Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5lem2 Structured version   Visualization version   GIF version

Theorem aks6d1c5lem2 42304
Description: Lemma for Claim 5, contradiction of different evaluations that map to the same. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c5p2.1 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
aks6d1c5p2.2 (𝜑𝑍 ∈ (ℕ0m (0...𝐴)))
aks6d1c5p2.3 (𝜑 → (𝐺𝑌) = (𝐺𝑍))
aks6d1c5p2.4 (𝜑𝑊 ∈ (0...𝐴))
aks6d1c5p2.5 (𝜑 → (𝑌𝑊) < (𝑍𝑊))
Assertion
Ref Expression
aks6d1c5lem2 (𝜑 → (0g𝐾) ≠ (0g𝐾))
Distinct variable groups:   ,𝑔,𝑖   𝐴,𝑔,𝑖   𝑔,𝐾,𝑖   𝑖,𝑊   𝑔,𝑋,𝑖   𝑔,𝑌,𝑖   𝑔,𝑍,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝑃(𝑔,𝑖)   𝐺(𝑔,𝑖)   𝑊(𝑔)

Proof of Theorem aks6d1c5lem2
StepHypRef Expression
1 eqid 2733 . . . . . 6 (eval1𝐾) = (eval1𝐾)
2 eqid 2733 . . . . . 6 (Poly1𝐾) = (Poly1𝐾)
3 eqid 2733 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 eqid 2733 . . . . . 6 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
5 aks6d1p5.1 . . . . . . 7 (𝜑𝐾 ∈ Field)
6 isfld 20664 . . . . . . . 8 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
76simprbi 496 . . . . . . 7 (𝐾 ∈ Field → 𝐾 ∈ CRing)
85, 7syl 17 . . . . . 6 (𝜑𝐾 ∈ CRing)
98crngringd 20172 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
10 eqid 2733 . . . . . . . . . 10 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
1110zrhrhm 21457 . . . . . . . . 9 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
129, 11syl 17 . . . . . . . 8 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
13 zringbas 21399 . . . . . . . . 9 ℤ = (Base‘ℤring)
1413, 3rhmf 20411 . . . . . . . 8 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
1512, 14syl 17 . . . . . . 7 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
16 0zd 12491 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
17 aks6d1c5p2.4 . . . . . . . . 9 (𝜑𝑊 ∈ (0...𝐴))
1817elfzelzd 13432 . . . . . . . 8 (𝜑𝑊 ∈ ℤ)
1916, 18zsubcld 12592 . . . . . . 7 (𝜑 → (0 − 𝑊) ∈ ℤ)
2015, 19ffvelcdmd 7027 . . . . . 6 (𝜑 → ((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘𝐾))
21 eqid 2733 . . . . . . . . 9 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
2221, 4mgpbas 20071 . . . . . . . 8 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
23 aks6d1c5.7 . . . . . . . 8 = (.g‘(mulGrp‘(Poly1𝐾)))
242ply1crng 22130 . . . . . . . . . . 11 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
258, 24syl 17 . . . . . . . . . 10 (𝜑 → (Poly1𝐾) ∈ CRing)
2621crngmgp 20167 . . . . . . . . . 10 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
2725, 26syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
2827cmnmndd 19724 . . . . . . . 8 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
29 aks6d1c5p2.1 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ (ℕ0m (0...𝐴)))
30 nn0ex 12398 . . . . . . . . . . . . . . . 16 0 ∈ V
3130a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℕ0 ∈ V)
32 ovexd 7390 . . . . . . . . . . . . . . 15 (𝜑 → (0...𝐴) ∈ V)
33 elmapg 8772 . . . . . . . . . . . . . . 15 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
3431, 32, 33syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 ∈ (ℕ0m (0...𝐴)) ↔ 𝑌:(0...𝐴)⟶ℕ0))
3529, 34mpbid 232 . . . . . . . . . . . . 13 (𝜑𝑌:(0...𝐴)⟶ℕ0)
3635, 17ffvelcdmd 7027 . . . . . . . . . . . 12 (𝜑 → (𝑌𝑊) ∈ ℕ0)
3736nn0zd 12504 . . . . . . . . . . 11 (𝜑 → (𝑌𝑊) ∈ ℤ)
3837, 37zsubcld 12592 . . . . . . . . . 10 (𝜑 → ((𝑌𝑊) − (𝑌𝑊)) ∈ ℤ)
