝐿)})
121 nelne1 3038 . . . . . . . . . . . . . 14 (((1r𝐾) ∈ ran 𝐺 ∧ ¬ (1r𝐾) ∈ {(0g𝐿)}) → ran 𝐺 ≠ {(0g𝐿)})
122104, 120, 121syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → ran 𝐺 ≠ {(0g𝐿)})
12389, 122eqnetrrd 3008 . . . . . . . . . . . 12 (𝜑 → ran 𝐽 ≠ {(0g𝐿)})
124 eqid 2731 . . . . . . . . . . . . 13 (oppr𝑃) = (oppr𝑃)
1259sdrgdrng 20553 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubDRing‘𝐸) → 𝐾 ∈ DivRing)
126 drngnzr 20524 . . . . . . . . . . . . . . 15 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
1271, 125, 1263syl 18 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ NzRing)
12821ply1nz 25888 . . . . . . . . . . . . . 14 (𝐾 ∈ NzRing → 𝑃 ∈ NzRing)
129127, 128syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ NzRing)
130 eqid 2731 . . . . . . . . . . . . . . . 16 {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}
131 eqid 2731 . . . . . . . . . . . . . . . 16 (RSpan‘𝑃) = (RSpan‘𝑃)
1329fveq2i 6894 . . . . . . . . . . . . . . . 16 (idlGen1p𝐾) = (idlGen1p‘(𝐸s 𝐹))
13320, 32, 6, 18, 1, 38, 35, 130, 131, 132ply1annig1p 33069 . . . . . . . . . . . . . . 15 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = ((RSpan‘𝑃)‘{((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})}))
134117sneqd 4640 . . . . . . . . . . . . . . . . . 18 (𝜑 → {(0g𝐸)} = {(0g𝐿)})
135134imaeq2d 6059 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 “ {(0g𝐸)}) = (𝐺 “ {(0g𝐿)}))
13625, 135eqtr4id 2790 . . . . . . . . . . . . . . . 16 (𝜑𝑍 = (𝐺 “ {(0g𝐸)}))
13722mpteq1i 5244 . . . . . . . . . . . . . . . . . 18 (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))
13823, 137eqtri 2759 . . . . . . . . . . . . . . . . 17 𝐺 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))
13920, 32, 6, 36, 4, 38, 35, 130, 138ply1annidllem 33066 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)} = (𝐺 “ {(0g𝐸)}))
140136, 139eqtr4d 2774 . . . . . . . . . . . . . . 15 (𝜑𝑍 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})
141 eqid 2731 . . . . . . . . . . . . . . . . . 18 (𝐸 minPoly 𝐹) = (𝐸 minPoly 𝐹)
14220, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141minplyval 33070 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) = ((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)}))
143142sneqd 4640 . . . . . . . . . . . . . . . 16 (𝜑 → {((𝐸 minPoly 𝐹)‘𝐴)} = {((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})})
144143fveq2d 6895 . . . . . . . . . . . . . . 15 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) = ((RSpan‘𝑃)‘{((idlGen1p𝐾)‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = (0g𝐸)})}))
145133, 140, 1443eqtr4d 2781 . . . . . . . . . . . . . 14 (𝜑𝑍 = ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}))
146 eqid 2731 . . . . . . . . . . . . . . . 16 (0g𝑃) = (0g𝑃)
147 eqid 2731 . . . . . . . . . . . . . . . . . 18 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
148147, 18, 1, 141, 19irngnminplynz 33075 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ≠ (0g‘(Poly1𝐸)))
149 eqid 2731 . . . . . . . . . . . . . . . . . 18 (Poly1𝐸) = (Poly1𝐸)
150149, 9, 21, 22, 4, 147ressply10g 32945 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g‘(Poly1𝐸)) = (0g𝑃))
151148, 150neeqtrd 3009 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ≠ (0g𝑃))
15220, 32, 6, 18, 1, 38, 141, 146, 151minplyirred 33074 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Irred‘𝑃))
153 eqid 2731 . . . . . . . . . . . . . . . 16 ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) = ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)})
154 fldsdrgfld 20561 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
15518, 1, 154syl2anc 583 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸s 𝐹) ∈ Field)
