Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem2 Structured version   Visualization version   GIF version

Theorem algextdeglem2 33803
Description: Lemma for algextdeg 33810. Both the ring of polynomials 𝑃 and the field 𝐿 generated by 𝐾 and the algebraic element 𝐴 can be considered as modules over the elements of 𝐹. Then, the evaluation map 𝐺, mapping polynomials to their evaluation at 𝐴, is a module homomorphism between those modules. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
Assertion
Ref Expression
algextdeglem2 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝐸(𝑥)   𝐾(𝑥)   𝑀(𝑥,𝑝)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem2
StepHypRef Expression
1 algextdeg.e . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
2 issdrg 20712 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
31, 2sylib 218 . . . . 5 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
43simp2d 1143 . . . 4 (𝜑𝐹 ∈ (SubRing‘𝐸))
5 eqid 2733 . . . . 5 ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹)
65sralmod 21130 . . . 4 (𝐹 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod)
74, 6syl 17 . . 3 (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod)
8 eqid 2733 . . . 4 (Base‘𝐸) = (Base‘𝐸)
9 eqid 2733 . . . 4 (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
10 algextdeg.f . . . . . . . 8 (𝜑𝐸 ∈ Field)
1110flddrngd 20665 . . . . . . 7 (𝜑𝐸 ∈ DivRing)
12 subrgsubg 20501 . . . . . . . . 9 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
138subgss 19048 . . . . . . . . 9 (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸))
144, 12, 133syl 18 . . . . . . . 8 (𝜑𝐹 ⊆ (Base‘𝐸))
15 algextdeglem.o . . . . . . . . . . 11 𝑂 = (𝐸 evalSub1 𝐹)
16 algextdeg.k . . . . . . . . . . 11 𝐾 = (𝐸s 𝐹)
17 eqid 2733 . . . . . . . . . . 11 (0g𝐸) = (0g𝐸)
1810fldcrngd 20666 . . . . . . . . . . 11 (𝜑𝐸 ∈ CRing)
1915, 16, 8, 17, 18, 4irngssv 33773 . . . . . . . . . 10 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
20 algextdeg.a . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
2119, 20sseldd 3931 . . . . . . . . 9 (𝜑𝐴 ∈ (Base‘𝐸))
2221snssd 4762 . . . . . . . 8 (𝜑 → {𝐴} ⊆ (Base‘𝐸))
2314, 22unssd 4141 . . . . . . 7 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸))
248, 11, 23fldgensdrg 33324 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸))
25 issdrg 20712 . . . . . 6 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
2624, 25sylib 218 . . . . 5 (𝜑 → (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
2726simp2d 1143 . . . 4 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸))
288, 11, 23fldgenssid 33323 . . . . . 6 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
2928unssad 4142 . . . . 5 (𝜑𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
309subsubrg 20522 . . . . . 6 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐹 ∈ (SubRing‘(𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))) ↔ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))))
3130biimpar 477 . . . . 5 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))) → 𝐹 ∈ (SubRing‘(𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
3227, 4, 29, 31syl12anc 836 . . . 4 (𝜑𝐹 ∈ (SubRing‘(𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
335, 8, 9, 27, 32lsssra 33672 . . 3 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)))
34 algextdeglem.y . . . . . . 7 𝑃 = (Poly1𝐾)
3516fveq2i 6834 . . . . . . 7 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
3634, 35eqtri 2756 . . . . . 6 𝑃 = (Poly1‘(𝐸s 𝐹))
37 algextdeglem.u . . . . . 6 𝑈 = (Base‘𝑃)
3810adantr 480 . . . . . 6 ((𝜑𝑝𝑈) → 𝐸 ∈ Field)
391adantr 480 . . . . . 6 ((𝜑𝑝𝑈) → 𝐹 ∈ (SubDRing‘𝐸))
4021adantr 480 . . . . . 6 ((𝜑𝑝𝑈) → 𝐴 ∈ (Base‘𝐸))
41 simpr 484 . . . . . 6 ((𝜑𝑝𝑈) → 𝑝𝑈)
428, 15, 36, 37, 38, 39, 40, 41evls1fldgencl 33755 . . . . 5 ((𝜑𝑝𝑈) → ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4342ralrimiva 3125 . . . 4 (𝜑 → ∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
44 algextdeglem.g . . . . 5 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
4544rnmptss 7065 . . . 4 (∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4643, 45syl 17 . . 3 (𝜑 → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4715, 36, 8, 37, 18, 4, 21, 44, 5evls1maplmhm 22312 . . 3 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)))
48 eqid 2733 . . . . 5 (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))
49 eqid 2733 . . . . 5 (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) = (LSubSp‘((subringAlg ‘𝐸)‘𝐹))
5048, 49reslmhm2b 20997 . . . 4 ((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → (𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)) ↔ 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))))
5150biimpa 476 . . 3 (((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∧ 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹))) → 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
527, 33, 46, 47, 51syl31anc 1375 . 2 (𝜑𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
53 algextdeg.l . . . 4 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
548, 11, 23fldgenssv 33325 . . . 4 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸))
558, 53, 54, 29, 10resssra 33671 . . 3 (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))
5655oveq2d 7371 . 2 (𝜑 → (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)) = (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
5752, 56eleqtrrd 2836 1 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  cun 3896  wss 3898  {csn 4577   cuni 4860  cmpt 5176  ccnv 5620  ran crn 5622  cima 5624  cfv 6489  (class class class)co 7355  [cec 8629  Basecbs 17127  s cress 17148  0gc0g 17350   /s cqus 17417  SubGrpcsubg 19041   ~QG cqg 19043  SubRingcsubrg 20493  DivRingcdr 20653  Fieldcfield 20654  SubDRingcsdrg 20710  LModclmod 20802  LSubSpclss 20873   LMHom clmhm 20962  subringAlg csra 21114  Poly1cpl1 22108   evalSub1 ces1 22248  deg1cdg1 26006   fldGen cfldgen 33320   IntgRing cirng 33768   minPoly cminply 33784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-sup 9337  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-hom 17192  df-cco 17193  df-0g 17352  df-gsum 17353  df-prds 17358  df-pws 17360  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-ghm 19133  df-cntz 19237  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-srg 20113  df-ring 20161  df-cring 20162  df-oppr 20264  df-dvdsr 20284  df-unit 20285  df-invr 20315  df-dvr 20328  df-rhm 20399  df-subrng 20470  df-subrg 20494  df-drng 20655  df-field 20656  df-sdrg 20711  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lmhm 20965  df-sra 21116  df-assa 21799  df-asp 21800  df-ascl 21801  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-evls 22020  df-evl 22021  df-psr1 22111  df-vr1 22112  df-ply1 22113  df-coe1 22114  df-evls1 22250  df-evl1 22251  df-mon1 26083  df-fldgen 33321  df-irng 33769
This theorem is referenced by:  algextdeglem3  33804  algextdeglem4  33805
  Copyright terms: Public domain W3C validator