![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem2 | Structured version Visualization version GIF version |
Description: Lemma for algextdeg 33085. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
algextdeg.d | ⊢ 𝐷 = ( deg1 ‘𝐸) |
algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) |
algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) |
algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) |
Ref | Expression |
---|---|
algextdeglem2 | ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algextdeg.e | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
2 | issdrg 20551 | . . . . . 6 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
3 | 1, 2 | sylib 217 | . . . . 5 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
4 | 3 | simp2d 1142 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
5 | eqid 2731 | . . . . 5 ⊢ ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹) | |
6 | 5 | sralmod 20958 | . . . 4 ⊢ (𝐹 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod) |
8 | eqid 2731 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
9 | eqid 2731 | . . . 4 ⊢ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
10 | algextdeg.f | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ Field) | |
11 | 10 | flddrngd 20516 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
12 | subrgsubg 20471 | . . . . . . . . 9 ⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) | |
13 | 8 | subgss 19047 | . . . . . . . . 9 ⊢ (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) |
14 | 4, 12, 13 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
15 | algextdeglem.o | . . . . . . . . . . 11 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
16 | algextdeg.k | . . . . . . . . . . 11 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
17 | eqid 2731 | . . . . . . . . . . 11 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
18 | 10 | fldcrngd 20517 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐸 ∈ CRing) |
19 | 15, 16, 8, 17, 18, 4 | irngssv 33056 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
20 | algextdeg.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
21 | 19, 20 | sseldd 3983 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
22 | 21 | snssd 4812 | . . . . . . . 8 ⊢ (𝜑 → {𝐴} ⊆ (Base‘𝐸)) |
23 | 14, 22 | unssd 4186 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸)) |
24 | 8, 11, 23 | fldgensdrg 32689 | . . . . . 6 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸)) |
25 | issdrg 20551 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing)) | |
26 | 24, 25 | sylib 217 | . . . . 5 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing)) |
27 | 26 | simp2d 1142 | . . . 4 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸)) |
28 | 8, 11, 23 | fldgenssid 32688 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
29 | 28 | unssad 4187 | . . . . 5 ⊢ (𝜑 → 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
30 | 9 | subsubrg 20492 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐹 ∈ (SubRing‘(𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))) ↔ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
31 | 30 | biimpar 477 | . . . . 5 ⊢ (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))) → 𝐹 ∈ (SubRing‘(𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
32 | 27, 4, 29, 31 | syl12anc 834 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘(𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
33 | 5, 8, 9, 27, 32 | lsssra 32978 | . . 3 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹))) |
34 | algextdeglem.y | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝐾) | |
35 | 16 | fveq2i 6894 | . . . . . . 7 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
36 | 34, 35 | eqtri 2759 | . . . . . 6 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
37 | algextdeglem.u | . . . . . 6 ⊢ 𝑈 = (Base‘𝑃) | |
38 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐸 ∈ Field) |
39 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐹 ∈ (SubDRing‘𝐸)) |
40 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐴 ∈ (Base‘𝐸)) |
41 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝑝 ∈ 𝑈) | |
42 | 8, 15, 36, 37, 38, 39, 40, 41 | evls1fldgencl 33048 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
43 | 42 | ralrimiva 3145 | . . . 4 ⊢ (𝜑 → ∀𝑝 ∈ 𝑈 ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
44 | algextdeglem.g | . . . . 5 ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) | |
45 | 44 | rnmptss 7124 | . . . 4 ⊢ (∀𝑝 ∈ 𝑈 ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
46 | 43, 45 | syl 17 | . . 3 ⊢ (𝜑 → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
47 | 15, 36, 8, 37, 18, 4, 21, 44, 5 | evls1maplmhm 33064 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹))) |
48 | eqid 2731 | . . . . 5 ⊢ (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
49 | eqid 2731 | . . . . 5 ⊢ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) = (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) | |
50 | 48, 49 | reslmhm2b 20813 | . . . 4 ⊢ ((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → (𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)) ↔ 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))))) |
51 | 50 | biimpa 476 | . . 3 ⊢ (((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∧ 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹))) → 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
52 | 7, 33, 46, 47, 51 | syl31anc 1372 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
53 | algextdeg.l | . . . 4 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
54 | 8, 11, 23 | fldgenssv 32690 | . . . 4 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) |
55 | 8, 53, 54, 29, 10 | resssra 32977 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))) |
56 | 55 | oveq2d 7428 | . 2 ⊢ (𝜑 → (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)) = (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
57 | 52, 56 | eleqtrrd 2835 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∪ cun 3946 ⊆ wss 3948 {csn 4628 ∪ cuni 4908 ↦ cmpt 5231 ◡ccnv 5675 ran crn 5677 “ cima 5679 ‘cfv 6543 (class class class)co 7412 [cec 8707 Basecbs 17151 ↾s cress 17180 0gc0g 17392 /s cqus 17458 SubGrpcsubg 19040 ~QG cqg 19042 SubRingcsubrg 20461 DivRingcdr 20504 Fieldcfield 20505 SubDRingcsdrg 20549 LModclmod 20618 LSubSpclss 20690 LMHom clmhm 20778 subringAlg csra 20930 Poly1cpl1 21933 evalSub1 ces1 22065 deg1 cdg1 25818 fldGen cfldgen 32685 IntgRing cirng 33051 minPoly cminply 33060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-ofr 7675 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-sup 9443 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-fzo 13635 df-seq 13974 df-hash 14298 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-hom 17228 df-cco 17229 df-0g 17394 df-gsum 17395 df-prds 17400 df-pws 17402 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-mhm 18708 df-submnd 18709 df-grp 18861 df-minusg 18862 df-sbg 18863 df-mulg 18991 df-subg 19043 df-ghm 19132 df-cntz 19226 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-srg 20085 df-ring 20133 df-cring 20134 df-oppr 20229 df-dvdsr 20252 df-unit 20253 df-invr 20283 df-dvr 20296 df-rhm 20367 df-subrng 20438 df-subrg 20463 df-drng 20506 df-field 20507 df-sdrg 20550 df-lmod 20620 df-lss 20691 df-lsp 20731 df-lmhm 20781 df-sra 20934 df-assa 21631 df-asp 21632 df-ascl 21633 df-psr 21685 df-mvr 21686 df-mpl 21687 df-opsr 21689 df-evls 21859 df-evl 21860 df-psr1 21936 df-vr1 21937 df-ply1 21938 df-coe1 21939 df-evls1 22067 df-evl1 22068 df-mon1 25897 df-fldgen 32686 df-irng 33052 |
This theorem is referenced by: algextdeglem3 33079 algextdeglem4 33080 |
Copyright terms: Public domain | W3C validator |