1569, 155eqeltrid 2836 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ Field)
15721ply1pid 25946 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Field → 𝑃 ∈ PID)
158156, 157syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ PID)
15920, 32, 6, 18, 1, 38, 35, 130, 131, 132, 141minplycl 33071 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Base‘𝑃))
160159, 22eleqtrrdi 2843 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 minPoly 𝐹)‘𝐴) ∈ 𝑈)
16195crngringd 20144 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
162160snssd 4812 . . . . . . . . . . . . . . . . 17 (𝜑 → {((𝐸 minPoly 𝐹)‘𝐴)} ⊆ 𝑈)
163 eqid 2731 . . . . . . . . . . . . . . . . . 18 (LIdeal‘𝑃) = (LIdeal‘𝑃)
164131, 22, 163rspcl 21000 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Ring ∧ {((𝐸 minPoly 𝐹)‘𝐴)} ⊆ 𝑈) → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (LIdeal‘𝑃))
165161, 162, 164syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (LIdeal‘𝑃))
16622, 131, 146, 153, 158, 160, 151, 165mxidlirred 32877 . . . . . . . . . . . . . . 15 (𝜑 → (((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (MaxIdeal‘𝑃) ↔ ((𝐸 minPoly 𝐹)‘𝐴) ∈ (Irred‘𝑃)))
167152, 166mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → ((RSpan‘𝑃)‘{((𝐸 minPoly 𝐹)‘𝐴)}) ∈ (MaxIdeal‘𝑃))
168145, 167eqeltrd 2832 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ (MaxIdeal‘𝑃))
169 eqid 2731 . . . . . . . . . . . . . . . 16 (MaxIdeal‘𝑃) = (MaxIdeal‘𝑃)
170169, 124crngmxidl 32874 . . . . . . . . . . . . . . 15 (𝑃 ∈ CRing → (MaxIdeal‘𝑃) = (MaxIdeal‘(oppr𝑃)))
17195, 170syl 17 . . . . . . . . . . . . . 14 (𝜑 → (MaxIdeal‘𝑃) = (MaxIdeal‘(oppr𝑃)))
172168, 171eleqtrd 2834 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ (MaxIdeal‘(oppr𝑃)))
173124, 26, 129, 168, 172qsdrngi 32898 . . . . . . . . . . . 12 (𝜑𝑄 ∈ DivRing)
17491, 54, 96, 123, 173rndrhmcl 32681 . . . . . . . . . . 11 (𝜑 → (𝐿s ran 𝐽) ∈ DivRing)
17590, 174eqeltrd 2832 . . . . . . . . . 10 (𝜑 → (𝐿s ran 𝐺) ∈ DivRing)
17653, 175eqeltrrd 2833 . . . . . . . . 9 (𝜑 → (𝐸s ran 𝐺) ∈ DivRing)
177 issdrg 20551 . . . . . . . . 9 (ran 𝐺 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ ran 𝐺 ∈ (SubRing‘𝐸) ∧ (𝐸s ran 𝐺) ∈ DivRing))
17845, 48, 176, 177syl3anbrc 1342 . . . . . . . 8 (𝜑 → ran 𝐺 ∈ (SubDRing‘𝐸))
179 fveq2 6891 . . . . . . . . . . . . . 14 (𝑝 = (var1𝐾) → (𝑂𝑝) = (𝑂‘(var1𝐾)))
180179fveq1d 6893 . . . . . . . . . . . . 13 (𝑝 = (var1𝐾) → ((𝑂𝑝)‘𝐴) = ((𝑂‘(var1𝐾))‘𝐴))
181180eqeq2d 2742 . . . . . . . . . . . 12 (𝑝 = (var1𝐾) → (𝐴 = ((𝑂𝑝)‘𝐴) ↔ 𝐴 = ((𝑂‘(var1𝐾))‘𝐴)))
1829, 71eqeltrid 2836 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ DivRing)
183182drngringd 20512 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
184 eqid 2731 . . . . . . . . . . . . . 14 (var1𝐾) = (var1𝐾)
185184, 21, 22vr1cl 21973 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (var1𝐾) ∈ 𝑈)
186183, 185syl 17 . . . . . . . . . . . 12 (𝜑 → (var1𝐾) ∈ 𝑈)
18720, 184, 9, 6, 36, 4evls1var 22090 . . . . . . . . . . . . . 14 (𝜑 → (𝑂‘(var1𝐾)) = ( I ↾ (Base‘𝐸)))
188187fveq1d 6893 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(var1𝐾))‘𝐴) = (( I ↾ (Base‘𝐸))‘𝐴))
189 fvresi 7173 . . . . . . . . . . . . . 14 (𝐴 ∈ (Base‘𝐸) → (( I ↾ (Base‘𝐸))‘𝐴) = 𝐴)
19038, 189syl 17 . . . . . . . . . . . . 13 (𝜑 → (( I ↾ (Base‘𝐸))‘𝐴) = 𝐴)
191188, 190eqtr2d 2772 . . . . . . . . . . . 12 (𝜑𝐴 = ((𝑂‘(var1𝐾))‘𝐴))
192181, 186, 191rspcedvdw 3615 . . . . . . . . . . 11 (𝜑 → ∃𝑝𝑈 𝐴 = ((𝑂𝑝)‘𝐴))
19323, 192, 19elrnmptd 5960 . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐺)
194193snssd 4812 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ ran 𝐺)
19597, 194unssd 4186 . . . . . . . 8 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ ran 𝐺)