39 0red 11126 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
4039leidd 11694 . . . . . . . . . . 11 (𝜑 → 0 ≤ 0)
4136nn0red 12454 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑊) ∈ ℝ)
4241recnd 11151 . . . . . . . . . . . . 13 (𝜑 → (𝑌𝑊) ∈ ℂ)
4342subidd 11471 . . . . . . . . . . . 12 (𝜑 → ((𝑌𝑊) − (𝑌𝑊)) = 0)
4443eqcomd 2739 . . . . . . . . . . 11 (𝜑 → 0 = ((𝑌𝑊) − (𝑌𝑊)))
4540, 44breqtrd 5121 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝑌𝑊) − (𝑌𝑊)))
4638, 45jca 511 . . . . . . . . 9 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − (𝑌𝑊))))
47 elnn0z 12492 . . . . . . . . 9 (((𝑌𝑊) − (𝑌𝑊)) ∈ ℕ0 ↔ (((𝑌𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑌𝑊) − (𝑌𝑊))))
4846, 47sylibr 234 . . . . . . . 8 (𝜑 → ((𝑌𝑊) − (𝑌𝑊)) ∈ ℕ0)
49 aks6d1c5.6 . . . . . . . . . . 11 𝑋 = (var1𝐾)
501, 49, 3, 2, 4, 8, 20evl1vard 22272 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘𝑋)‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((ℤRHom‘𝐾)‘(0 − 𝑊))))
51 eqid 2733 . . . . . . . . . . 11 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
5215, 18ffvelcdmd 7027 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝐾)‘𝑊) ∈ (Base‘𝐾))
531, 2, 3, 51, 4, 8, 52, 20evl1scad 22270 . . . . . . . . . 10 (𝜑 → (((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((ℤRHom‘𝐾)‘𝑊)))
54 eqid 2733 . . . . . . . . . 10 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
55 eqid 2733 . . . . . . . . . 10 (+g𝐾) = (+g𝐾)
561, 2, 3, 4, 8, 20, 50, 53, 54, 55evl1addd 22276 . . . . . . . . 9 (𝜑 → ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))))
5756simpld 494 . . . . . . . 8 (𝜑 → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)))
5822, 23, 28, 48, 57mulgnn0cld 19016 . . . . . . 7 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
5943oveq1d 7370 . . . . . . . . . . 11 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0 (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))
60 eqid 2733 . . . . . . . . . . . . 13 (0g‘(mulGrp‘(Poly1𝐾))) = (0g‘(mulGrp‘(Poly1𝐾)))
6122, 60, 23mulg0 18995 . . . . . . . . . . . 12 ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))) ∈ (Base‘(Poly1𝐾)) → (0 (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0g‘(mulGrp‘(Poly1𝐾))))
6257, 61syl 17 . . . . . . . . . . 11 (𝜑 → (0 (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0g‘(mulGrp‘(Poly1𝐾))))
6359, 62eqtrd 2768 . . . . . . . . . 10 (𝜑 → (((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) = (0g‘(mulGrp‘(Poly1𝐾))))
6463fveq2d 6835 . . . . . . . . 9 (𝜑 → ((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾)))))
6564fveq1d 6833 . . . . . . . 8 (𝜑 → (((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
66 eqid 2733 . . . . . . . . . . . . . 14 (1r‘(Poly1𝐾)) = (1r‘(Poly1𝐾))
6721, 66ringidval 20109 . . . . . . . . . . . . 13 (1r‘(Poly1𝐾)) = (0g‘(mulGrp‘(Poly1𝐾)))
6867eqcomi 2742 . . . . . . . . . . . 12 (0g‘(mulGrp‘(Poly1𝐾))) = (1r‘(Poly1𝐾))
6968a1i 11 . . . . . . . . . . 11 (𝜑 → (0g‘(mulGrp‘(Poly1𝐾))) = (1r‘(Poly1𝐾)))
7069fveq2d 6835 . . . . . . . . . 10 (𝜑 → ((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾)))) = ((eval1𝐾)‘(1r‘(Poly1𝐾))))
7170fveq1d 6833 . . . . . . . . 9 (𝜑 → (((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(1r‘(Poly1𝐾)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
722, 49, 21, 23ply1idvr1 22229 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (0 𝑋) = (1r‘(Poly1𝐾)))
