Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5lem2 Structured version   Visualization version   GIF version

Theorem aks6d1c5lem2 42095
Description: Lemma for Claim 5, contradiction of different evaluations that map to the same. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c5p2.1 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
aks6d1c5p2.2 (𝜑𝑍 ∈ (ℕ0m (0...𝐴)))
aks6d1c5p2.3 (𝜑 → (𝐺𝑌) = (𝐺𝑍))
aks6d1c5p2.4 (𝜑𝑊 ∈ (0...𝐴))
aks6d1c5p2.5 (𝜑 → (𝑌𝑊) < (𝑍𝑊))
Assertion
Ref Expression
aks6d1c5lem2 (𝜑 → (0g𝐾) ≠ (0g𝐾))
Distinct variable groups:   ,𝑔,𝑖   𝐴,𝑔,𝑖   𝑔,𝐾,𝑖   𝑖,𝑊   𝑔,𝑋,𝑖   𝑔,𝑌,𝑖   𝑔,𝑍,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝑃(𝑔,𝑖)   𝐺(𝑔,𝑖)   𝑊(𝑔)

Proof of Theorem aks6d1c5lem2
StepHypRef Expression
1 eqid 2740 . . . . . 6 (eval1𝐾) = (eval1𝐾)
2 eqid 2740 . . . . . 6 (Poly1𝐾) = (Poly1𝐾)
3 eqid 2740 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 eqid 2740 . . . . . 6 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
5 aks6d1p5.1 . . . . . . 7 (𝜑𝐾 ∈ Field)
6 isfld 20762 . . . . . . . 8 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
76simprbi 496 . . . . . . 7 (𝐾 ∈ Field → 𝐾 ∈ CRing)
85, 7syl 17 . . . . . 6 (𝜑𝐾 ∈ CRing)
98crngringd 20273 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
10 eqid 2740 . . . . . . . . . 10 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
1110zrhrhm 21545 . . . . . . . . 9 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
129, 11syl 17 . . . . . . . 8 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
13 zringbas 21487 . . . . . . . . 9 ℤ = (Base‘ℤring)
1413, 3rhmf 20511 . . . . . . . 8 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
1512, 14syl 17 . . . . . . 7 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
16 0zd 12651 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
17 aks6d1c5p2.4 . . . . . . . . 9 (𝜑𝑊 ∈ (0...𝐴))
1817elfzelzd 13585 . . . . . . . 8 (𝜑𝑊 ∈ ℤ)
1916, 18zsubcld 12752 . . . . . . 7 (𝜑 → (0 − 𝑊) ∈ ℤ)
2015, 19ffvelcdmd 7119 . . . . . 6 (𝜑 → ((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘𝐾))
21 eqid 2740 . . . . . . . . 9 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
2221, 4mgpbas 20167 . . . . . . . 8 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
23 aks6d1c5.7 . . . . . . . 8 = (.g‘(mulGrp‘(Poly1𝐾)))
242ply1crng 22221 . . . . . . . . . . 11 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
258, 24syl 17 . . . . . . . . . 10 (𝜑 → (Poly1𝐾) ∈ CRing)
2621crngmgp 20268 . . . . . . . . . 10 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
2725, 26syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
2827cmnmndd 19846 . . . . . . . 8 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
29 aks6d1c5p2.1 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
30 nn0ex 12559 . . . . . . . . . . . . . . . 16 0 ∈ V
3130a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℕ0 ∈ V)
32 ovexd 7483 . . . . . . . . . . . . . . 15 (𝜑 → (0...𝐴) ∈ V)
33 elmapg 8897 . . . . . . . . . . . . . . 15 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
3431, 32, 33syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
3529, 34mpbid 232 . . . . . . . . . . . . 13 (𝜑𝑌:(0...𝐴)⟶ℕ0)
3635, 17ffvelcdmd 7119 . . . . . . . . . . . 12 (𝜑 → (𝑌𝑊) ∈ ℕ0)
3736nn0zd 12665 . . . . . . . . . . 11 (𝜑 → (𝑌𝑊) ∈ ℤ)
3837, 37zsubcld 12752 . . . . . . . . . 10 (𝜑 → ((𝑌𝑊) − (𝑌𝑊)) ∈ ℤ)
39 0red 11293 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
4039leidd 11856 . . . . . . . . . . 11 (𝜑 → 0 ≤ 0)
4136nn0red 12614 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑊) ∈ ℝ)
4241recnd 11318 . . . . . . . . . . . . 13 (𝜑 → (𝑌𝑊) ∈ ℂ)
4342subidd 11635 . . . . . . . . . . . 12 (𝜑 → ((𝑌𝑊) − (𝑌𝑊)) = 0)