1966, 45, 178, 195fldgenssp 32693 . . . . . . 7 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ ran 𝐺)
19744, 196eqssd 3999 . . . . . 6 (𝜑 → ran 𝐺 = (𝐸 fldGen (𝐹 ∪ {𝐴})))
19815, 6ressbas2 17189 . . . . . . 7 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿))
199115, 198syl 17 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿))
200 eqidd 2732 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = ((subringAlg ‘𝐿)‘𝐹))
2016, 45, 56fldgenssid 32688 . . . . . . . . 9 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
202201unssad 4187 . . . . . . . 8 (𝜑𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
203202, 199sseqtrd 4022 . . . . . . 7 (𝜑𝐹 ⊆ (Base‘𝐿))
204200, 203srabase 20941 . . . . . 6 (𝜑 → (Base‘𝐿) = (Base‘((subringAlg ‘𝐿)‘𝐹)))
205197, 199, 2043eqtrd 2775 . . . . 5 (𝜑 → ran 𝐺 = (Base‘((subringAlg ‘𝐿)‘𝐹)))
206 imaeq2 6055 . . . . . . 7 (𝑞 = 𝑝 → (𝐺𝑞) = (𝐺𝑝))
207206unieqd 4922 . . . . . 6 (𝑞 = 𝑝 (𝐺𝑞) = (𝐺𝑝))
208207cbvmptv 5261 . . . . 5 (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)) = (𝑝 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑝))
20914, 28, 29, 30, 205, 208lmhmqusker 32823 . . . 4 (𝜑 → (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)) ∈ ((𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) LMIso ((subringAlg ‘𝐿)‘𝐹)))
210 eqidd 2732 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐿) = (0g𝐿))
211200, 210, 203sralmod0 20959 . . . . . . . . . . . . 13 (𝜑 → (0g𝐿) = (0g‘((subringAlg ‘𝐿)‘𝐹)))
212211sneqd 4640 . . . . . . . . . . . 12 (𝜑 → {(0g𝐿)} = {(0g‘((subringAlg ‘𝐿)‘𝐹))})
213212imaeq2d 6059 . . . . . . . . . . 11 (𝜑 → (𝐺 “ {(0g𝐿)}) = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))
21425, 213eqtrid 2783 . . . . . . . . . 10 (𝜑𝑍 = (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))
215214oveq2d 7428 . . . . . . . . 9 (𝜑 → (𝑃 ~QG 𝑍) = (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))
216215oveq2d 7428 . . . . . . . 8 (𝜑 → (𝑃 /s (𝑃 ~QG 𝑍)) = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))))
21726, 216eqtrid 2783 . . . . . . 7 (𝜑𝑄 = (𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))))
218217fveq2d 6895 . . . . . 6 (𝜑 → (Base‘𝑄) = (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))))
219218mpteq1d 5243 . . . . 5 (𝜑 → (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝)) = (𝑝 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑝)))
220219, 27, 2083eqtr4g 2796 . . . 4 (𝜑𝐽 = (𝑞 ∈ (Base‘(𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})))) ↦ (𝐺𝑞)))
221217oveq1d 7427 . . . 4 (𝜑 → (𝑄 LMIso ((subringAlg ‘𝐿)‘𝐹)) = ((𝑃 /s (𝑃 ~QG (𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}))) LMIso ((subringAlg ‘𝐿)‘𝐹)))
222209, 220, 2213eltr4d 2847 . . 3 (𝜑𝐽 ∈ (𝑄 LMIso ((subringAlg ‘𝐿)‘𝐹)))
2239, 15, 16, 17, 18, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27algextdeglem3 33079 . . 3 (𝜑𝑄 ∈ LVec)
224222, 223lmimdim 32991 . 2 (𝜑 → (dim‘𝑄) = (dim‘((subringAlg ‘𝐿)‘𝐹)))
2256, 18, 56fldgenfld 32695 . . . . 5 (𝜑 → (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ Field)
22615, 225eqeltrid 2836 . . . 4 (𝜑𝐿 ∈ Field)
2279, 15, 16, 17, 18, 1, 19algextdeglem1 33077 . . . . 5 (𝜑 → (𝐿s 𝐹) = 𝐾)
22811oveq2d 7428 . . . . 5 (𝜑 → (𝐿s 𝐹) = (𝐿s (Base‘𝐾)))
229227, 228eqtr3d 2773 . . . 4 (𝜑𝐾 = (𝐿s (Base‘𝐾)))
23015subsubrg 20492 . . . . . . 7 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐹 ∈ (SubRing‘𝐿) ↔ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))))
231230biimpar 477 . . . . . 6 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))) → 𝐹 ∈ (SubRing‘𝐿))
23260, 4, 202, 231syl12anc 834 . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝐿))
23311, 232eqeltrrd 2833 . . . 4 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐿))