7372eqcomd 2739 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (1r‘(Poly1𝐾)) = (0 𝑋))
749, 73syl 17 . . . . . . . . . . . 12 (𝜑 → (1r‘(Poly1𝐾)) = (0 𝑋))
7574fveq2d 6835 . . . . . . . . . . 11 (𝜑 → ((eval1𝐾)‘(1r‘(Poly1𝐾))) = ((eval1𝐾)‘(0 𝑋)))
7675fveq1d 6833 . . . . . . . . . 10 (𝜑 → (((eval1𝐾)‘(1r‘(Poly1𝐾)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
77 eqid 2733 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
7844, 48eqeltrd 2833 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℕ0)
791, 2, 3, 4, 8, 20, 50, 23, 77, 78evl1expd 22280 . . . . . . . . . . . 12 (𝜑 → ((0 𝑋) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊)))))
8079simprd 495 . . . . . . . . . . 11 (𝜑 → (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))))
81 eqid 2733 . . . . . . . . . . . . . . . 16 (mulGrp‘𝐾) = (mulGrp‘𝐾)
8281, 3mgpbas 20071 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
8382a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
8420, 83eleqtrd 2835 . . . . . . . . . . . . 13 (𝜑 → ((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘(mulGrp‘𝐾)))
85 eqid 2733 . . . . . . . . . . . . . 14 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
86 eqid 2733 . . . . . . . . . . . . . 14 (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐾))
8785, 86, 77mulg0 18995 . . . . . . . . . . . . 13 (((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘(mulGrp‘𝐾)) → (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g‘(mulGrp‘𝐾)))
8884, 87syl 17 . . . . . . . . . . . 12 (𝜑 → (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g‘(mulGrp‘𝐾)))
89 eqid 2733 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
9081, 89ringidval 20109 . . . . . . . . . . . . . 14 (1r𝐾) = (0g‘(mulGrp‘𝐾))
9190eqcomi 2742 . . . . . . . . . . . . 13 (0g‘(mulGrp‘𝐾)) = (1r𝐾)
9291a1i 11 . . . . . . . . . . . 12 (𝜑 → (0g‘(mulGrp‘𝐾)) = (1r𝐾))
9388, 92eqtrd 2768 . . . . . . . . . . 11 (𝜑 → (0(.g‘(mulGrp‘𝐾))((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9480, 93eqtrd 2768 . . . . . . . . . 10 (𝜑 → (((eval1𝐾)‘(0 𝑋))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9576, 94eqtrd 2768 . . . . . . . . 9 (𝜑 → (((eval1𝐾)‘(1r‘(Poly1𝐾)))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9671, 95eqtrd 2768 . . . . . . . 8 (𝜑 → (((eval1𝐾)‘(0g‘(mulGrp‘(Poly1𝐾))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9765, 96eqtrd 2768 . . . . . . 7 (𝜑 → (((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾))
9858, 97jca 511 . . . . . 6 (𝜑 → ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (1r𝐾)))
99 fzfid 13887 . . . . . . . . 9 (𝜑 → (0...𝐴) ∈ Fin)
100 diffi 9095 . . . . . . . . 9 ((0...𝐴) ∈ Fin → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
10199, 100syl 17 . . . . . . . 8 (𝜑 → ((0...𝐴) ∖ {𝑊}) ∈ Fin)
10228adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
10335adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑌:(0...𝐴)⟶ℕ0)
104 eldifi 4080 . . . . . . . . . . . 12 (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) → 𝑖 ∈ (0...𝐴))
105104adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ (0...𝐴))
106103, 105ffvelcdmd 7027 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑌𝑖) ∈ ℕ0)
10725crngringd 20172 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Ring)
108 ringcmn 20208 . . . . . . . . . . . . . 14 ((Poly1𝐾) ∈ Ring → (Poly1𝐾) ∈ CMnd)
109107, 108syl 17 . . . . . . . . . . . . 13 (𝜑 → (Poly1𝐾) ∈ CMnd)
110 cmnmnd 19717 . . . . . . . . . . . . 13 ((Poly1𝐾) ∈ CMnd → (Poly1𝐾) ∈ Mnd)