4443eqcomd 2746 . . . . . . . . . . 11 (𝜑 → 0 = ((𝑌𝑊) − (𝑌𝑊)))
4540, 44breqtrd 5192 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝑌𝑊) − (𝑌𝑊)))
4638, 45jca 511 . . . . . . . . 9 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − (𝑌𝑊))))
47 elnn0z 12652 . . . . . . . . 9 (((𝑌𝑊) − (𝑌𝑊)) ∈ ℕ0 ↔ (((𝑌𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − (𝑌𝑊))))
4846, 47sylibr 234 . . . . . . . 8 (𝜑 → ((𝑌𝑊) − (𝑌𝑊)) ∈ ℕ0)
49 aks6d1c5.6 . . . . . . . . . . 11 𝑋 = (var1𝐾)
501, 49, 3, 2, 4, 8, 20evl1vard 22362 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘𝑋)‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((ℤRHom‘𝐾)‘(0 − 𝑊))))
51 eqid 2740 . . . . . . . . . . 11 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
5215, 18ffvelcdmd 7119 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝐾)‘𝑊) ∈ (Base‘𝐾))
531, 2, 3, 51, 4, 8, 52, 20evl1scad 22360 . . . . . . . . . 10 (𝜑 → (((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((ℤRHom‘𝐾)‘𝑊)))
54 eqid 2740 . . . . . . . . . 10 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
55 eqid 2740 . . . . . . . . . 10 (+g𝐾) = (+g𝐾)
561, 2, 3, 4, 8, 20, 50, 53, 54, 55evl1addd 22366 . . . . . . . . 9 (𝜑 → ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))))
5756simpld 494 . . . . . . . 8 (𝜑 → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)))
5822, 23, 28, 48, 57mulgnn0cld 19135 . . . . . . 7 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
5943oveq1d 7463 . . . . . . . . . . 11 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0 (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))
60 eqid 2740 . . . . . . . . . . . . 13 (0g‘(mulGrp‘(Poly1𝐾))) = (0g‘(mulGrp‘(Poly1𝐾)))
6122, 60, 23mulg0 19114 . . . . . . . . . . . 12 ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)) → (0 (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0g‘(mulGrp‘(Poly1𝐾))))
6257, 61syl 17 . . . . . . . . . . 11 (𝜑 → (0 (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0g‘(mulGrp‘(Poly1𝐾))))
6359, 62eqtrd 2780 . . . . . . . . . 10 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0g‘(mulGrp‘(Poly1𝐾))))
6463fveq2d 6924 . . . . . . . . 9 (𝜑 → ((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾)))))
6564fveq1d 6922 . . . . . . . 8 (𝜑 → (((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
66 eqid 2740 . . . . . . . . . . . . . 14 (1r‘(Poly1𝐾)) = (1r‘(Poly1𝐾))
6721, 66ringidval 20210 . . . . . . . . . . . . 13 (1r‘(Poly1𝐾)) = (0g‘(mulGrp‘(Poly1𝐾)))
6867eqcomi 2749 . . . . . . . . . . . 12 (0g‘(mulGrp‘(Poly1𝐾))) = (1r‘(Poly1𝐾))
6968a1i 11 . . . . . . . . . . 11 (𝜑 → (0g‘(mulGrp‘(Poly1𝐾))) = (1r‘(Poly1𝐾)))
7069fveq2d 6924 . . . . . . . . . 10 (𝜑 → ((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾)))) = ((eval1𝐾)‘(1r‘(Poly1𝐾))))
7170fveq1d 6922 . . . . . . . . 9 (𝜑 → (((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(1r‘(Poly1𝐾)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
722, 49, 21, 23ply1idvr1 22319 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (0 𝑋) = (1r‘(Poly1𝐾)))
7372eqcomd 2746 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (1r‘(Poly1𝐾)) = (0 𝑋))
749, 73syl 17 . . . . . . . . . . . 12 (𝜑 → (1r‘(Poly1𝐾)) = (0 𝑋))
7574fveq2d 6924 . . . . . . . . . . 11 (𝜑 → ((eval1𝐾)‘(1r‘(Poly1𝐾))) = ((eval1𝐾)‘(0 𝑋)))
7675fveq1d 6922 . . . . . . . . . 10 (𝜑 → (((eval1𝐾)‘(1r‘(Poly1𝐾)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
77 eqid 2740 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
7844, 48eqeltrd 2844 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℕ0)
791, 2, 3, 4, 8, 20, 50, 23, 77, 78evl1expd 22370 . . . . . . . . . . . 12 (𝜑 → ((0 𝑋) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊)))))
