| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for algextdeg 33764. Both the ring of polynomials 𝑃 and the field 𝐿 generated by 𝐾 and the algebraic element 𝐴 can be considered as modules over the elements of 𝐹. Then, the evaluation map 𝐺, mapping polynomials to their evaluation at 𝐴, is a module homomorphism between those modules. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
| algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
| algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
| algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
| algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) |
| algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) |
| algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
| algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
| algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
| algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
| algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) |
| Ref | Expression |
|---|---|
| algextdeglem2 | ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algextdeg.e | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 2 | issdrg 20753 | . . . . . 6 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
| 4 | 3 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 5 | eqid 2736 | . . . . 5 ⊢ ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹) | |
| 6 | 5 | sralmod 21150 | . . . 4 ⊢ (𝐹 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod) |
| 8 | eqid 2736 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 9 | eqid 2736 | . . . 4 ⊢ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 10 | algextdeg.f | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 11 | 10 | flddrngd 20706 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 12 | subrgsubg 20542 | . . . . . . . . 9 ⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) | |
| 13 | 8 | subgss 19115 | . . . . . . . . 9 ⊢ (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) |
| 14 | 4, 12, 13 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
| 15 | algextdeglem.o | . . . . . . . . . . 11 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 16 | algextdeg.k | . . . . . . . . . . 11 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 17 | eqid 2736 | . . . . . . . . . . 11 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 18 | 10 | fldcrngd 20707 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 19 | 15, 16, 8, 17, 18, 4 | irngssv 33734 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
| 20 | algextdeg.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
| 21 | 19, 20 | sseldd 3964 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
| 22 | 21 | snssd 4790 | . . . . . . . 8 ⊢ (𝜑 → {𝐴} ⊆ (Base‘𝐸)) |
| 23 | 14, 22 | unssd 4172 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸)) |
| 24 | 8, 11, 23 | fldgensdrg 33313 | . . . . . 6 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸)) |
| 25 | issdrg 20753 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing)) | |
| 26 | 24, 25 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing)) |
| 27 | 26 | simp2d 1143 | . . . 4 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸)) |
| 28 | 8, 11, 23 | fldgenssid 33312 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 29 | 28 | unssad 4173 | . . . . 5 ⊢ (𝜑 → 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 30 | 9 | subsubrg 20563 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐹 ∈ (SubRing‘(𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))) ↔ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
| 31 | 30 | biimpar 477 | . . . . 5 ⊢ (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))) → 𝐹 ∈ (SubRing‘(𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
| 32 | 27, 4, 29, 31 | syl12anc 836 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘(𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
| 33 | 5, 8, 9, 27, 32 | lsssra 33633 | . . 3 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹))) |
| 34 | algextdeglem.y | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝐾) | |
| 35 | 16 | fveq2i 6884 | . . . . . . 7 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
| 36 | 34, 35 | eqtri 2759 | . . . . . 6 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
| 37 | algextdeglem.u | . . . . . 6 ⊢ 𝑈 = (Base‘𝑃) | |
| 38 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐸 ∈ Field) |
| 39 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐹 ∈ (SubDRing‘𝐸)) |
| 40 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐴 ∈ (Base‘𝐸)) |
| 41 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝑝 ∈ 𝑈) | |
| 42 | 8, 15, 36, 37, 38, 39, 40, 41 | evls1fldgencl 33716 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 43 | 42 | ralrimiva 3133 | . . . 4 ⊢ (𝜑 → ∀𝑝 ∈ 𝑈 ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 44 | algextdeglem.g | . . . . 5 ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) | |
| 45 | 44 | rnmptss 7118 | . . . 4 ⊢ (∀𝑝 ∈ 𝑈 ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 46 | 43, 45 | syl 17 | . . 3 ⊢ (𝜑 → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 47 | 15, 36, 8, 37, 18, 4, 21, 44, 5 | evls1maplmhm 22320 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹))) |
| 48 | eqid 2736 | . . . . 5 ⊢ (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 49 | eqid 2736 | . . . . 5 ⊢ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) = (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) | |
| 50 | 48, 49 | reslmhm2b 21017 | . . . 4 ⊢ ((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → (𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)) ↔ 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))))) |
| 51 | 50 | biimpa 476 | . . 3 ⊢ (((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∧ 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹))) → 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
| 52 | 7, 33, 46, 47, 51 | syl31anc 1375 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
| 53 | algextdeg.l | . . . 4 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 54 | 8, 11, 23 | fldgenssv 33314 | . . . 4 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) |
| 55 | 8, 53, 54, 29, 10 | resssra 33632 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))) |
| 56 | 55 | oveq2d 7426 | . 2 ⊢ (𝜑 → (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)) = (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
| 57 | 52, 56 | eleqtrrd 2838 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∪ cun 3929 ⊆ wss 3931 {csn 4606 ∪ cuni 4888 ↦ cmpt 5206 ◡ccnv 5658 ran crn 5660 “ cima 5662 ‘cfv 6536 (class class class)co 7410 [cec 8722 Basecbs 17233 ↾s cress 17256 0gc0g 17458 /s cqus 17524 SubGrpcsubg 19108 ~QG cqg 19110 SubRingcsubrg 20534 DivRingcdr 20694 Fieldcfield 20695 SubDRingcsdrg 20751 LModclmod 20822 LSubSpclss 20893 LMHom clmhm 20982 subringAlg csra 21134 Poly1cpl1 22117 evalSub1 ces1 22256 deg1cdg1 26016 fldGen cfldgen 33309 IntgRing cirng 33729 minPoly cminply 33738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-drng 20696 df-field 20697 df-sdrg 20752 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lmhm 20985 df-sra 21136 df-assa 21818 df-asp 21819 df-ascl 21820 df-psr 21874 df-mvr 21875 df-mpl 21876 df-opsr 21878 df-evls 22037 df-evl 22038 df-psr1 22120 df-vr1 22121 df-ply1 22122 df-coe1 22123 df-evls1 22258 df-evl1 22259 df-mon1 26093 df-fldgen 33310 df-irng 33730 |
| This theorem is referenced by: algextdeglem3 33758 algextdeglem4 33759 |
| Copyright terms: Public domain | W3C validator |