111109, 110syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Mnd)
112111adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Poly1𝐾) ∈ Mnd)
11350simpld 494 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (Base‘(Poly1𝐾)))
114113adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑋 ∈ (Base‘(Poly1𝐾)))
1159adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ Ring)
116115, 11, 143syl 18 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
117105elfzelzd 13432 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖 ∈ ℤ)
118116, 117ffvelcdmd 7027 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
1192, 51, 3, 4ply1sclcl 22219 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
120115, 118, 119syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
1214, 54mndcl 18658 . . . . . . . . . . 11 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
122112, 114, 120, 121syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
12322, 23, 102, 106, 122mulgnn0cld 19016 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
124123ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
12522, 27, 101, 124gsummptcl 19887 . . . . . . 7 (𝜑 → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
126124r19.21bi 3225 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
127126ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
1281, 2, 21, 3, 4, 81, 8, 20, 127, 101evl1gprodd 42283 . . . . . . 7 (𝜑 → (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))
129125, 128jca 511 . . . . . 6 (𝜑 → (((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))))
130 eqid 2733 . . . . . . . 8 (.r‘(Poly1𝐾)) = (.r‘(Poly1𝐾))
13121, 130mgpplusg 20070 . . . . . . 7 (.r‘(Poly1𝐾)) = (+g‘(mulGrp‘(Poly1𝐾)))
132131eqcomi 2742 . . . . . 6 (+g‘(mulGrp‘(Poly1𝐾))) = (.r‘(Poly1𝐾))
133 eqid 2733 . . . . . 6 (.r𝐾) = (.r𝐾)
1341, 2, 3, 4, 8, 20, 98, 129, 132, 133evl1muld 22278 . . . . 5 (𝜑 → (((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))))
135134simprd 495 . . . 4 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))))
136 fldidom 20695 . . . . . . . 8 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
1375, 136syl 17 . . . . . . 7 (𝜑𝐾 ∈ IDomn)
138 isidom 20649 . . . . . . 7 (𝐾 ∈ IDomn ↔ (𝐾 ∈ CRing ∧ 𝐾 ∈ Domn))
139137, 138sylib 218 . . . . . 6 (𝜑 → (𝐾 ∈ CRing ∧ 𝐾 ∈ Domn))
140139simprd 495 . . . . 5 (𝜑𝐾 ∈ Domn)
14190a1i 11 . . . . . . 7 (𝜑 → (1r𝐾) = (0g‘(mulGrp‘𝐾)))
14281ringmgp 20165 . . . . . . . . 9 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
1439, 142syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
14482, 86mndidcl 18665 . . . . . . . 8 ((mulGrp‘𝐾) ∈ Mnd → (0g‘(mulGrp‘𝐾)) ∈ (Base‘𝐾))
145143, 144syl 17 . . . . . . 7 (𝜑 → (0g‘(mulGrp‘𝐾)) ∈ (Base‘𝐾))
146141, 145eqeltrd 2833 . . . . . 6 (𝜑 → (1r𝐾) ∈ (Base‘𝐾))
1475flddrngd 20665 . . . . . . 7 (𝜑𝐾 ∈ DivRing)
148 eqid 2733 . . . . . . . 8 (0g𝐾) = (0g𝐾)
149148, 89drngunz 20671 . . . . . . 7 (𝐾 ∈ DivRing → (1r𝐾) ≠ (0g𝐾))
150147, 149syl 17 . . . . . 6 (𝜑 → (1r𝐾) ≠ (0g𝐾))
151146, 150jca 511 . . . . 5 (𝜑 → ((1r𝐾) ∈ (Base‘𝐾) ∧ (1r𝐾) ≠ (0g𝐾)))
15281crngmgp 20167 . . . . . . . 8 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
1538, 152syl 17 . . . . . . 7 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
1548adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ CRing)
15520adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((ℤRHom‘𝐾)‘(0 − 𝑊)) ∈ (Base‘𝐾))
