Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5lem2 Structured version   Visualization version   GIF version

Theorem aks6d1c5lem2 42156
Description: Lemma for Claim 5, contradiction of different evaluations that map to the same. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c5p2.1 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
aks6d1c5p2.2 (𝜑𝑍 ∈ (ℕ0m (0...𝐴)))
aks6d1c5p2.3 (𝜑 → (𝐺𝑌) = (𝐺𝑍))
aks6d1c5p2.4 (𝜑𝑊 ∈ (0...𝐴))
aks6d1c5p2.5 (𝜑 → (𝑌𝑊) < (𝑍𝑊))
Assertion
Ref Expression
aks6d1c5lem2 (𝜑 → (0g𝐾) ≠ (0g𝐾))
Distinct variable groups:   ,𝑔,𝑖   𝐴,𝑔,𝑖   𝑔,𝐾,𝑖   𝑖,𝑊   𝑔,𝑋,𝑖   𝑔,𝑌,𝑖   𝑔,𝑍,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝑃(𝑔,𝑖)   𝐺(𝑔,𝑖)   𝑊(𝑔)

Proof of Theorem aks6d1c5lem2
StepHypRef Expression
1 eqid 2736 . . . . . 6 (eval1𝐾) = (eval1𝐾)
2 eqid 2736 . . . . . 6 (Poly1𝐾) = (Poly1𝐾)
3 eqid 2736 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 eqid 2736 . . . . . 6 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
5 aks6d1p5.1 . . . . . . 7 (𝜑𝐾 ∈ Field)
6 isfld 20705 . . . . . . . 8 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
76simprbi 496 . . . . . . 7 (𝐾 ∈ Field → 𝐾 ∈ CRing)
85, 7syl 17 . . . . . 6 (𝜑𝐾 ∈ CRing)
98crngringd 20211 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
10 eqid 2736 . . . . . . . . . 10 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
1110zrhrhm 21477 . . . . . . . . 9 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
129, 11syl 17 . . . . . . . 8 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
13 zringbas 21419 . . . . . . . . 9 ℤ = (Base‘ℤring)
1413, 3rhmf 20450 . . . . . . . 8 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
1512, 14syl 17 . . . . . . 7 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
16 0zd 12605 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
17 aks6d1c5p2.4 . . . . . . . . 9 (𝜑𝑊 ∈ (0...𝐴))
1817elfzelzd 13547 . . . . . . . 8 (𝜑𝑊 ∈ ℤ)
1916, 18zsubcld 12707 . . . . . . 7 (𝜑 → (0 − 𝑊) ∈ ℤ)
2015, 19ffvelcdmd 7080 . . . . . 6 (𝜑 → ((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘𝐾))
21 eqid 2736 . . . . . . . . 9 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
2221, 4mgpbas 20110 . . . . . . . 8 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
23 aks6d1c5.7 . . . . . . . 8 = (.g‘(mulGrp‘(Poly1𝐾)))
242ply1crng 22139 . . . . . . . . . . 11 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
258, 24syl 17 . . . . . . . . . 10 (𝜑 → (Poly1𝐾) ∈ CRing)
2621crngmgp 20206 . . . . . . . . . 10 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
2725, 26syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
2827cmnmndd 19790 . . . . . . . 8 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
29 aks6d1c5p2.1 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
30 nn0ex 12512 . . . . . . . . . . . . . . . 16 0 ∈ V
3130a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℕ0 ∈ V)
32 ovexd 7445 . . . . . . . . . . . . . . 15 (𝜑 → (0...𝐴) ∈ V)
33 elmapg 8858 . . . . . . . . . . . . . . 15 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
3431, 32, 33syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
3529, 34mpbid 232 . . . . . . . . . . . . 13 (𝜑𝑌:(0...𝐴)⟶ℕ0)
3635, 17ffvelcdmd 7080 . . . . . . . . . . . 12 (𝜑 → (𝑌𝑊) ∈ ℕ0)
3736nn0zd 12619 . . . . . . . . . . 11 (𝜑 → (𝑌𝑊) ∈ ℤ)
3837, 37zsubcld 12707 . . . . . . . . . 10 (𝜑 → ((𝑌𝑊) − (𝑌𝑊)) ∈ ℤ)
39 0red 11243 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
4039leidd 11808 . . . . . . . . . . 11 (𝜑 → 0 ≤ 0)
4136nn0red 12568 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑊) ∈ ℝ)
4241recnd 11268 . . . . . . . . . . . . 13 (𝜑 → (𝑌𝑊) ∈ ℂ)
4342subidd 11587 . . . . . . . . . . . 12 (𝜑 → ((𝑌𝑊) − (𝑌𝑊)) = 0)
4443eqcomd 2742 . . . . . . . . . . 11 (𝜑 → 0 = ((𝑌𝑊) − (𝑌𝑊)))
