Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5lem2 Structured version   Visualization version   GIF version

Theorem aks6d1c5lem2 42139
Description: Lemma for Claim 5, contradiction of different evaluations that map to the same. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c5p2.1 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
aks6d1c5p2.2 (𝜑𝑍 ∈ (ℕ0m (0...𝐴)))
aks6d1c5p2.3 (𝜑 → (𝐺𝑌) = (𝐺𝑍))
aks6d1c5p2.4 (𝜑𝑊 ∈ (0...𝐴))
aks6d1c5p2.5 (𝜑 → (𝑌𝑊) < (𝑍𝑊))
Assertion
Ref Expression
aks6d1c5lem2 (𝜑 → (0g𝐾) ≠ (0g𝐾))
Distinct variable groups:   ,𝑔,𝑖   𝐴,𝑔,𝑖   𝑔,𝐾,𝑖   𝑖,𝑊   𝑔,𝑋,𝑖   𝑔,𝑌,𝑖   𝑔,𝑍,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝑃(𝑔,𝑖)   𝐺(𝑔,𝑖)   𝑊(𝑔)

Proof of Theorem aks6d1c5lem2
StepHypRef Expression
1 eqid 2737 . . . . . 6 (eval1𝐾) = (eval1𝐾)
2 eqid 2737 . . . . . 6 (Poly1𝐾) = (Poly1𝐾)
3 eqid 2737 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 eqid 2737 . . . . . 6 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
5 aks6d1p5.1 . . . . . . 7 (𝜑𝐾 ∈ Field)
6 isfld 20740 . . . . . . . 8 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
76simprbi 496 . . . . . . 7 (𝐾 ∈ Field → 𝐾 ∈ CRing)
85, 7syl 17 . . . . . 6 (𝜑𝐾 ∈ CRing)
98crngringd 20243 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
10 eqid 2737 . . . . . . . . . 10 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
1110zrhrhm 21522 . . . . . . . . 9 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
129, 11syl 17 . . . . . . . 8 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
13 zringbas 21464 . . . . . . . . 9 ℤ = (Base‘ℤring)
1413, 3rhmf 20485 . . . . . . . 8 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
1512, 14syl 17 . . . . . . 7 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
16 0zd 12625 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
17 aks6d1c5p2.4 . . . . . . . . 9 (𝜑𝑊 ∈ (0...𝐴))
1817elfzelzd 13565 . . . . . . . 8 (𝜑𝑊 ∈ ℤ)
1916, 18zsubcld 12727 . . . . . . 7 (𝜑 → (0 − 𝑊) ∈ ℤ)
2015, 19ffvelcdmd 7105 . . . . . 6 (𝜑 → ((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘𝐾))
21 eqid 2737 . . . . . . . . 9 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
2221, 4mgpbas 20142 . . . . . . . 8 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
23 aks6d1c5.7 . . . . . . . 8 = (.g‘(mulGrp‘(Poly1𝐾)))
242ply1crng 22200 . . . . . . . . . . 11 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
258, 24syl 17 . . . . . . . . . 10 (𝜑 → (Poly1𝐾) ∈ CRing)
2621crngmgp 20238 . . . . . . . . . 10 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
2725, 26syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
2827cmnmndd 19822 . . . . . . . 8 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
29 aks6d1c5p2.1 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
30 nn0ex 12532 . . . . . . . . . . . . . . . 16 0 ∈ V
3130a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℕ0 ∈ V)
32 ovexd 7466 . . . . . . . . . . . . . . 15 (𝜑 → (0...𝐴) ∈ V)
33 elmapg 8879 . . . . . . . . . . . . . . 15 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
3431, 32, 33syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
3529, 34mpbid 232 . . . . . . . . . . . . 13 (𝜑𝑌:(0...𝐴)⟶ℕ0)
3635, 17ffvelcdmd 7105 . . . . . . . . . . . 12 (𝜑 → (𝑌𝑊) ∈ ℕ0)
3736nn0zd 12639 . . . . . . . . . . 11 (𝜑 → (𝑌𝑊) ∈ ℤ)
3837, 37zsubcld 12727 . . . . . . . . . 10 (𝜑 → ((𝑌𝑊) − (𝑌𝑊)) ∈ ℤ)
39 0red 11264 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
4039leidd 11829 . . . . . . . . . . 11 (𝜑 → 0 ≤ 0)
4136nn0red 12588 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑊) ∈ ℝ)
4241recnd 11289 . . . . . . . . . . . . 13 (𝜑 → (𝑌𝑊) ∈ ℂ)
4342subidd 11608 . . . . . . . . . . . 12 (𝜑 → ((𝑌𝑊) − (𝑌𝑊)) = 0)