1561, 2, 3, 4, 154, 155, 123fveval1fvcl 22268 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
157156ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})(((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
15882, 153, 101, 157gsummptcl 19887 . . . . . 6 (𝜑 → ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ∈ (Base‘𝐾))
15922a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾))))
160122, 159eleqtrd 2835 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
16122eqcomi 2742 . . . . . . . . . . . . 13 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
162161a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾)))
163160, 162eleqtrd 2835 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
164 eqidd 2734 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
165163, 164jca 511 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
1661, 2, 3, 4, 154, 155, 165, 23, 77, 106evl1expd 22280 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((𝑌𝑖)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))
167166simprd 495 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((𝑌𝑖)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
168137adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ IDomn)
1691, 2, 3, 4, 154, 155, 163fveval1fvcl 22268 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
170 eldifsni 4743 . . . . . . . . . . 11 (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) → 𝑖𝑊)
171170adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑖𝑊)
1725adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐾 ∈ Field)
173 aks6d1p5.2 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
174173adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑃 ∈ ℙ)
175 aks6d1c5.3 . . . . . . . . . . . 12 𝑃 = (chr‘𝐾)
176 aks6d1c5.4 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℕ0)
177176adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐴 ∈ ℕ0)
178 aks6d1c5.5 . . . . . . . . . . . . 13 (𝜑𝐴 < 𝑃)
179178adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝐴 < 𝑃)
180 aks6d1c5.8 . . . . . . . . . . . 12 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
18117adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑊 ∈ (0...𝐴))
182172, 174, 175, 177, 179, 49, 23, 180, 105, 181aks6d1c5lem1 42302 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑖 = 𝑊 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾)))
183182necon3bid 2973 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑖𝑊 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾)))
184171, 183mpbid 232 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾))
185168, 169, 184, 106, 77idomnnzpownz 42298 . . . . . . . 8 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑌𝑖)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))) ≠ (0g𝐾))
186167, 185eqnetrd 2996 . . . . . . 7 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾))
18781, 137, 101, 156, 186idomnnzgmulnz 42299 . . . . . 6 (𝜑 → ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ≠ (0g𝐾))
188158, 187jca 511 . . . . 5 (𝜑 → (((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ∈ (Base‘𝐾) ∧ ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ≠ (0g𝐾)))
1893, 133, 148domnmuln0 20633 . . . . 5 ((𝐾 ∈ Domn ∧ ((1r𝐾) ∈ (Base‘𝐾) ∧ (1r𝐾) ≠ (0g𝐾)) ∧ (((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ∈ (Base‘𝐾) ∧ ((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))) ≠ (0g𝐾))) → ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))) ≠ (0g𝐾))