8079simprd 495 . . . . . . . . . . 11 (𝜑 → (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))))
81 eqid 2740 . . . . . . . . . . . . . . . 16 (mulGrp‘𝐾) = (mulGrp‘𝐾)
8281, 3mgpbas 20167 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
8382a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
8420, 83eleqtrd 2846 . . . . . . . . . . . . 13 (𝜑 → ((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘(mulGrp‘𝐾)))
85 eqid 2740 . . . . . . . . . . . . . 14 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
86 eqid 2740 . . . . . . . . . . . . . 14 (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐾))
8785, 86, 77mulg0 19114 . . . . . . . . . . . . 13 (((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘(mulGrp‘𝐾)) → (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g‘(mulGrp‘𝐾)))
8884, 87syl 17 . . . . . . . . . . . 12 (𝜑 → (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g‘(mulGrp‘𝐾)))
89 eqid 2740 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
9081, 89ringidval 20210 . . . . . . . . . . . . . 14 (1r𝐾) = (0g‘(mulGrp‘𝐾))
9190eqcomi 2749 . . . . . . . . . . . . 13 (0g‘(mulGrp‘𝐾)) = (1r𝐾)
9291a1i 11 . . . . . . . . . . . 12 (𝜑 → (0g‘(mulGrp‘𝐾)) = (1r𝐾))
9388, 92eqtrd 2780 . . . . . . . . . . 11 (𝜑 → (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9480, 93eqtrd 2780 . . . . . . . . . 10 (𝜑 → (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9576, 94eqtrd 2780 . . . . . . . . 9 (𝜑 → (((eval1𝐾)‘(1r‘(Poly1𝐾)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9671, 95eqtrd 2780 . . . . . . . 8 (𝜑 → (((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9765, 96eqtrd 2780 . . . . . . 7 (𝜑 → (((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9858, 97jca 511 . . . . . 6 (𝜑 → ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾)))
99 fzfid 14024 . . . . . . . . 9 (𝜑 → (0...𝐴) ∈ Fin)
100 diffi 9242 . . . . . . . . 9 ((0...𝐴) ∈ Fin → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
10199, 100syl 17 . . . . . . . 8 (𝜑 → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
10228adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
10335adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑌:(0...𝐴)⟶ℕ0)
104 eldifi 4154 . . . . . . . . . . . 12 (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) → 𝑖 ∈ (0...𝐴))
105104adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ (0...𝐴))
106103, 105ffvelcdmd 7119 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑌𝑖) ∈ ℕ0)
10725crngringd 20273 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Ring)
108 ringcmn 20305 . . . . . . . . . . . . . 14 ((Poly1𝐾) ∈ Ring → (Poly1𝐾) ∈ CMnd)
109107, 108syl 17 . . . . . . . . . . . . 13 (𝜑 → (Poly1𝐾) ∈ CMnd)
110 cmnmnd 19839 . . . . . . . . . . . . 13 ((Poly1𝐾) ∈ CMnd → (Poly1𝐾) ∈ Mnd)
111109, 110syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Mnd)
112111adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Poly1𝐾) ∈ Mnd)
11350simpld 494 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (Base‘(Poly1𝐾)))
114113adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑋 ∈ (Base‘(Poly1𝐾)))
1159adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ Ring)
116115, 11, 143syl 18 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
117105elfzelzd 13585 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ ℤ)
118116, 117ffvelcdmd 7119 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
1192, 51, 3, 4ply1sclcl 22310 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
120115, 118, 119syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
1214, 54mndcl 18780 . . . . . . . . . . 11 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
122112, 114, 120, 121syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