4443eqcomd 2743 . . . . . . . . . . 11 (𝜑 → 0 = ((𝑌𝑊) − (𝑌𝑊)))
4540, 44breqtrd 5169 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝑌𝑊) − (𝑌𝑊)))
4638, 45jca 511 . . . . . . . . 9 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − (𝑌𝑊))))
47 elnn0z 12626 . . . . . . . . 9 (((𝑌𝑊) − (𝑌𝑊)) ∈ ℕ0 ↔ (((𝑌𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − (𝑌𝑊))))
4846, 47sylibr 234 . . . . . . . 8 (𝜑 → ((𝑌𝑊) − (𝑌𝑊)) ∈ ℕ0)
49 aks6d1c5.6 . . . . . . . . . . 11 𝑋 = (var1𝐾)
501, 49, 3, 2, 4, 8, 20evl1vard 22341 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘𝑋)‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((ℤRHom‘𝐾)‘(0 − 𝑊))))
51 eqid 2737 . . . . . . . . . . 11 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
5215, 18ffvelcdmd 7105 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝐾)‘𝑊) ∈ (Base‘𝐾))
531, 2, 3, 51, 4, 8, 52, 20evl1scad 22339 . . . . . . . . . 10 (𝜑 → (((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((ℤRHom‘𝐾)‘𝑊)))
54 eqid 2737 . . . . . . . . . 10 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
55 eqid 2737 . . . . . . . . . 10 (+g𝐾) = (+g𝐾)
561, 2, 3, 4, 8, 20, 50, 53, 54, 55evl1addd 22345 . . . . . . . . 9 (𝜑 → ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))))
5756simpld 494 . . . . . . . 8 (𝜑 → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)))
5822, 23, 28, 48, 57mulgnn0cld 19113 . . . . . . 7 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
5943oveq1d 7446 . . . . . . . . . . 11 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0 (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))
60 eqid 2737 . . . . . . . . . . . . 13 (0g‘(mulGrp‘(Poly1𝐾))) = (0g‘(mulGrp‘(Poly1𝐾)))
6122, 60, 23mulg0 19092 . . . . . . . . . . . 12 ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)) → (0 (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0g‘(mulGrp‘(Poly1𝐾))))
6257, 61syl 17 . . . . . . . . . . 11 (𝜑 → (0 (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0g‘(mulGrp‘(Poly1𝐾))))
6359, 62eqtrd 2777 . . . . . . . . . 10 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0g‘(mulGrp‘(Poly1𝐾))))
6463fveq2d 6910 . . . . . . . . 9 (𝜑 → ((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾)))))
6564fveq1d 6908 . . . . . . . 8 (𝜑 → (((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
66 eqid 2737 . . . . . . . . . . . . . 14 (1r‘(Poly1𝐾)) = (1r‘(Poly1𝐾))
6721, 66ringidval 20180 . . . . . . . . . . . . 13 (1r‘(Poly1𝐾)) = (0g‘(mulGrp‘(Poly1𝐾)))
6867eqcomi 2746 . . . . . . . . . . . 12 (0g‘(mulGrp‘(Poly1𝐾))) = (1r‘(Poly1𝐾))
6968a1i 11 . . . . . . . . . . 11 (𝜑 → (0g‘(mulGrp‘(Poly1𝐾))) = (1r‘(Poly1𝐾)))
7069fveq2d 6910 . . . . . . . . . 10 (𝜑 → ((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾)))) = ((eval1𝐾)‘(1r‘(Poly1𝐾))))
7170fveq1d 6908 . . . . . . . . 9 (𝜑 → (((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(1r‘(Poly1𝐾)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
722, 49, 21, 23ply1idvr1 22298 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (0 𝑋) = (1r‘(Poly1𝐾)))
7372eqcomd 2743 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (1r‘(Poly1𝐾)) = (0 𝑋))
749, 73syl 17 . . . . . . . . . . . 12 (𝜑 → (1r‘(Poly1𝐾)) = (0 𝑋))
7574fveq2d 6910 . . . . . . . . . . 11 (𝜑 → ((eval1𝐾)‘(1r‘(Poly1𝐾))) = ((eval1𝐾)‘(0 𝑋)))
7675fveq1d 6908 . . . . . . . . . 10 (𝜑 → (((eval1𝐾)‘(1r‘(Poly1𝐾)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
77 eqid 2737 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
7844, 48eqeltrd 2841 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℕ0)
791, 2, 3, 4, 8, 20, 50, 23, 77, 78evl1expd 22349 . . . . . . . . . . . 12 (𝜑 → ((0 𝑋) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊)))))