190140, 151, 188, 189syl3anc 1373 . . . 4 (𝜑 → ((1r𝐾)(.r𝐾)((mulGrp‘𝐾) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ (((eval1𝐾)‘((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))) ≠ (0g𝐾))
191135, 190eqnetrd 2996 . . 3 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ≠ (0g𝐾))
192191necomd 2984 . 2 (𝜑 → (0g𝐾) ≠ (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
19341leidd 11694 . . . . . . . 8 (𝜑 → (𝑌𝑊) ≤ (𝑌𝑊))
194 eqid 2733 . . . . . . . 8 (quot1p𝐾) = (quot1p𝐾)
1955, 173, 175, 176, 178, 49, 23, 180, 29, 17, 36, 193, 194, 51, 21aks6d1c5lem3 42303 . . . . . . 7 (𝜑 → ((𝐺𝑌)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
196195eqcomd 2739 . . . . . 6 (𝜑 → ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = ((𝐺𝑌)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))))
197 aks6d1c5p2.3 . . . . . . 7 (𝜑 → (𝐺𝑌) = (𝐺𝑍))
198197oveq1d 7370 . . . . . 6 (𝜑 → ((𝐺𝑌)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((𝐺𝑍)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))))
199 aks6d1c5p2.2 . . . . . . 7 (𝜑𝑍 ∈ (ℕ0m (0...𝐴)))
200 elmapg 8772 . . . . . . . . . . . 12 ((ℕ0 ∈ V ∧ (0...𝐴) ∈ V) → (𝑍 ∈ (ℕ0m (0...𝐴)) ↔ 𝑍:(0...𝐴)⟶ℕ0))
20131, 32, 200syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ (ℕ0m (0...𝐴)) ↔ 𝑍:(0...𝐴)⟶ℕ0))
202199, 201mpbid 232 . . . . . . . . . 10 (𝜑𝑍:(0...𝐴)⟶ℕ0)
203202, 17ffvelcdmd 7027 . . . . . . . . 9 (𝜑 → (𝑍𝑊) ∈ ℕ0)
204203nn0red 12454 . . . . . . . 8 (𝜑 → (𝑍𝑊) ∈ ℝ)
205 aks6d1c5p2.5 . . . . . . . 8 (𝜑 → (𝑌𝑊) < (𝑍𝑊))
20641, 204, 205ltled 11272 . . . . . . 7 (𝜑 → (𝑌𝑊) ≤ (𝑍𝑊))
2075, 173, 175, 176, 178, 49, 23, 180, 199, 17, 36, 206, 194, 51, 21aks6d1c5lem3 42303 . . . . . 6 (𝜑 → ((𝐺𝑍)(quot1p𝐾)((𝑌𝑊) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
208196, 198, 2073eqtrd 2772 . . . . 5 (𝜑 → ((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
209208fveq2d 6835 . . . 4 (𝜑 → ((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))) = ((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))))
210209fveq1d 6833 . . 3 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
211203nn0zd 12504 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑊) ∈ ℤ)
212211, 37zsubcld 12592 . . . . . . . . . . 11 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ)
213204, 41resubcld 11556 . . . . . . . . . . . 12 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℝ)
21441, 204posdifd 11715 . . . . . . . . . . . . 13 (𝜑 → ((𝑌𝑊) < (𝑍𝑊) ↔ 0 < ((𝑍𝑊) − (𝑌𝑊))))
215205, 214mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 < ((𝑍𝑊) − (𝑌𝑊)))
21639, 213, 215ltled 11272 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((𝑍𝑊) − (𝑌𝑊)))
217212, 216jca 511 . . . . . . . . . 10 (𝜑 → (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑍𝑊) − (𝑌𝑊))))
218 elnn0z 12492 . . . . . . . . . 10 (((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ0 ↔ (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 ≤ ((𝑍𝑊) − (𝑌𝑊))))
219217, 218sylibr 234 . . . . . . . . 9 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ0)
2201, 2, 3, 4, 8, 20, 56, 23, 77, 219evl1expd 22280 . . . . . . . 8 (𝜑 → ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)))))
221220simpld 494 . . . . . . 7 (𝜑 → (((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)))
222220simprd 495 . . . . . . . 8 (𝜑 → (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))))
223 rhmghm 20410 . . . . . . . . . . . . 13 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
