|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for algextdeg 33767. Both the ring of polynomials 𝑃 and the field 𝐿 generated by 𝐾 and the algebraic element 𝐴 can be considered as modules over the elements of 𝐹. Then, the evaluation map 𝐺, mapping polynomials to their evaluation at 𝐴, is a module homomorphism between those modules. (Contributed by Thierry Arnoux, 2-Apr-2025.) | 
| Ref | Expression | 
|---|---|
| algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) | 
| algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | 
| algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) | 
| algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) | 
| algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) | 
| algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | 
| algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | 
| algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | 
| algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) | 
| algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) | 
| algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) | 
| algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) | 
| algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) | 
| algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) | 
| algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) | 
| Ref | Expression | 
|---|---|
| algextdeglem2 | ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | algextdeg.e | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 2 | issdrg 20790 | . . . . . 6 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | 
| 4 | 3 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) | 
| 5 | eqid 2736 | . . . . 5 ⊢ ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹) | |
| 6 | 5 | sralmod 21195 | . . . 4 ⊢ (𝐹 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod) | 
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod) | 
| 8 | eqid 2736 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 9 | eqid 2736 | . . . 4 ⊢ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 10 | algextdeg.f | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 11 | 10 | flddrngd 20742 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ DivRing) | 
| 12 | subrgsubg 20578 | . . . . . . . . 9 ⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) | |
| 13 | 8 | subgss 19146 | . . . . . . . . 9 ⊢ (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) | 
| 14 | 4, 12, 13 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) | 
| 15 | algextdeglem.o | . . . . . . . . . . 11 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 16 | algextdeg.k | . . . . . . . . . . 11 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 17 | eqid 2736 | . . . . . . . . . . 11 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 18 | 10 | fldcrngd 20743 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐸 ∈ CRing) | 
| 19 | 15, 16, 8, 17, 18, 4 | irngssv 33739 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) | 
| 20 | algextdeg.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
| 21 | 19, 20 | sseldd 3983 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) | 
| 22 | 21 | snssd 4808 | . . . . . . . 8 ⊢ (𝜑 → {𝐴} ⊆ (Base‘𝐸)) | 
| 23 | 14, 22 | unssd 4191 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸)) | 
| 24 | 8, 11, 23 | fldgensdrg 33317 | . . . . . 6 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸)) | 
| 25 | issdrg 20790 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing)) | |
| 26 | 24, 25 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing)) | 
| 27 | 26 | simp2d 1143 | . . . 4 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸)) | 
| 28 | 8, 11, 23 | fldgenssid 33316 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) | 
| 29 | 28 | unssad 4192 | . . . . 5 ⊢ (𝜑 → 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) | 
| 30 | 9 | subsubrg 20599 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐹 ∈ (SubRing‘(𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))) ↔ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))))) | 
| 31 | 30 | biimpar 477 | . . . . 5 ⊢ (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))) → 𝐹 ∈ (SubRing‘(𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) | 
| 32 | 27, 4, 29, 31 | syl12anc 836 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘(𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) | 
| 33 | 5, 8, 9, 27, 32 | lsssra 33640 | . . 3 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹))) | 
| 34 | algextdeglem.y | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝐾) | |
| 35 | 16 | fveq2i 6908 | . . . . . . 7 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) | 
| 36 | 34, 35 | eqtri 2764 | . . . . . 6 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) | 
| 37 | algextdeglem.u | . . . . . 6 ⊢ 𝑈 = (Base‘𝑃) | |
| 38 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐸 ∈ Field) | 
| 39 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐹 ∈ (SubDRing‘𝐸)) | 
| 40 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐴 ∈ (Base‘𝐸)) | 
| 41 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝑝 ∈ 𝑈) | |
| 42 | 8, 15, 36, 37, 38, 39, 40, 41 | evls1fldgencl 33721 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) | 
| 43 | 42 | ralrimiva 3145 | . . . 4 ⊢ (𝜑 → ∀𝑝 ∈ 𝑈 ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) | 
| 44 | algextdeglem.g | . . . . 5 ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) | |
| 45 | 44 | rnmptss 7142 | . . . 4 ⊢ (∀𝑝 ∈ 𝑈 ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) | 
| 46 | 43, 45 | syl 17 | . . 3 ⊢ (𝜑 → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) | 
| 47 | 15, 36, 8, 37, 18, 4, 21, 44, 5 | evls1maplmhm 22382 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹))) | 
| 48 | eqid 2736 | . . . . 5 ⊢ (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 49 | eqid 2736 | . . . . 5 ⊢ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) = (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) | |
| 50 | 48, 49 | reslmhm2b 21054 | . . . 4 ⊢ ((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → (𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)) ↔ 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))))) | 
| 51 | 50 | biimpa 476 | . . 3 ⊢ (((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∧ 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹))) → 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) | 
| 52 | 7, 33, 46, 47, 51 | syl31anc 1374 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) | 
| 53 | algextdeg.l | . . . 4 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 54 | 8, 11, 23 | fldgenssv 33318 | . . . 4 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) | 
| 55 | 8, 53, 54, 29, 10 | resssra 33639 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))) | 
| 56 | 55 | oveq2d 7448 | . 2 ⊢ (𝜑 → (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)) = (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) | 
| 57 | 52, 56 | eleqtrrd 2843 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∪ cun 3948 ⊆ wss 3950 {csn 4625 ∪ cuni 4906 ↦ cmpt 5224 ◡ccnv 5683 ran crn 5685 “ cima 5687 ‘cfv 6560 (class class class)co 7432 [cec 8744 Basecbs 17248 ↾s cress 17275 0gc0g 17485 /s cqus 17551 SubGrpcsubg 19139 ~QG cqg 19141 SubRingcsubrg 20570 DivRingcdr 20730 Fieldcfield 20731 SubDRingcsdrg 20788 LModclmod 20859 LSubSpclss 20930 LMHom clmhm 21019 subringAlg csra 21171 Poly1cpl1 22179 evalSub1 ces1 22318 deg1cdg1 26094 fldGen cfldgen 33313 IntgRing cirng 33734 minPoly cminply 33743 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-ofr 7699 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-fzo 13696 df-seq 14044 df-hash 14371 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-ghm 19232 df-cntz 19336 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-srg 20185 df-ring 20233 df-cring 20234 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-dvr 20402 df-rhm 20473 df-subrng 20547 df-subrg 20571 df-drng 20732 df-field 20733 df-sdrg 20789 df-lmod 20861 df-lss 20931 df-lsp 20971 df-lmhm 21022 df-sra 21173 df-assa 21874 df-asp 21875 df-ascl 21876 df-psr 21930 df-mvr 21931 df-mpl 21932 df-opsr 21934 df-evls 22099 df-evl 22100 df-psr1 22182 df-vr1 22183 df-ply1 22184 df-coe1 22185 df-evls1 22320 df-evl1 22321 df-mon1 26171 df-fldgen 33314 df-irng 33735 | 
| This theorem is referenced by: algextdeglem3 33761 algextdeglem4 33762 | 
| Copyright terms: Public domain | W3C validator |