8079simprd 495 . . . . . . . . . . 11 (𝜑 → (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))))
81 eqid 2737 . . . . . . . . . . . . . . . 16 (mulGrp‘𝐾) = (mulGrp‘𝐾)
8281, 3mgpbas 20142 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
8382a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
8420, 83eleqtrd 2843 . . . . . . . . . . . . 13 (𝜑 → ((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘(mulGrp‘𝐾)))
85 eqid 2737 . . . . . . . . . . . . . 14 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
86 eqid 2737 . . . . . . . . . . . . . 14 (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐾))
8785, 86, 77mulg0 19092 . . . . . . . . . . . . 13 (((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘(mulGrp‘𝐾)) → (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g‘(mulGrp‘𝐾)))
8884, 87syl 17 . . . . . . . . . . . 12 (𝜑 → (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g‘(mulGrp‘𝐾)))
89 eqid 2737 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
9081, 89ringidval 20180 . . . . . . . . . . . . . 14 (1r𝐾) = (0g‘(mulGrp‘𝐾))
9190eqcomi 2746 . . . . . . . . . . . . 13 (0g‘(mulGrp‘𝐾)) = (1r𝐾)
9291a1i 11 . . . . . . . . . . . 12 (𝜑 → (0g‘(mulGrp‘𝐾)) = (1r𝐾))
9388, 92eqtrd 2777 . . . . . . . . . . 11 (𝜑 → (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9480, 93eqtrd 2777 . . . . . . . . . 10 (𝜑 → (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9576, 94eqtrd 2777 . . . . . . . . 9 (𝜑 → (((eval1𝐾)‘(1r‘(Poly1𝐾)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9671, 95eqtrd 2777 . . . . . . . 8 (𝜑 → (((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9765, 96eqtrd 2777 . . . . . . 7 (𝜑 → (((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9858, 97jca 511 . . . . . 6 (𝜑 → ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾)))
99 fzfid 14014 . . . . . . . . 9 (𝜑 → (0...𝐴) ∈ Fin)
100 diffi 9215 . . . . . . . . 9 ((0...𝐴) ∈ Fin → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
10199, 100syl 17 . . . . . . . 8 (𝜑 → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
10228adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
10335adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑌:(0...𝐴)⟶ℕ0)
104 eldifi 4131 . . . . . . . . . . . 12 (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) → 𝑖 ∈ (0...𝐴))
105104adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ (0...𝐴))
106103, 105ffvelcdmd 7105 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑌𝑖) ∈ ℕ0)
10725crngringd 20243 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Ring)
108 ringcmn 20279 . . . . . . . . . . . . . 14 ((Poly1𝐾) ∈ Ring → (Poly1𝐾) ∈ CMnd)
109107, 108syl 17 . . . . . . . . . . . . 13 (𝜑 → (Poly1𝐾) ∈ CMnd)
110 cmnmnd 19815 . . . . . . . . . . . . 13 ((Poly1𝐾) ∈ CMnd → (Poly1𝐾) ∈ Mnd)
111109, 110syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Mnd)
112111adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Poly1𝐾) ∈ Mnd)
11350simpld 494 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (Base‘(Poly1𝐾)))
114113adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑋 ∈ (Base‘(Poly1𝐾)))
1159adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ Ring)
116115, 11, 143syl 18 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
117105elfzelzd 13565 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ ℤ)
118116, 117ffvelcdmd 7105 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
1192, 51, 3, 4ply1sclcl 22289 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
120115, 118, 119syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
1214, 54mndcl 18755 . . . . . . . . . . 11 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
122112, 114, 120, 121syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