12322, 23, 102, 106, 122mulgnn0cld 19135 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
124123ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
12522, 27, 101, 124gsummptcl 20009 . . . . . . 7 (𝜑 → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
126124r19.21bi 3257 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
127126ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
1281, 2, 21, 3, 4, 81, 8, 20, 127, 101evl1gprodd 42074 . . . . . . 7 (𝜑 → (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))
129125, 128jca 511 . . . . . 6 (𝜑 → (((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))))
130 eqid 2740 . . . . . . . 8 (.r‘(Poly1𝐾)) = (.r‘(Poly1𝐾))
13121, 130mgpplusg 20165 . . . . . . 7 (.r‘(Poly1𝐾)) = (+g‘(mulGrp‘(Poly1𝐾)))
132131eqcomi 2749 . . . . . 6 (+g‘(mulGrp‘(Poly1𝐾))) = (.r‘(Poly1𝐾))
133 eqid 2740 . . . . . 6 (.r𝐾) = (.r𝐾)
1341, 2, 3, 4, 8, 20, 98, 129, 132, 133evl1muld 22368 . . . . 5 (𝜑 → (((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))))
135134simprd 495 . . . 4 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))))
136 fldidom 20793 . . . . . . . 8 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
1375, 136syl 17 . . . . . . 7 (𝜑𝐾 ∈ IDomn)
138 isidom 20747 . . . . . . 7 (𝐾 ∈ IDomn ↔ (𝐾 ∈ CRing ∧ 𝐾 ∈ Domn))
139137, 138sylib 218 . . . . . 6 (𝜑 → (𝐾 ∈ CRing ∧ 𝐾 ∈ Domn))
140139simprd 495 . . . . 5 (𝜑𝐾 ∈ Domn)
14190a1i 11 . . . . . . 7 (𝜑 → (1r𝐾) = (0g‘(mulGrp‘𝐾)))
14281ringmgp 20266 . . . . . . . . 9 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
1439, 142syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
14482, 86mndidcl 18787 . . . . . . . 8 ((mulGrp‘𝐾) ∈ Mnd → (0g‘(mulGrp‘𝐾)) ∈ (Base‘𝐾))
145143, 144syl 17 . . . . . . 7 (𝜑 → (0g‘(mulGrp‘𝐾)) ∈ (Base‘𝐾))
146141, 145eqeltrd 2844 . . . . . 6 (𝜑 → (1r𝐾) ∈ (Base‘𝐾))
1475flddrngd 20763 . . . . . . 7 (𝜑𝐾 ∈ DivRing)
148 eqid 2740 . . . . . . . 8 (0g𝐾) = (0g𝐾)
149148, 89drngunz 20769 . . . . . . 7 (𝐾 ∈ DivRing → (1r𝐾) ≠ (0g𝐾))
150147, 149syl 17 . . . . . 6 (𝜑 → (1r𝐾) ≠ (0g𝐾))
151146, 150jca 511 . . . . 5 (𝜑 → ((1r𝐾) ∈ (Base‘𝐾) ∧ (1r𝐾) ≠ (0g𝐾)))
15281crngmgp 20268 . . . . . . . 8 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
1538, 152syl 17 . . . . . . 7 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
1548adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ CRing)
15520adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘𝐾))
1561, 2, 3, 4, 154, 155, 123fveval1fvcl 22358 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
157156ralrimiva 3152 . . . . . . 7 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})(((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
15882, 153, 101, 157gsummptcl 20009 . . . . . 6 (𝜑 → ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ∈ (Base‘𝐾))
15922a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾))))
160122, 159eleqtrd 2846 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
16122eqcomi 2749 . . . . . . . . . . . . 13 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
162161a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾)))
163160, 162eleqtrd 2846 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
164 eqidd 2741 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
165163, 164jca 511 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
1661, 2, 3, 4, 154, 155, 165, 23, 77, 106evl1expd 22370 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((𝑌𝑖)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))
167166simprd 495 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((𝑌𝑖)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
168137adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ IDomn)