234 brfldext 33029 . . . . 5 ((𝐿 ∈ Field ∧ 𝐾 ∈ Field) → (𝐿/FldExt𝐾 ↔ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))))
235234biimpar 477 . . . 4 (((𝐿 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))) → 𝐿/FldExt𝐾)
236226, 156, 229, 233, 235syl22anc 836 . . 3 (𝜑𝐿/FldExt𝐾)
237 extdgval 33036 . . 3 (𝐿/FldExt𝐾 → (𝐿[:]𝐾) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
238236, 237syl 17 . 2 (𝜑 → (𝐿[:]𝐾) = (dim‘((subringAlg ‘𝐿)‘(Base‘𝐾))))
23913, 224, 2383eqtr4d 2781 1 (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  {crab 3431  Vcvv 3473  cun 3946  wss 3948  {csn 4628   cuni 4908   class class class wbr 5148  cmpt 5231   I cid 5573  ccnv 5675  dom cdm 5676  ran crn 5677  cres 5678  cima 5679  ccom 5680  cfv 6543  (class class class)co 7412  [cec 8707   / cqs 8708  Basecbs 17151  s cress 17180  0gc0g 17392   /s cqus 17458  Mndcmnd 18662  SubGrpcsubg 19040  NrmSGrpcnsg 19041   ~QG cqg 19042   GrpHom cghm 19131  1rcur 20079  Ringcrg 20131  CRingccrg 20132  opprcoppr 20228  Irredcir 20251   RingHom crh 20364  NzRingcnzr 20407  SubRingcsubrg 20461  DivRingcdr 20504  Fieldcfield 20505  SubDRingcsdrg 20549   LMHom clmhm 20778   LMIso clmim 20779  LVecclvec 20861  subringAlg csra 20930  LIdealclidl 20932  RSpancrsp 20933  PIDcpid 21102  var1cv1 21932  Poly1cpl1 21933   evalSub1 ces1 22065   deg1 cdg1 25818  idlGen1pcig1p 25896   fldGen cfldgen 32685  MaxIdealcmxidl 32864  dimcldim 32986  /FldExtcfldext 33020  [:]cextdg 33023   IntgRing cirng 33051   minPoly cminply 33060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-reg 9593  ax-inf2 9642  ax-ac2 10464  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-rpss 7717  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-er 8709  df-ec 8711  df-qs 8715  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-inf 9444  df-oi 9511  df-r1 9765  df-rank 9766  df-dju 9902  df-card 9940  df-acn 9943  df-ac 10117  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-xnn0 12552  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ocomp 17225  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-imas 17461  df-qus 17462  df-mre 17537  df-mrc 17538  df-mri 17539  df-acs 17540  df-proset 18255  df-drs 18256  df-poset 18273  df-ipo 18488  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-submnd 18709  df-grp 18861  df-minusg 18862  df-sbg 18863  df-mulg 18991  df-subg 19043  df-nsg 19044  df-eqg 19045  df-ghm 19132  df-gim 19177  df-cntz 19226  df-oppg 19255  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-srg 20085  df-ring 20133  df-cring 20134  df-oppr 20229  df-dvdsr 20252  df-unit 20253  df-irred 20254  df-invr 20283  df-dvr 20296  df-rhm 20367  df-nzr 20408  df-subrng 20438  df-subrg 20463  df-drng 20506  df-field 20507  df-sdrg 20550  df-lmod 20620  df-lss 20691  df-lsp 20731  df-lmhm 20781  df-lmim 20782  df-lbs 20834  df-lvec 20862  df-sra 20934  df-rgmod 20935  df-lidl 20936  df-rsp 20937  df-2idl 21010  df-lpidl 21085  df-lpir 21086  df-rlreg 21103  df-domn 21104  df-idom 21105  df-pid 21106  df-cnfld 21149  df-dsmm 21510  df-frlm 21525  df-uvc 21561  df-lindf 21584  df-linds 21585  df-assa 21631  df-asp 21632  df-ascl 21633  df-psr 21685  df-mvr 21686  df-mpl 21687  df-opsr 21689  df-evls 21859  df-evl 21860  df-psr1 21936  df-vr1 21937  df-ply1 21938  df-coe1 21939  df-evls1 22067  df-evl1 22068  df-mdeg 25819  df-deg1 25820  df-mon1 25897  df-uc1p 25898  df-q1p 25899  df-r1p 25900  df-ig1p 25901  df-fldgen 32686  df-mxidl 32865  df-dim 32987  df-fldext 33024  df-extdg 33025  df-irng 33052  df-minply 33061
This theorem is referenced by:  algextdeg  33085
  Copyright terms: Public domain W3C validator