12322, 23, 102, 106, 122mulgnn0cld 19113 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
124123ralrimiva 3146 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
12522, 27, 101, 124gsummptcl 19985 . . . . . . 7 (𝜑 → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
126124r19.21bi 3251 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
127126ralrimiva 3146 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
1281, 2, 21, 3, 4, 81, 8, 20, 127, 101evl1gprodd 42118 . . . . . . 7 (𝜑 → (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))
129125, 128jca 511 . . . . . 6 (𝜑 → (((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))))
130 eqid 2737 . . . . . . . 8 (.r‘(Poly1𝐾)) = (.r‘(Poly1𝐾))
13121, 130mgpplusg 20141 . . . . . . 7 (.r‘(Poly1𝐾)) = (+g‘(mulGrp‘(Poly1𝐾)))
132131eqcomi 2746 . . . . . 6 (+g‘(mulGrp‘(Poly1𝐾))) = (.r‘(Poly1𝐾))
133 eqid 2737 . . . . . 6 (.r𝐾) = (.r𝐾)
1341, 2, 3, 4, 8, 20, 98, 129, 132, 133evl1muld 22347 . . . . 5 (𝜑 → (((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))))
135134simprd 495 . . . 4 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))))
136 fldidom 20771 . . . . . . . 8 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
1375, 136syl 17 . . . . . . 7 (𝜑𝐾 ∈ IDomn)
138 isidom 20725 . . . . . . 7 (𝐾 ∈ IDomn ↔ (𝐾 ∈ CRing ∧ 𝐾 ∈ Domn))
139137, 138sylib 218 . . . . . 6 (𝜑 → (𝐾 ∈ CRing ∧ 𝐾 ∈ Domn))
140139simprd 495 . . . . 5 (𝜑𝐾 ∈ Domn)
14190a1i 11 . . . . . . 7 (𝜑 → (1r𝐾) = (0g‘(mulGrp‘𝐾)))
14281ringmgp 20236 . . . . . . . . 9 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
1439, 142syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
14482, 86mndidcl 18762 . . . . . . . 8 ((mulGrp‘𝐾) ∈ Mnd → (0g‘(mulGrp‘𝐾)) ∈ (Base‘𝐾))
145143, 144syl 17 . . . . . . 7 (𝜑 → (0g‘(mulGrp‘𝐾)) ∈ (Base‘𝐾))
146141, 145eqeltrd 2841 . . . . . 6 (𝜑 → (1r𝐾) ∈ (Base‘𝐾))
1475flddrngd 20741 . . . . . . 7 (𝜑𝐾 ∈ DivRing)
148 eqid 2737 . . . . . . . 8 (0g𝐾) = (0g𝐾)
149148, 89drngunz 20747 . . . . . . 7 (𝐾 ∈ DivRing → (1r𝐾) ≠ (0g𝐾))
150147, 149syl 17 . . . . . 6 (𝜑 → (1r𝐾) ≠ (0g𝐾))
151146, 150jca 511 . . . . 5 (𝜑 → ((1r𝐾) ∈ (Base‘𝐾) ∧ (1r𝐾) ≠ (0g𝐾)))
15281crngmgp 20238 . . . . . . . 8 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
1538, 152syl 17 . . . . . . 7 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
1548adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ CRing)
15520adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘𝐾))
1561, 2, 3, 4, 154, 155, 123fveval1fvcl 22337 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
157156ralrimiva 3146 . . . . . . 7 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})(((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
15882, 153, 101, 157gsummptcl 19985 . . . . . 6 (𝜑 → ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ∈ (Base‘𝐾))
15922a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾))))
160122, 159eleqtrd 2843 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
16122eqcomi 2746 . . . . . . . . . . . . 13 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
162161a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾)))
163160, 162eleqtrd 2843 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
164 eqidd 2738 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
165163, 164jca 511 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
1661, 2, 3, 4, 154, 155, 165, 23, 77, 106evl1expd 22349 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((𝑌𝑖)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))
167166simprd 495 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((𝑌𝑖)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
168137adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ IDomn)
1691, 2, 3, 4, 154, 155, 163fveval1fvcl 22337 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