1691, 2, 3, 4, 154, 155, 163fveval1fvcl 22358 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
170 eldifsni 4815 . . . . . . . . . . 11 (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) → 𝑖𝑊)
171170adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖𝑊)
1725adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ Field)
173 aks6d1p5.2 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
174173adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑃 ∈ ℙ)
175 aks6d1c5.3 . . . . . . . . . . . 12 𝑃 = (chr‘𝐾)
176 aks6d1c5.4 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℕ0)
177176adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐴 ∈ ℕ0)
178 aks6d1c5.5 . . . . . . . . . . . . 13 (𝜑𝐴 < 𝑃)
179178adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐴 < 𝑃)
180 aks6d1c5.8 . . . . . . . . . . . 12 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
18117adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑊 ∈ (0...𝐴))
182172, 174, 175, 177, 179, 49, 23, 180, 105, 181aks6d1c5lem1 42093 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑖 = 𝑊 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾)))
183182necon3bid 2991 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑖𝑊 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾)))
184171, 183mpbid 232 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾))
185168, 169, 184, 106, 77idomnnzpownz 42089 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))) ≠ (0g𝐾))
186167, 185eqnetrd 3014 . . . . . . 7 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾))
18781, 137, 101, 156, 186idomnnzgmulnz 42090 . . . . . 6 (𝜑 → ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ≠ (0g𝐾))
188158, 187jca 511 . . . . 5 (𝜑 → (((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ∈ (Base‘𝐾) ∧ ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ≠ (0g𝐾)))
1893, 133, 148domnmuln0 20731 . . . . 5 ((𝐾 ∈ Domn ∧ ((1r𝐾) ∈ (Base‘𝐾) ∧ (1r𝐾) ≠ (0g𝐾)) ∧ (((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ∈ (Base‘𝐾) ∧ ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ≠ (0g𝐾))) → ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))) ≠ (0g𝐾))
190140, 151, 188, 189syl3anc 1371 . . . 4 (𝜑 → ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))) ≠ (0g𝐾))
191135, 190eqnetrd 3014 . . 3 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾))
192191necomd 3002 . 2 (𝜑 → (0g𝐾) ≠ (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
19341leidd 11856 . . . . . . . 8 (𝜑 → (𝑌𝑊) ≤ (𝑌𝑊))
194 eqid 2740 . . . . . . . 8 (quot1p𝐾) = (quot1p𝐾)
1955, 173, 175, 176, 178, 49, 23, 180, 29, 17, 36, 193, 194, 51, 21aks6d1c5lem3 42094 . . . . . . 7 (𝜑 → ((𝐺𝑌)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
196195eqcomd 2746 . . . . . 6 (𝜑 → ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = ((𝐺𝑌)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))))
197 aks6d1c5p2.3 . . . . . . 7 (𝜑 → (𝐺𝑌) = (𝐺𝑍))
198197oveq1d 7463 . . . . . 6 (𝜑 → ((𝐺𝑌)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝐺𝑍)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))))
199 aks6d1c5p2.2 . . . . . . 7 (𝜑𝑍 ∈ (ℕ0m (0...𝐴)))
200 elmapg 8897 . . . . . . . . . . . 12 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑍 ∈ (ℕ0m (0...𝐴)) ↔ 𝑍:(0...𝐴)⟶ℕ0))
20131, 32, 200syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ (ℕ0m (0...𝐴)) ↔ 𝑍:(0...𝐴)⟶ℕ0))
202199, 201mpbid 232 . . . . . . . . . 10 (𝜑𝑍:(0...𝐴)⟶ℕ0)
203202, 17ffvelcdmd 7119 . . . . . . . . 9 (𝜑 → (𝑍𝑊) ∈ ℕ0)
204203nn0red 12614 . . . . . . . 8 (𝜑 → (𝑍𝑊) ∈ ℝ)
205 aks6d1c5p2.5 . . . . . . . 8 (𝜑 → (𝑌𝑊) < (𝑍𝑊))
20641, 204, 205ltled 11438 . . . . . . 7 (𝜑 → (𝑌𝑊) ≤ (𝑍𝑊))