4540, 44breqtrd 5150 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝑌𝑊) − (𝑌𝑊)))
4638, 45jca 511 . . . . . . . . 9 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − (𝑌𝑊))))
47 elnn0z 12606 . . . . . . . . 9 (((𝑌𝑊) − (𝑌𝑊)) ∈ ℕ0 ↔ (((𝑌𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − (𝑌𝑊))))
4846, 47sylibr 234 . . . . . . . 8 (𝜑 → ((𝑌𝑊) − (𝑌𝑊)) ∈ ℕ0)
49 aks6d1c5.6 . . . . . . . . . . 11 𝑋 = (var1𝐾)
501, 49, 3, 2, 4, 8, 20evl1vard 22280 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘𝑋)‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((ℤRHom‘𝐾)‘(0 − 𝑊))))
51 eqid 2736 . . . . . . . . . . 11 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
5215, 18ffvelcdmd 7080 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝐾)‘𝑊) ∈ (Base‘𝐾))
531, 2, 3, 51, 4, 8, 52, 20evl1scad 22278 . . . . . . . . . 10 (𝜑 → (((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((ℤRHom‘𝐾)‘𝑊)))
54 eqid 2736 . . . . . . . . . 10 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
55 eqid 2736 . . . . . . . . . 10 (+g𝐾) = (+g𝐾)
561, 2, 3, 4, 8, 20, 50, 53, 54, 55evl1addd 22284 . . . . . . . . 9 (𝜑 → ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))))
5756simpld 494 . . . . . . . 8 (𝜑 → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)))
5822, 23, 28, 48, 57mulgnn0cld 19083 . . . . . . 7 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
5943oveq1d 7425 . . . . . . . . . . 11 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0 (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))
60 eqid 2736 . . . . . . . . . . . . 13 (0g‘(mulGrp‘(Poly1𝐾))) = (0g‘(mulGrp‘(Poly1𝐾)))
6122, 60, 23mulg0 19062 . . . . . . . . . . . 12 ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)) → (0 (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0g‘(mulGrp‘(Poly1𝐾))))
6257, 61syl 17 . . . . . . . . . . 11 (𝜑 → (0 (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0g‘(mulGrp‘(Poly1𝐾))))
6359, 62eqtrd 2771 . . . . . . . . . 10 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0g‘(mulGrp‘(Poly1𝐾))))
6463fveq2d 6885 . . . . . . . . 9 (𝜑 → ((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾)))))
6564fveq1d 6883 . . . . . . . 8 (𝜑 → (((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
66 eqid 2736 . . . . . . . . . . . . . 14 (1r‘(Poly1𝐾)) = (1r‘(Poly1𝐾))
6721, 66ringidval 20148 . . . . . . . . . . . . 13 (1r‘(Poly1𝐾)) = (0g‘(mulGrp‘(Poly1𝐾)))
6867eqcomi 2745 . . . . . . . . . . . 12 (0g‘(mulGrp‘(Poly1𝐾))) = (1r‘(Poly1𝐾))
6968a1i 11 . . . . . . . . . . 11 (𝜑 → (0g‘(mulGrp‘(Poly1𝐾))) = (1r‘(Poly1𝐾)))
7069fveq2d 6885 . . . . . . . . . 10 (𝜑 → ((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾)))) = ((eval1𝐾)‘(1r‘(Poly1𝐾))))
7170fveq1d 6883 . . . . . . . . 9 (𝜑 → (((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(1r‘(Poly1𝐾)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
722, 49, 21, 23ply1idvr1 22237 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (0 𝑋) = (1r‘(Poly1𝐾)))
7372eqcomd 2742 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (1r‘(Poly1𝐾)) = (0 𝑋))
749, 73syl 17 . . . . . . . . . . . 12 (𝜑 → (1r‘(Poly1𝐾)) = (0 𝑋))
7574fveq2d 6885 . . . . . . . . . . 11 (𝜑 → ((eval1𝐾)‘(1r‘(Poly1𝐾))) = ((eval1𝐾)‘(0 𝑋)))
7675fveq1d 6883 . . . . . . . . . 10 (𝜑 → (((eval1𝐾)‘(1r‘(Poly1𝐾)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
77 eqid 2736 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
7844, 48eqeltrd 2835 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℕ0)
791, 2, 3, 4, 8, 20, 50, 23, 77, 78evl1expd 22288 . . . . . . . . . . . 12 (𝜑 → ((0 𝑋) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊)))))
8079simprd 495 . . . . . . . . . . 11 (𝜑 → (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))))
81 eqid 2736 . . . . . . . . . . . . . . . 16 (mulGrp‘𝐾) = (mulGrp‘𝐾)