170 eldifsni 4790 . . . . . . . . . . 11 (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) → 𝑖𝑊)
171170adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖𝑊)
1725adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ Field)
173 aks6d1p5.2 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
174173adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑃 ∈ ℙ)
175 aks6d1c5.3 . . . . . . . . . . . 12 𝑃 = (chr‘𝐾)
176 aks6d1c5.4 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℕ0)
177176adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐴 ∈ ℕ0)
178 aks6d1c5.5 . . . . . . . . . . . . 13 (𝜑𝐴 < 𝑃)
179178adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐴 < 𝑃)
180 aks6d1c5.8 . . . . . . . . . . . 12 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
18117adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑊 ∈ (0...𝐴))
182172, 174, 175, 177, 179, 49, 23, 180, 105, 181aks6d1c5lem1 42137 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑖 = 𝑊 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾)))
183182necon3bid 2985 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑖𝑊 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾)))
184171, 183mpbid 232 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾))
185168, 169, 184, 106, 77idomnnzpownz 42133 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))) ≠ (0g𝐾))
186167, 185eqnetrd 3008 . . . . . . 7 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾))
18781, 137, 101, 156, 186idomnnzgmulnz 42134 . . . . . 6 (𝜑 → ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ≠ (0g𝐾))
188158, 187jca 511 . . . . 5 (𝜑 → (((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ∈ (Base‘𝐾) ∧ ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ≠ (0g𝐾)))
1893, 133, 148domnmuln0 20709 . . . . 5 ((𝐾 ∈ Domn ∧ ((1r𝐾) ∈ (Base‘𝐾) ∧ (1r𝐾) ≠ (0g𝐾)) ∧ (((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ∈ (Base‘𝐾) ∧ ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ≠ (0g𝐾))) → ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))) ≠ (0g𝐾))
190140, 151, 188, 189syl3anc 1373 . . . 4 (𝜑 → ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))) ≠ (0g𝐾))
191135, 190eqnetrd 3008 . . 3 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾))
192191necomd 2996 . 2 (𝜑 → (0g𝐾) ≠ (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
19341leidd 11829 . . . . . . . 8 (𝜑 → (𝑌𝑊) ≤ (𝑌𝑊))
194 eqid 2737 . . . . . . . 8 (quot1p𝐾) = (quot1p𝐾)
1955, 173, 175, 176, 178, 49, 23, 180, 29, 17, 36, 193, 194, 51, 21aks6d1c5lem3 42138 . . . . . . 7 (𝜑 → ((𝐺𝑌)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
196195eqcomd 2743 . . . . . 6 (𝜑 → ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = ((𝐺𝑌)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))))
197 aks6d1c5p2.3 . . . . . . 7 (𝜑 → (𝐺𝑌) = (𝐺𝑍))
198197oveq1d 7446 . . . . . 6 (𝜑 → ((𝐺𝑌)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝐺𝑍)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))))
199 aks6d1c5p2.2 . . . . . . 7 (𝜑𝑍 ∈ (ℕ0m (0...𝐴)))
200 elmapg 8879 . . . . . . . . . . . 12 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑍 ∈ (ℕ0m (0...𝐴)) ↔ 𝑍:(0...𝐴)⟶ℕ0))
20131, 32, 200syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ (ℕ0m (0...𝐴)) ↔ 𝑍:(0...𝐴)⟶ℕ0))
202199, 201mpbid 232 . . . . . . . . . 10 (𝜑𝑍:(0...𝐴)⟶ℕ0)
203202, 17ffvelcdmd 7105 . . . . . . . . 9 (𝜑 → (𝑍𝑊) ∈ ℕ0)
204203nn0red 12588 . . . . . . . 8 (𝜑 → (𝑍𝑊) ∈ ℝ)
205 aks6d1c5p2.5 . . . . . . . 8 (𝜑 → (𝑌𝑊) < (𝑍𝑊))
20641, 204, 205ltled 11409 . . . . . . 7 (𝜑 → (𝑌𝑊) ≤ (𝑍𝑊))
2075, 173, 175, 176, 178, 49, 23, 180, 199, 17, 36, 206, 194, 51, 21aks6d1c5lem3 42138 . . . . . 6 (𝜑 → ((𝐺𝑍)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