22412, 223syl 17 . . . . . . . . . . . 12 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
22519, 13eleqtrdi 2843 . . . . . . . . . . . 12 (𝜑 → (0 − 𝑊) ∈ (Base‘ℤring))
22618, 13eleqtrdi 2843 . . . . . . . . . . . 12 (𝜑𝑊 ∈ (Base‘ℤring))
227 eqid 2733 . . . . . . . . . . . . 13 (Base‘ℤring) = (Base‘ℤring)
228 eqid 2733 . . . . . . . . . . . . 13 (+g‘ℤring) = (+g‘ℤring)
229227, 228, 55ghmlin 19141 . . . . . . . . . . . 12 (((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) ∧ (0 − 𝑊) ∈ (Base‘ℤring) ∧ 𝑊 ∈ (Base‘ℤring)) → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)))
230224, 225, 226, 229syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)))
231 zringplusg 21400 . . . . . . . . . . . . . . . . 17 + = (+g‘ℤring)
232231eqcomi 2742 . . . . . . . . . . . . . . . 16 (+g‘ℤring) = +
233232a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (+g‘ℤring) = + )
234233oveqd 7372 . . . . . . . . . . . . . 14 (𝜑 → ((0 − 𝑊)(+g‘ℤring)𝑊) = ((0 − 𝑊) + 𝑊))
235234fveq2d 6835 . . . . . . . . . . . . 13 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = ((ℤRHom‘𝐾)‘((0 − 𝑊) + 𝑊)))
236 0cnd 11116 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℂ)
23718zcnd 12588 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ ℂ)
238236, 237npcand 11487 . . . . . . . . . . . . . 14 (𝜑 → ((0 − 𝑊) + 𝑊) = 0)
239238fveq2d 6835 . . . . . . . . . . . . 13 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊) + 𝑊)) = ((ℤRHom‘𝐾)‘0))
240235, 239eqtrd 2768 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = ((ℤRHom‘𝐾)‘0))
24110, 148zrh0 21459 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
2429, 241syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
243240, 242eqtrd 2768 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝑊)(+g‘ℤring)𝑊)) = (0g𝐾))
244230, 243eqtr3d 2770 . . . . . . . . . 10 (𝜑 → (((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊)) = (0g𝐾))
245244oveq2d 7371 . . . . . . . . 9 (𝜑 → (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))) = (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(0g𝐾)))
246219nn0zd 12504 . . . . . . . . . . . 12 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ)
247246, 215jca 511 . . . . . . . . . . 11 (𝜑 → (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 < ((𝑍𝑊) − (𝑌𝑊))))
248 elnnz 12489 . . . . . . . . . . 11 (((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ ↔ (((𝑍𝑊) − (𝑌𝑊)) ∈ ℤ ∧ 0 < ((𝑍𝑊) − (𝑌𝑊))))
249247, 248sylibr 234 . . . . . . . . . 10 (𝜑 → ((𝑍𝑊) − (𝑌𝑊)) ∈ ℕ)
2509, 249, 77ringexp0nn 42300 . . . . . . . . 9 (𝜑 → (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(0g𝐾)) = (0g𝐾))
251245, 250eqtrd 2768 . . . . . . . 8 (𝜑 → (((𝑍𝑊) − (𝑌𝑊))(.g‘(mulGrp‘𝐾))(((ℤRHom‘𝐾)‘(0 − 𝑊))(+g𝐾)((ℤRHom‘𝐾)‘𝑊))) = (0g𝐾))
252222, 251eqtrd 2768 . . . . . . 7 (𝜑 → (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾))
253221, 252jca 511 . . . . . 6 (𝜑 → ((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊)))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾)))
254 eqid 2733 . . . . . . . . . . 11 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
255202adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → 𝑍:(0...𝐴)⟶ℕ0)
256255, 105ffvelcdmd 7027 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → (𝑍𝑖) ∈ ℕ0)
257254, 23, 102, 256, 160mulgnn0cld 19016 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