8281, 3mgpbas 20110 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
8382a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
8420, 83eleqtrd 2837 . . . . . . . . . . . . 13 (𝜑 → ((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘(mulGrp‘𝐾)))
85 eqid 2736 . . . . . . . . . . . . . 14 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
86 eqid 2736 . . . . . . . . . . . . . 14 (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐾))
8785, 86, 77mulg0 19062 . . . . . . . . . . . . 13 (((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘(mulGrp‘𝐾)) → (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g‘(mulGrp‘𝐾)))
8884, 87syl 17 . . . . . . . . . . . 12 (𝜑 → (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g‘(mulGrp‘𝐾)))
89 eqid 2736 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
9081, 89ringidval 20148 . . . . . . . . . . . . . 14 (1r𝐾) = (0g‘(mulGrp‘𝐾))
9190eqcomi 2745 . . . . . . . . . . . . 13 (0g‘(mulGrp‘𝐾)) = (1r𝐾)
9291a1i 11 . . . . . . . . . . . 12 (𝜑 → (0g‘(mulGrp‘𝐾)) = (1r𝐾))
9388, 92eqtrd 2771 . . . . . . . . . . 11 (𝜑 → (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9480, 93eqtrd 2771 . . . . . . . . . 10 (𝜑 → (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9576, 94eqtrd 2771 . . . . . . . . 9 (𝜑 → (((eval1𝐾)‘(1r‘(Poly1𝐾)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9671, 95eqtrd 2771 . . . . . . . 8 (𝜑 → (((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9765, 96eqtrd 2771 . . . . . . 7 (𝜑 → (((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9858, 97jca 511 . . . . . 6 (𝜑 → ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾)))
99 fzfid 13996 . . . . . . . . 9 (𝜑 → (0...𝐴) ∈ Fin)
100 diffi 9194 . . . . . . . . 9 ((0...𝐴) ∈ Fin → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
10199, 100syl 17 . . . . . . . 8 (𝜑 → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
10228adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
10335adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑌:(0...𝐴)⟶ℕ0)
104 eldifi 4111 . . . . . . . . . . . 12 (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) → 𝑖 ∈ (0...𝐴))
105104adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ (0...𝐴))
106103, 105ffvelcdmd 7080 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑌𝑖) ∈ ℕ0)
10725crngringd 20211 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Ring)
108 ringcmn 20247 . . . . . . . . . . . . . 14 ((Poly1𝐾) ∈ Ring → (Poly1𝐾) ∈ CMnd)
109107, 108syl 17 . . . . . . . . . . . . 13 (𝜑 → (Poly1𝐾) ∈ CMnd)
110 cmnmnd 19783 . . . . . . . . . . . . 13 ((Poly1𝐾) ∈ CMnd → (Poly1𝐾) ∈ Mnd)
111109, 110syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Mnd)
112111adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Poly1𝐾) ∈ Mnd)
11350simpld 494 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (Base‘(Poly1𝐾)))
114113adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑋 ∈ (Base‘(Poly1𝐾)))
1159adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ Ring)
116115, 11, 143syl 18 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
117105elfzelzd 13547 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ ℤ)
118116, 117ffvelcdmd 7080 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
1192, 51, 3, 4ply1sclcl 22228 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
120115, 118, 119syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
1214, 54mndcl 18725 . . . . . . . . . . 11 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
122112, 114, 120, 121syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
12322, 23, 102, 106, 122mulgnn0cld 19083 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
124123ralrimiva 3133 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