208196, 198, 2073eqtrd 2781 . . . . 5 (𝜑 → ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
209208fveq2d 6910 . . . 4 (𝜑 → ((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))) = ((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))))
210209fveq1d 6908 . . 3 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
211203nn0zd 12639 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑊) ∈ ℤ)
212211, 37zsubcld 12727 . . . . . . . . . . 11 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ)
213204, 41resubcld 11691 . . . . . . . . . . . 12 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℝ)
21441, 204posdifd 11850 . . . . . . . . . . . . 13 (𝜑 → ((𝑌𝑊) < (𝑍𝑊) ↔ 0 < ((𝑍𝑊) − (𝑌𝑊))))
215205, 214mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 < ((𝑍𝑊) − (𝑌𝑊)))
21639, 213, 215ltled 11409 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((𝑍𝑊) − (𝑌𝑊)))
217212, 216jca 511 . . . . . . . . . 10 (𝜑 → (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑍𝑊) − (𝑌𝑊))))
218 elnn0z 12626 . . . . . . . . . 10 (((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ0 ↔ (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑍𝑊) − (𝑌𝑊))))
219217, 218sylibr 234 . . . . . . . . 9 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ0)
2201, 2, 3, 4, 8, 20, 56, 23, 77, 219evl1expd 22349 . . . . . . . 8 (𝜑 → ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)))))
221220simpld 494 . . . . . . 7 (𝜑 → (((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
222220simprd 495 . . . . . . . 8 (𝜑 → (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))))
223 rhmghm 20484 . . . . . . . . . . . . 13 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
22412, 223syl 17 . . . . . . . . . . . 12 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
22519, 13eleqtrdi 2851 . . . . . . . . . . . 12 (𝜑 → (0 − 𝑊) ∈ (Base‘ℤring))
22618, 13eleqtrdi 2851 . . . . . . . . . . . 12 (𝜑𝑊 ∈ (Base‘ℤring))
227 eqid 2737 . . . . . . . . . . . . 13 (Base‘ℤring) = (Base‘ℤring)
228 eqid 2737 . . . . . . . . . . . . 13 (+g‘ℤring) = (+g‘ℤring)
229227, 228, 55ghmlin 19239 . . . . . . . . . . . 12 (((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) ∧ (0 − 𝑊) ∈ (Base‘ℤring) ∧ 𝑊 ∈ (Base‘ℤring)) → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)))
230224, 225, 226, 229syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)))
231 zringplusg 21465 . . . . . . . . . . . . . . . . 17 + = (+g‘ℤring)
232231eqcomi 2746 . . . . . . . . . . . . . . . 16 (+g‘ℤring) = +
233232a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (+g‘ℤring) = + )
234233oveqd 7448 . . . . . . . . . . . . . 14 (𝜑 → ((0 − 𝑊)(+g‘ℤring)𝑊) = ((0 − 𝑊) + 𝑊))
235234fveq2d 6910 . . . . . . . . . . . . 13 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = ((ℤRHom‘𝐾)‘((0 − 𝑊) + 𝑊)))
236 0cnd 11254 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℂ)
23718zcnd 12723 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ ℂ)
238236, 237npcand 11624 . . . . . . . . . . . . . 14 (𝜑 → ((0 − 𝑊) + 𝑊) = 0)
239238fveq2d 6910 . . . . . . . . . . . . 13 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊) + 𝑊)) = ((ℤRHom‘𝐾)‘0))
240235, 239eqtrd 2777 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = ((ℤRHom‘𝐾)‘0))
24110, 148zrh0 21524 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
2429, 241syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
243240, 242eqtrd 2777 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = (0g𝐾))
244230, 243eqtr3d 2779 . . . . . . . . . 10 (𝜑 → (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)) = (0g𝐾))
245244oveq2d 7447 . . . . . . . . 9 (𝜑 → (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))) = (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(0g𝐾)))