2075, 173, 175, 176, 178, 49, 23, 180, 199, 17, 36, 206, 194, 51, 21aks6d1c5lem3 42094 . . . . . 6 (𝜑 → ((𝐺𝑍)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
208196, 198, 2073eqtrd 2784 . . . . 5 (𝜑 → ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
209208fveq2d 6924 . . . 4 (𝜑 → ((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))) = ((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))))
210209fveq1d 6922 . . 3 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
211203nn0zd 12665 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑊) ∈ ℤ)
212211, 37zsubcld 12752 . . . . . . . . . . 11 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ)
213204, 41resubcld 11718 . . . . . . . . . . . 12 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℝ)
21441, 204posdifd 11877 . . . . . . . . . . . . 13 (𝜑 → ((𝑌𝑊) < (𝑍𝑊) ↔ 0 < ((𝑍𝑊) − (𝑌𝑊))))
215205, 214mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 < ((𝑍𝑊) − (𝑌𝑊)))
21639, 213, 215ltled 11438 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((𝑍𝑊) − (𝑌𝑊)))
217212, 216jca 511 . . . . . . . . . 10 (𝜑 → (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑍𝑊) − (𝑌𝑊))))
218 elnn0z 12652 . . . . . . . . . 10 (((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ0 ↔ (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑍𝑊) − (𝑌𝑊))))
219217, 218sylibr 234 . . . . . . . . 9 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ0)
2201, 2, 3, 4, 8, 20, 56, 23, 77, 219evl1expd 22370 . . . . . . . 8 (𝜑 → ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)))))
221220simpld 494 . . . . . . 7 (𝜑 → (((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
222220simprd 495 . . . . . . . 8 (𝜑 → (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))))
223 rhmghm 20510 . . . . . . . . . . . . 13 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
22412, 223syl 17 . . . . . . . . . . . 12 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
22519, 13eleqtrdi 2854 . . . . . . . . . . . 12 (𝜑 → (0 − 𝑊) ∈ (Base‘ℤring))
22618, 13eleqtrdi 2854 . . . . . . . . . . . 12 (𝜑𝑊 ∈ (Base‘ℤring))
227 eqid 2740 . . . . . . . . . . . . 13 (Base‘ℤring) = (Base‘ℤring)
228 eqid 2740 . . . . . . . . . . . . 13 (+g‘ℤring) = (+g‘ℤring)
229227, 228, 55ghmlin 19261 . . . . . . . . . . . 12 (((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) ∧ (0 − 𝑊) ∈ (Base‘ℤring) ∧ 𝑊 ∈ (Base‘ℤring)) → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)))
230224, 225, 226, 229syl3anc 1371 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)))
231 zringplusg 21488 . . . . . . . . . . . . . . . . 17 + = (+g‘ℤring)
232231eqcomi 2749 . . . . . . . . . . . . . . . 16 (+g‘ℤring) = +
233232a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (+g‘ℤring) = + )
234233oveqd 7465 . . . . . . . . . . . . . 14 (𝜑 → ((0 − 𝑊)(+g‘ℤring)𝑊) = ((0 − 𝑊) + 𝑊))
235234fveq2d 6924 . . . . . . . . . . . . 13 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = ((ℤRHom‘𝐾)‘((0 − 𝑊) + 𝑊)))
236 0cnd 11283 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℂ)
23718zcnd 12748 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ ℂ)
238236, 237npcand 11651 . . . . . . . . . . . . . 14 (𝜑 → ((0 − 𝑊) + 𝑊) = 0)
239238fveq2d 6924 . . . . . . . . . . . . 13 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊) + 𝑊)) = ((ℤRHom‘𝐾)‘0))
240235, 239eqtrd 2780 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = ((ℤRHom‘𝐾)‘0))
24110, 148zrh0 21547 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
2429, 241syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
243240, 242eqtrd 2780 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = (0g𝐾))
244230, 243eqtr3d 2782 . . . . . . . . . 10 (𝜑 → (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)) = (0g𝐾))
