| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for algextdeg 33810. Both the ring of polynomials 𝑃 and the field 𝐿 generated by 𝐾 and the algebraic element 𝐴 can be considered as modules over the elements of 𝐹. Then, the evaluation map 𝐺, mapping polynomials to their evaluation at 𝐴, is a module homomorphism between those modules. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
| algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
| algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
| algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
| algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) |
| algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) |
| algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
| algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
| algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
| algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
| algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) |
| Ref | Expression |
|---|---|
| algextdeglem2 | ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algextdeg.e | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 2 | issdrg 20712 | . . . . . 6 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
| 4 | 3 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 5 | eqid 2733 | . . . . 5 ⊢ ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹) | |
| 6 | 5 | sralmod 21130 | . . . 4 ⊢ (𝐹 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod) |
| 8 | eqid 2733 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 9 | eqid 2733 | . . . 4 ⊢ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 10 | algextdeg.f | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 11 | 10 | flddrngd 20665 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 12 | subrgsubg 20501 | . . . . . . . . 9 ⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) | |
| 13 | 8 | subgss 19048 | . . . . . . . . 9 ⊢ (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) |
| 14 | 4, 12, 13 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
| 15 | algextdeglem.o | . . . . . . . . . . 11 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 16 | algextdeg.k | . . . . . . . . . . 11 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 17 | eqid 2733 | . . . . . . . . . . 11 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 18 | 10 | fldcrngd 20666 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 19 | 15, 16, 8, 17, 18, 4 | irngssv 33773 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
| 20 | algextdeg.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
| 21 | 19, 20 | sseldd 3931 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
| 22 | 21 | snssd 4762 | . . . . . . . 8 ⊢ (𝜑 → {𝐴} ⊆ (Base‘𝐸)) |
| 23 | 14, 22 | unssd 4141 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸)) |
| 24 | 8, 11, 23 | fldgensdrg 33324 | . . . . . 6 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸)) |
| 25 | issdrg 20712 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing)) | |
| 26 | 24, 25 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing)) |
| 27 | 26 | simp2d 1143 | . . . 4 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸)) |
| 28 | 8, 11, 23 | fldgenssid 33323 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 29 | 28 | unssad 4142 | . . . . 5 ⊢ (𝜑 → 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 30 | 9 | subsubrg 20522 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐹 ∈ (SubRing‘(𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))) ↔ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
| 31 | 30 | biimpar 477 | . . . . 5 ⊢ (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))) → 𝐹 ∈ (SubRing‘(𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
| 32 | 27, 4, 29, 31 | syl12anc 836 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘(𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
| 33 | 5, 8, 9, 27, 32 | lsssra 33672 | . . 3 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹))) |
| 34 | algextdeglem.y | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝐾) | |
| 35 | 16 | fveq2i 6834 | . . . . . . 7 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
| 36 | 34, 35 | eqtri 2756 | . . . . . 6 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
| 37 | algextdeglem.u | . . . . . 6 ⊢ 𝑈 = (Base‘𝑃) | |
| 38 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐸 ∈ Field) |
| 39 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐹 ∈ (SubDRing‘𝐸)) |
| 40 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐴 ∈ (Base‘𝐸)) |
| 41 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝑝 ∈ 𝑈) | |
| 42 | 8, 15, 36, 37, 38, 39, 40, 41 | evls1fldgencl 33755 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 43 | 42 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑝 ∈ 𝑈 ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 44 | algextdeglem.g | . . . . 5 ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) | |
| 45 | 44 | rnmptss 7065 | . . . 4 ⊢ (∀𝑝 ∈ 𝑈 ((𝑂‘𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 46 | 43, 45 | syl 17 | . . 3 ⊢ (𝜑 → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 47 | 15, 36, 8, 37, 18, 4, 21, 44, 5 | evls1maplmhm 22312 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹))) |
| 48 | eqid 2733 | . . . . 5 ⊢ (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 49 | eqid 2733 | . . . . 5 ⊢ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) = (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) | |
| 50 | 48, 49 | reslmhm2b 20997 | . . . 4 ⊢ ((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → (𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)) ↔ 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))))) |
| 51 | 50 | biimpa 476 | . . 3 ⊢ (((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∧ 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹))) → 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
| 52 | 7, 33, 46, 47, 51 | syl31anc 1375 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
| 53 | algextdeg.l | . . . 4 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 54 | 8, 11, 23 | fldgenssv 33325 | . . . 4 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) |
| 55 | 8, 53, 54, 29, 10 | resssra 33671 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))) |
| 56 | 55 | oveq2d 7371 | . 2 ⊢ (𝜑 → (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)) = (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))) |
| 57 | 52, 56 | eleqtrrd 2836 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∪ cun 3896 ⊆ wss 3898 {csn 4577 ∪ cuni 4860 ↦ cmpt 5176 ◡ccnv 5620 ran crn 5622 “ cima 5624 ‘cfv 6489 (class class class)co 7355 [cec 8629 Basecbs 17127 ↾s cress 17148 0gc0g 17350 /s cqus 17417 SubGrpcsubg 19041 ~QG cqg 19043 SubRingcsubrg 20493 DivRingcdr 20653 Fieldcfield 20654 SubDRingcsdrg 20710 LModclmod 20802 LSubSpclss 20873 LMHom clmhm 20962 subringAlg csra 21114 Poly1cpl1 22108 evalSub1 ces1 22248 deg1cdg1 26006 fldGen cfldgen 33320 IntgRing cirng 33768 minPoly cminply 33784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-gsum 17353 df-prds 17358 df-pws 17360 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-ghm 19133 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-srg 20113 df-ring 20161 df-cring 20162 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-dvr 20328 df-rhm 20399 df-subrng 20470 df-subrg 20494 df-drng 20655 df-field 20656 df-sdrg 20711 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lmhm 20965 df-sra 21116 df-assa 21799 df-asp 21800 df-ascl 21801 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-evls 22020 df-evl 22021 df-psr1 22111 df-vr1 22112 df-ply1 22113 df-coe1 22114 df-evls1 22250 df-evl1 22251 df-mon1 26083 df-fldgen 33321 df-irng 33769 |
| This theorem is referenced by: algextdeglem3 33804 algextdeglem4 33805 |
| Copyright terms: Public domain | W3C validator |