246219nn0zd 12639 . . . . . . . . . . . 12 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ)
247246, 215jca 511 . . . . . . . . . . 11 (𝜑 → (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 < ((𝑍𝑊) − (𝑌𝑊))))
248 elnnz 12623 . . . . . . . . . . 11 (((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ ↔ (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 < ((𝑍𝑊) − (𝑌𝑊))))
249247, 248sylibr 234 . . . . . . . . . 10 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ)
2509, 249, 77ringexp0nn 42135 . . . . . . . . 9 (𝜑 → (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(0g𝐾)) = (0g𝐾))
251245, 250eqtrd 2777 . . . . . . . 8 (𝜑 → (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))) = (0g𝐾))
252222, 251eqtrd 2777 . . . . . . 7 (𝜑 → (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾))
253221, 252jca 511 . . . . . 6 (𝜑 → ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾)))
254 eqid 2737 . . . . . . . . . . 11 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
255202adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑍:(0...𝐴)⟶ℕ0)
256255, 105ffvelcdmd 7105 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑍𝑖) ∈ ℕ0)
257254, 23, 102, 256, 160mulgnn0cld 19113 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
258257, 162eleqtrd 2843 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
259258ralrimiva 3146 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
26022, 27, 101, 259gsummptcl 19985 . . . . . . 7 (𝜑 → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
261 eqidd 2738 . . . . . . 7 (𝜑 → (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
262260, 261jca 511 . . . . . 6 (𝜑 → (((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
2631, 2, 3, 4, 8, 20, 253, 262, 132, 133evl1muld 22347 . . . . 5 (𝜑 → (((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((0g𝐾)(.r𝐾)(((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))
264263simprd 495 . . . 4 (𝜑 → (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((0g𝐾)(.r𝐾)(((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
2651, 2, 3, 4, 8, 20, 260fveval1fvcl 22337 . . . . 5 (𝜑 → (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
2663, 133, 148, 9, 265ringlzd 20292 . . . 4 (𝜑 → ((0g𝐾)(.r𝐾)(((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))) = (0g𝐾))
267264, 266eqtrd 2777 . . 3 (𝜑 → (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾))
268210, 267eqtrd 2777 . 2 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾))
269192, 268neeqtrd 3010 1 (𝜑 → (0g𝐾) ≠ (0g𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cdif 3948  {csn 4626   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985  0cc0 11155   + caddc 11158   < clt 11295  cle 11296  cmin 11492  cn 12266  0cn0 12526  cz 12613  ...cfz 13547  cprime 16708  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  .gcmg 19085   GrpHom cghm 19230  CMndccmn 19798  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231   RingHom crh 20469  Domncdomn 20692  IDomncidom 20693  DivRingcdr 20729  Fieldcfield 20730  ringczring 21457  ℤRHomczrh 21510  chrcchr 21512  algSccascl 21872  var1cv1 22177  Poly1cpl1 22178  eval1ce1 22318  quot1pcq1p 26167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-od 19546  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-domn 20695  df-idom 20696  df-drng 20731  df-field 20732  df-lmod 20860  df-lss 20930  df-lsp 20970  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-chr 21516  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-evl1 22320  df-mdeg 26094  df-deg1 26095  df-uc1p 26171  df-q1p 26172
This theorem is referenced by:  aks6d1c5  42140
  Copyright terms: Public domain W3C validator