12522, 27, 101, 124gsummptcl 19953 . . . . . . 7 (𝜑 → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
126124r19.21bi 3238 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
127126ralrimiva 3133 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
1281, 2, 21, 3, 4, 81, 8, 20, 127, 101evl1gprodd 42135 . . . . . . 7 (𝜑 → (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))
129125, 128jca 511 . . . . . 6 (𝜑 → (((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))))
130 eqid 2736 . . . . . . . 8 (.r‘(Poly1𝐾)) = (.r‘(Poly1𝐾))
13121, 130mgpplusg 20109 . . . . . . 7 (.r‘(Poly1𝐾)) = (+g‘(mulGrp‘(Poly1𝐾)))
132131eqcomi 2745 . . . . . 6 (+g‘(mulGrp‘(Poly1𝐾))) = (.r‘(Poly1𝐾))
133 eqid 2736 . . . . . 6 (.r𝐾) = (.r𝐾)
1341, 2, 3, 4, 8, 20, 98, 129, 132, 133evl1muld 22286 . . . . 5 (𝜑 → (((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))))
135134simprd 495 . . . 4 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))))
136 fldidom 20736 . . . . . . . 8 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
1375, 136syl 17 . . . . . . 7 (𝜑𝐾 ∈ IDomn)
138 isidom 20690 . . . . . . 7 (𝐾 ∈ IDomn ↔ (𝐾 ∈ CRing ∧ 𝐾 ∈ Domn))
139137, 138sylib 218 . . . . . 6 (𝜑 → (𝐾 ∈ CRing ∧ 𝐾 ∈ Domn))
140139simprd 495 . . . . 5 (𝜑𝐾 ∈ Domn)
14190a1i 11 . . . . . . 7 (𝜑 → (1r𝐾) = (0g‘(mulGrp‘𝐾)))
14281ringmgp 20204 . . . . . . . . 9 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
1439, 142syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
14482, 86mndidcl 18732 . . . . . . . 8 ((mulGrp‘𝐾) ∈ Mnd → (0g‘(mulGrp‘𝐾)) ∈ (Base‘𝐾))
145143, 144syl 17 . . . . . . 7 (𝜑 → (0g‘(mulGrp‘𝐾)) ∈ (Base‘𝐾))
146141, 145eqeltrd 2835 . . . . . 6 (𝜑 → (1r𝐾) ∈ (Base‘𝐾))
1475flddrngd 20706 . . . . . . 7 (𝜑𝐾 ∈ DivRing)
148 eqid 2736 . . . . . . . 8 (0g𝐾) = (0g𝐾)
149148, 89drngunz 20712 . . . . . . 7 (𝐾 ∈ DivRing → (1r𝐾) ≠ (0g𝐾))
150147, 149syl 17 . . . . . 6 (𝜑 → (1r𝐾) ≠ (0g𝐾))
151146, 150jca 511 . . . . 5 (𝜑 → ((1r𝐾) ∈ (Base‘𝐾) ∧ (1r𝐾) ≠ (0g𝐾)))
15281crngmgp 20206 . . . . . . . 8 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
1538, 152syl 17 . . . . . . 7 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
1548adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ CRing)
15520adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘𝐾))
1561, 2, 3, 4, 154, 155, 123fveval1fvcl 22276 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
157156ralrimiva 3133 . . . . . . 7 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})(((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
15882, 153, 101, 157gsummptcl 19953 . . . . . 6 (𝜑 → ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ∈ (Base‘𝐾))
15922a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾))))
160122, 159eleqtrd 2837 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
16122eqcomi 2745 . . . . . . . . . . . . 13 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
162161a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾)))
163160, 162eleqtrd 2837 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
164 eqidd 2737 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
165163, 164jca 511 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
1661, 2, 3, 4, 154, 155, 165, 23, 77, 106evl1expd 22288 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((𝑌𝑖)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))
167166simprd 495 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((𝑌𝑖)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
168137adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ IDomn)
1691, 2, 3, 4, 154, 155, 163fveval1fvcl 22276 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
170 eldifsni 4771 . . . . . . . . . . 11 (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) → 𝑖𝑊)
171170adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖𝑊)