245244oveq2d 7464 . . . . . . . . 9 (𝜑 → (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))) = (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(0g𝐾)))
246219nn0zd 12665 . . . . . . . . . . . 12 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ)
247246, 215jca 511 . . . . . . . . . . 11 (𝜑 → (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 < ((𝑍𝑊) − (𝑌𝑊))))
248 elnnz 12649 . . . . . . . . . . 11 (((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ ↔ (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 < ((𝑍𝑊) − (𝑌𝑊))))
249247, 248sylibr 234 . . . . . . . . . 10 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ)
2509, 249, 77ringexp0nn 42091 . . . . . . . . 9 (𝜑 → (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(0g𝐾)) = (0g𝐾))
251245, 250eqtrd 2780 . . . . . . . 8 (𝜑 → (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))) = (0g𝐾))
252222, 251eqtrd 2780 . . . . . . 7 (𝜑 → (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾))
253221, 252jca 511 . . . . . 6 (𝜑 → ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾)))
254 eqid 2740 . . . . . . . . . . 11 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
255202adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑍:(0...𝐴)⟶ℕ0)
256255, 105ffvelcdmd 7119 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑍𝑖) ∈ ℕ0)
257254, 23, 102, 256, 160mulgnn0cld 19135 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
258257, 162eleqtrd 2846 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
259258ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
26022, 27, 101, 259gsummptcl 20009 . . . . . . 7 (𝜑 → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
261 eqidd 2741 . . . . . . 7 (𝜑 → (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
262260, 261jca 511 . . . . . 6 (𝜑 → (((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
2631, 2, 3, 4, 8, 20, 253, 262, 132, 133evl1muld 22368 . . . . 5 (𝜑 → (((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((0g𝐾)(.r𝐾)(((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))
264263simprd 495 . . . 4 (𝜑 → (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((0g𝐾)(.r𝐾)(((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
2651, 2, 3, 4, 8, 20, 260fveval1fvcl 22358 . . . . 5 (𝜑 → (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
2663, 133, 148, 9, 265ringlzd 20318 . . . 4 (𝜑 → ((0g𝐾)(.r𝐾)(((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))) = (0g𝐾))
267264, 266eqtrd 2780 . . 3 (𝜑 → (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾))
268210, 267eqtrd 2780 . 2 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾))
269192, 268neeqtrd 3016 1 (𝜑 → (0g𝐾) ≠ (0g𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  {csn 4648   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003  0cc0 11184   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  cz 12639  ...cfz 13567  cprime 16718  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  .gcmg 19107   GrpHom cghm 19252  CMndccmn 19822  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  Domncdomn 20714  IDomncidom 20715  DivRingcdr 20751  Fieldcfield 20752  ringczring 21480  ℤRHomczrh 21533  chrcchr 21535  algSccascl 21895  var1cv1 22198  Poly1cpl1 22199  eval1ce1 22339  quot1pcq1p 26187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-domn 20717  df-idom 20718  df-drng 20753  df-field 20754  df-lmod 20882  df-lss 20953  df-lsp 20993  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-chr 21539  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evl1 22341  df-mdeg 26114  df-deg1 26115  df-uc1p 26191  df-q1p 26192
This theorem is referenced by:  aks6d1c5  42096
  Copyright terms: Public domain W3C validator