258257, 162eleqtrd 2835 . . . . . . . . 9 ((𝜑𝑖 ∈ ((0...𝐴) ∖ {𝑊})) → ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
259258ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ ((0...𝐴) ∖ {𝑊})((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
26022, 27, 101, 259gsummptcl 19887 . . . . . . 7 (𝜑 → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
261 eqidd 2734 . . . . . . 7 (𝜑 → (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))
262260, 261jca 511 . . . . . 6 (𝜑 → (((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
2631, 2, 3, 4, 8, 20, 253, 262, 132, 133evl1muld 22278 . . . . 5 (𝜑 → (((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((0g𝐾)(.r𝐾)(((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))))))
264263simprd 495 . . . 4 (𝜑 → (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = ((0g𝐾)(.r𝐾)(((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))))
2651, 2, 3, 4, 8, 20, 260fveval1fvcl 22268 . . . . 5 (𝜑 → (((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) ∈ (Base‘𝐾))
2663, 133, 148, 9, 265ringlzd 20221 . . . 4 (𝜑 → ((0g𝐾)(.r𝐾)(((eval1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊)))) = (0g𝐾))
267264, 266eqtrd 2768 . . 3 (𝜑 → (((eval1𝐾)‘((((𝑍𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑍𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾))
268210, 267eqtrd 2768 . 2 (𝜑 → (((eval1𝐾)‘((((𝑌𝑊) − (𝑌𝑊)) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑊))))(+g‘(mulGrp‘(Poly1𝐾)))((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))‘((ℤRHom‘𝐾)‘(0 − 𝑊))) = (0g𝐾))
269192, 268neeqtrd 2998 1 (𝜑 → (0g𝐾) ≠ (0g𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  cdif 3895  {csn 4577   class class class wbr 5095  cmpt 5176  wf 6485  cfv 6489  (class class class)co 7355  m cmap 8759  Fincfn 8879  0cc0 11017   + caddc 11020   < clt 11157  cle 11158  cmin 11355  cn 12136  0cn0 12392  cz 12479  ...cfz 13414  cprime 16589  Basecbs 17127  +gcplusg 17168  .rcmulr 17169  0gc0g 17350   Σg cgsu 17351  Mndcmnd 18650  .gcmg 18988   GrpHom cghm 19132  CMndccmn 19700  mulGrpcmgp 20066  1rcur 20107  Ringcrg 20159  CRingccrg 20160   RingHom crh 20396  Domncdomn 20616  IDomncidom 20617  DivRingcdr 20653  Fieldcfield 20654  ringczring 21392  ℤRHomczrh 21445  chrcchr 21447  algSccascl 21798  var1cv1 22107  Poly1cpl1 22108  eval1ce1 22249  quot1pcq1p 26080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096  ax-mulf 11097
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-dvds 16171  df-prm 16590  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-0g 17352  df-gsum 17353  df-prds 17358  df-pws 17360  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-ghm 19133  df-cntz 19237  df-od 19448  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-srg 20113  df-ring 20161  df-cring 20162  df-oppr 20264  df-dvdsr 20284  df-unit 20285  df-invr 20315  df-rhm 20399  df-nzr 20437  df-subrng 20470  df-subrg 20494  df-rlreg 20618  df-domn 20619  df-idom 20620  df-drng 20655  df-field 20656  df-lmod 20804  df-lss 20874  df-lsp 20914  df-cnfld 21301  df-zring 21393  df-zrh 21449  df-chr 21451  df-assa 21799  df-asp 21800  df-ascl 21801  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-evls 22020  df-evl 22021  df-psr1 22111  df-vr1 22112  df-ply1 22113  df-coe1 22114  df-evl1 22251  df-mdeg 26007  df-deg1 26008  df-uc1p 26084  df-q1p 26085
This theorem is referenced by:  aks6d1c5  42305
  Copyright terms: Public domain W3C validator