1725adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ Field)
173 aks6d1p5.2 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
174173adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑃 ∈ ℙ)
175 aks6d1c5.3 . . . . . . . . . . . 12 𝑃 = (chr‘𝐾)
176 aks6d1c5.4 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℕ0)
177176adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐴 ∈ ℕ0)
178 aks6d1c5.5 . . . . . . . . . . . . 13 (𝜑𝐴 < 𝑃)
179178adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐴 < 𝑃)
180 aks6d1c5.8 . . . . . . . . . . . 12 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
18117adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑊 ∈ (0...𝐴))
182172, 174, 175, 177, 179, 49, 23, 180, 105, 181aks6d1c5lem1 42154 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑖 = 𝑊 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾)))
183182necon3bid 2977 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑖𝑊 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾)))
184171, 183mpbid 232 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾))
185168, 169, 184, 106, 77idomnnzpownz 42150 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))) ≠ (0g𝐾))
186167, 185eqnetrd 3000 . . . . . . 7 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾))
18781, 137, 101, 156, 186idomnnzgmulnz 42151 . . . . . 6 (𝜑 → ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ≠ (0g𝐾))
188158, 187jca 511 . . . . 5 (𝜑 → (((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ∈ (Base‘𝐾) ∧ ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ≠ (0g𝐾)))
1893, 133, 148domnmuln0 20674 . . . . 5 ((𝐾 ∈ Domn ∧ ((1r𝐾) ∈ (Base‘𝐾) ∧ (1r𝐾) ≠ (0g𝐾)) ∧ (((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ∈ (Base‘𝐾) ∧ ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ≠ (0g𝐾))) → ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))) ≠ (0g𝐾))
190140, 151, 188, 189syl3anc 1373 . . . 4 (𝜑 → ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))) ≠ (0g𝐾))
191135, 190eqnetrd 3000 . . 3 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾))
192191necomd 2988 . 2 (𝜑 → (0g𝐾) ≠ (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
19341leidd 11808 . . . . . . . 8 (𝜑 → (𝑌𝑊) ≤ (𝑌𝑊))
194 eqid 2736 . . . . . . . 8 (quot1p𝐾) = (quot1p𝐾)
1955, 173, 175, 176, 178, 49, 23, 180, 29, 17, 36, 193, 194, 51, 21aks6d1c5lem3 42155 . . . . . . 7 (𝜑 → ((𝐺𝑌)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
196195eqcomd 2742 . . . . . 6 (𝜑 → ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = ((𝐺𝑌)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))))
197 aks6d1c5p2.3 . . . . . . 7 (𝜑 → (𝐺𝑌) = (𝐺𝑍))
198197oveq1d 7425 . . . . . 6 (𝜑 → ((𝐺𝑌)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝐺𝑍)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))))
199 aks6d1c5p2.2 . . . . . . 7 (𝜑𝑍 ∈ (ℕ0m (0...𝐴)))
200 elmapg 8858 . . . . . . . . . . . 12 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑍 ∈ (ℕ0m (0...𝐴)) ↔ 𝑍:(0...𝐴)⟶ℕ0))
20131, 32, 200syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ (ℕ0m (0...𝐴)) ↔ 𝑍:(0...𝐴)⟶ℕ0))
202199, 201mpbid 232 . . . . . . . . . 10 (𝜑𝑍:(0...𝐴)⟶ℕ0)
203202, 17ffvelcdmd 7080 . . . . . . . . 9 (𝜑 → (𝑍𝑊) ∈ ℕ0)
204203nn0red 12568 . . . . . . . 8 (𝜑 → (𝑍𝑊) ∈ ℝ)
205 aks6d1c5p2.5 . . . . . . . 8 (𝜑 → (𝑌𝑊) < (𝑍𝑊))
20641, 204, 205ltled 11388 . . . . . . 7 (𝜑 → (𝑌𝑊) ≤ (𝑍𝑊))
2075, 173, 175, 176, 178, 49, 23, 180, 199, 17, 36, 206, 194, 51, 21aks6d1c5lem3 42155 . . . . . 6 (𝜑 → ((𝐺𝑍)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
208196, 198, 2073eqtrd 2775 . . . . 5 (𝜑 → ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
209208fveq2d 6885 . . . 4 (𝜑 → ((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))) = ((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))))
