Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem2 Structured version   Visualization version   GIF version

Theorem algextdeglem2 33723
Description: Lemma for algextdeg 33730. Both the ring of polynomials 𝑃 and the field 𝐿 generated by 𝐾 and the algebraic element 𝐴 can be considered as modules over the elements of 𝐹. Then, the evaluation map 𝐺, mapping polynomials to their evaluation at 𝐴, is a module homomorphism between those modules. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
Assertion
Ref Expression
algextdeglem2 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝐸(𝑥)   𝐾(𝑥)   𝑀(𝑥,𝑝)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem2
StepHypRef Expression
1 algextdeg.e . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
2 issdrg 20698 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
31, 2sylib 218 . . . . 5 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
43simp2d 1143 . . . 4 (𝜑𝐹 ∈ (SubRing‘𝐸))
5 eqid 2731 . . . . 5 ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹)
65sralmod 21116 . . . 4 (𝐹 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod)
74, 6syl 17 . . 3 (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod)
8 eqid 2731 . . . 4 (Base‘𝐸) = (Base‘𝐸)
9 eqid 2731 . . . 4 (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
10 algextdeg.f . . . . . . . 8 (𝜑𝐸 ∈ Field)
1110flddrngd 20651 . . . . . . 7 (𝜑𝐸 ∈ DivRing)
12 subrgsubg 20487 . . . . . . . . 9 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
138subgss 19035 . . . . . . . . 9 (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸))
144, 12, 133syl 18 . . . . . . . 8 (𝜑𝐹 ⊆ (Base‘𝐸))
15 algextdeglem.o . . . . . . . . . . 11 𝑂 = (𝐸 evalSub1 𝐹)
16 algextdeg.k . . . . . . . . . . 11 𝐾 = (𝐸s 𝐹)
17 eqid 2731 . . . . . . . . . . 11 (0g𝐸) = (0g𝐸)
1810fldcrngd 20652 . . . . . . . . . . 11 (𝜑𝐸 ∈ CRing)
1915, 16, 8, 17, 18, 4irngssv 33693 . . . . . . . . . 10 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
20 algextdeg.a . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
2119, 20sseldd 3930 . . . . . . . . 9 (𝜑𝐴 ∈ (Base‘𝐸))
2221snssd 4756 . . . . . . . 8 (𝜑 → {𝐴} ⊆ (Base‘𝐸))
2314, 22unssd 4137 . . . . . . 7 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸))
248, 11, 23fldgensdrg 33272 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸))
25 issdrg 20698 . . . . . 6 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
2624, 25sylib 218 . . . . 5 (𝜑 → (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
2726simp2d 1143 . . . 4 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸))
288, 11, 23fldgenssid 33271 . . . . . 6 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
2928unssad 4138 . . . . 5 (𝜑𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
309subsubrg 20508 . . . . . 6 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐹 ∈ (SubRing‘(𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))) ↔ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))))
3130biimpar 477 . . . . 5 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))) → 𝐹 ∈ (SubRing‘(𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
3227, 4, 29, 31syl12anc 836 . . . 4 (𝜑𝐹 ∈ (SubRing‘(𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
335, 8, 9, 27, 32lsssra 33592 . . 3 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)))
34 algextdeglem.y . . . . . . 7 𝑃 = (Poly1𝐾)
3516fveq2i 6820 . . . . . . 7 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
3634, 35eqtri 2754 . . . . . 6 𝑃 = (Poly1‘(𝐸s 𝐹))
37 algextdeglem.u . . . . . 6 𝑈 = (Base‘𝑃)
3810adantr 480 . . . . . 6 ((𝜑𝑝𝑈) → 𝐸 ∈ Field)
391adantr 480 . . . . . 6 ((𝜑𝑝𝑈) → 𝐹 ∈ (SubDRing‘𝐸))
4021adantr 480 . . . . . 6 ((𝜑𝑝𝑈) → 𝐴 ∈ (Base‘𝐸))
41 simpr 484 . . . . . 6 ((𝜑𝑝𝑈) → 𝑝𝑈)
428, 15, 36, 37, 38, 39, 40, 41evls1fldgencl 33675 . . . . 5 ((𝜑𝑝𝑈) → ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4342ralrimiva 3124 . . . 4 (𝜑 → ∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
44 algextdeglem.g . . . . 5 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
4544rnmptss 7051 . . . 4 (∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4643, 45syl 17 . . 3 (𝜑 → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4715, 36, 8, 37, 18, 4, 21, 44, 5evls1maplmhm 22287 . . 3 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)))
48 eqid 2731 . . . . 5 (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))
49 eqid 2731 . . . . 5 (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) = (LSubSp‘((subringAlg ‘𝐸)‘𝐹))
5048, 49reslmhm2b 20983 . . . 4 ((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → (𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)) ↔ 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))))
5150biimpa 476 . . 3 (((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∧ 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹))) → 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
527, 33, 46, 47, 51syl31anc 1375 . 2 (𝜑𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
53 algextdeg.l . . . 4 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
548, 11, 23fldgenssv 33273 . . . 4 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸))
558, 53, 54, 29, 10resssra 33591 . . 3 (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))
5655oveq2d 7357 . 2 (𝜑 → (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)) = (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
5752, 56eleqtrrd 2834 1 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cun 3895  wss 3897  {csn 4571   cuni 4854  cmpt 5167  ccnv 5610  ran crn 5612  cima 5614  cfv 6476  (class class class)co 7341  [cec 8615  Basecbs 17115  s cress 17136  0gc0g 17338   /s cqus 17404  SubGrpcsubg 19028   ~QG cqg 19030  SubRingcsubrg 20479  DivRingcdr 20639  Fieldcfield 20640  SubDRingcsdrg 20696  LModclmod 20788  LSubSpclss 20859   LMHom clmhm 20948  subringAlg csra 21100  Poly1cpl1 22084   evalSub1 ces1 22223  deg1cdg1 25981   fldGen cfldgen 33268   IntgRing cirng 33688   minPoly cminply 33704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-srg 20100  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-rhm 20385  df-subrng 20456  df-subrg 20480  df-drng 20641  df-field 20642  df-sdrg 20697  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lmhm 20951  df-sra 21102  df-assa 21785  df-asp 21786  df-ascl 21787  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-evls 22004  df-evl 22005  df-psr1 22087  df-vr1 22088  df-ply1 22089  df-coe1 22090  df-evls1 22225  df-evl1 22226  df-mon1 26058  df-fldgen 33269  df-irng 33689
This theorem is referenced by:  algextdeglem3  33724  algextdeglem4  33725
  Copyright terms: Public domain W3C validator