210209fveq1d 6883 . . 3 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
211203nn0zd 12619 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑊) ∈ ℤ)
212211, 37zsubcld 12707 . . . . . . . . . . 11 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ)
213204, 41resubcld 11670 . . . . . . . . . . . 12 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℝ)
21441, 204posdifd 11829 . . . . . . . . . . . . 13 (𝜑 → ((𝑌𝑊) < (𝑍𝑊) ↔ 0 < ((𝑍𝑊) − (𝑌𝑊))))
215205, 214mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 < ((𝑍𝑊) − (𝑌𝑊)))
21639, 213, 215ltled 11388 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((𝑍𝑊) − (𝑌𝑊)))
217212, 216jca 511 . . . . . . . . . 10 (𝜑 → (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑍𝑊) − (𝑌𝑊))))
218 elnn0z 12606 . . . . . . . . . 10 (((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ0 ↔ (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑍𝑊) − (𝑌𝑊))))
219217, 218sylibr 234 . . . . . . . . 9 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ0)
2201, 2, 3, 4, 8, 20, 56, 23, 77, 219evl1expd 22288 . . . . . . . 8 (𝜑 → ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)))))
221220simpld 494 . . . . . . 7 (𝜑 → (((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
222220simprd 495 . . . . . . . 8 (𝜑 → (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))))
223 rhmghm 20449 . . . . . . . . . . . . 13 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
22412, 223syl 17 . . . . . . . . . . . 12 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
22519, 13eleqtrdi 2845 . . . . . . . . . . . 12 (𝜑 → (0 − 𝑊) ∈ (Base‘ℤring))
22618, 13eleqtrdi 2845 . . . . . . . . . . . 12 (𝜑𝑊 ∈ (Base‘ℤring))
227 eqid 2736 . . . . . . . . . . . . 13 (Base‘ℤring) = (Base‘ℤring)
228 eqid 2736 . . . . . . . . . . . . 13 (+g‘ℤring) = (+g‘ℤring)
229227, 228, 55ghmlin 19209 . . . . . . . . . . . 12 (((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) ∧ (0 − 𝑊) ∈ (Base‘ℤring) ∧ 𝑊 ∈ (Base‘ℤring)) → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)))
230224, 225, 226, 229syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)))
231 zringplusg 21420 . . . . . . . . . . . . . . . . 17 + = (+g‘ℤring)
232231eqcomi 2745 . . . . . . . . . . . . . . . 16 (+g‘ℤring) = +
233232a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (+g‘ℤring) = + )
234233oveqd 7427 . . . . . . . . . . . . . 14 (𝜑 → ((0 − 𝑊)(+g‘ℤring)𝑊) = ((0 − 𝑊) + 𝑊))
235234fveq2d 6885 . . . . . . . . . . . . 13 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = ((ℤRHom‘𝐾)‘((0 − 𝑊) + 𝑊)))
236 0cnd 11233 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℂ)
23718zcnd 12703 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ ℂ)
238236, 237npcand 11603 . . . . . . . . . . . . . 14 (𝜑 → ((0 − 𝑊) + 𝑊) = 0)
239238fveq2d 6885 . . . . . . . . . . . . 13 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊) + 𝑊)) = ((ℤRHom‘𝐾)‘0))
240235, 239eqtrd 2771 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = ((ℤRHom‘𝐾)‘0))
24110, 148zrh0 21479 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
2429, 241syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
243240, 242eqtrd 2771 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = (0g𝐾))
244230, 243eqtr3d 2773 . . . . . . . . . 10 (𝜑 → (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)) = (0g𝐾))
245244oveq2d 7426 . . . . . . . . 9 (𝜑 → (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))) = (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(0g𝐾)))
246219nn0zd 12619 . . . . . . . . . . . 12 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ)
247246, 215jca 511 . . . . . . . . . . 11 (𝜑 → (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 < ((𝑍𝑊) − (𝑌𝑊))))
248 elnnz 12603 . . . . . . . . . . 11 (((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ ↔ (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 < ((𝑍𝑊) − (𝑌𝑊))))
249247, 248sylibr 234 . . . . . . . . . 10 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ)
2509, 249, 77ringexp0nn 42152 . . . . . . . . 9 (𝜑 → (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(0g𝐾)) = (0g𝐾))
251245, 250eqtrd 2771 . . . . . . . 8 (𝜑 → (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))) = (0g𝐾))
252222, 251eqtrd 2771 . . . . . . 7 (𝜑 → (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾))
253221, 252jca 511 . . . . . 6 (𝜑 → ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾)))
254 eqid 2736 . . . . . . . . . . 11 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
255202adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑍:(0...𝐴)⟶ℕ0)
256255, 105ffvelcdmd 7080 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑍𝑖) ∈ ℕ0)
257254, 23, 102, 256, 160mulgnn0cld 19083 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
258257, 162eleqtrd 2837 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
259258ralrimiva 3133 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
26022, 27, 101, 259gsummptcl 19953 . . . . . . 7 (𝜑 → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
261 eqidd 2737 . . . . . . 7 (𝜑 → (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
262260, 261jca 511 . . . . . 6 (𝜑 → (((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
2631, 2, 3, 4, 8, 20, 253, 262, 132, 133evl1muld 22286 . . . . 5 (𝜑 → (((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((0g𝐾)(.r𝐾)(((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))
264263simprd 495 . . . 4 (𝜑 → (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((0g𝐾)(.r𝐾)(((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
2651, 2, 3, 4, 8, 20, 260fveval1fvcl 22276 . . . . 5 (𝜑 → (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
2663, 133, 148, 9, 265ringlzd 20260 . . . 4 (𝜑 → ((0g𝐾)(.r𝐾)(((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))) = (0g𝐾))
267264, 266eqtrd 2771 . . 3 (𝜑 → (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾))
268210, 267eqtrd 2771 . 2 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾))
269192, 268neeqtrd 3002 1 (𝜑 → (0g𝐾) ≠ (0g𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  cdif 3928  {csn 4606   class class class wbr 5124  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  Fincfn 8964  0cc0 11134   + caddc 11137   < clt 11274  cle 11275  cmin 11471  cn 12245  0cn0 12506  cz 12593  ...cfz 13529  cprime 16695  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458   Σg cgsu 17459  Mndcmnd 18717  .gcmg 19055   GrpHom cghm 19200  CMndccmn 19766  mulGrpcmgp 20105  1rcur 20146  Ringcrg 20198  CRingccrg 20199   RingHom crh 20434  Domncdomn 20657  IDomncidom 20658  DivRingcdr 20694  Fieldcfield 20695  ringczring 21412  ℤRHomczrh 21465  chrcchr 21467  algSccascl 21817  var1cv1 22116  Poly1cpl1 22117  eval1ce1 22257  quot1pcq1p 26090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-prm 16696  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-od 19514  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-rhm 20437  df-nzr 20478  df-subrng 20511  df-subrg 20535  df-rlreg 20659  df-domn 20660  df-idom 20661  df-drng 20696  df-field 20697  df-lmod 20824  df-lss 20894  df-lsp 20934  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-chr 21471  df-assa 21818  df-asp 21819  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-evls 22037  df-evl 22038  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-evl1 22259  df-mdeg 26017  df-deg1 26018  df-uc1p 26094  df-q1p 26095
This theorem is referenced by:  aks6d1c5  42157
  Copyright terms: Public domain W3C validator