Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem2 Structured version   Visualization version   GIF version

Theorem algextdeglem2 33760
Description: Lemma for algextdeg 33767. Both the ring of polynomials 𝑃 and the field 𝐿 generated by 𝐾 and the algebraic element 𝐴 can be considered as modules over the elements of 𝐹. Then, the evaluation map 𝐺, mapping polynomials to their evaluation at 𝐴, is a module homomorphism between those modules. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
Assertion
Ref Expression
algextdeglem2 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝐸(𝑥)   𝐾(𝑥)   𝑀(𝑥,𝑝)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem2
StepHypRef Expression
1 algextdeg.e . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
2 issdrg 20790 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
31, 2sylib 218 . . . . 5 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
43simp2d 1143 . . . 4 (𝜑𝐹 ∈ (SubRing‘𝐸))
5 eqid 2736 . . . . 5 ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹)
65sralmod 21195 . . . 4 (𝐹 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod)
74, 6syl 17 . . 3 (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod)
8 eqid 2736 . . . 4 (Base‘𝐸) = (Base‘𝐸)
9 eqid 2736 . . . 4 (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
10 algextdeg.f . . . . . . . 8 (𝜑𝐸 ∈ Field)
1110flddrngd 20742 . . . . . . 7 (𝜑𝐸 ∈ DivRing)
12 subrgsubg 20578 . . . . . . . . 9 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
138subgss 19146 . . . . . . . . 9 (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸))
144, 12, 133syl 18 . . . . . . . 8 (𝜑𝐹 ⊆ (Base‘𝐸))
15 algextdeglem.o . . . . . . . . . . 11 𝑂 = (𝐸 evalSub1 𝐹)
16 algextdeg.k . . . . . . . . . . 11 𝐾 = (𝐸s 𝐹)
17 eqid 2736 . . . . . . . . . . 11 (0g𝐸) = (0g𝐸)
1810fldcrngd 20743 . . . . . . . . . . 11 (𝜑𝐸 ∈ CRing)
1915, 16, 8, 17, 18, 4irngssv 33739 . . . . . . . . . 10 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
20 algextdeg.a . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
2119, 20sseldd 3983 . . . . . . . . 9 (𝜑𝐴 ∈ (Base‘𝐸))
2221snssd 4808 . . . . . . . 8 (𝜑 → {𝐴} ⊆ (Base‘𝐸))
2314, 22unssd 4191 . . . . . . 7 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸))
248, 11, 23fldgensdrg 33317 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸))
25 issdrg 20790 . . . . . 6 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
2624, 25sylib 218 . . . . 5 (𝜑 → (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∈ DivRing))
2726simp2d 1143 . . . 4 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸))
288, 11, 23fldgenssid 33316 . . . . . 6 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
2928unssad 4192 . . . . 5 (𝜑𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
309subsubrg 20599 . . . . . 6 ((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) → (𝐹 ∈ (SubRing‘(𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))) ↔ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))))
3130biimpar 477 . . . . 5 (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (SubRing‘𝐸) ∧ (𝐹 ∈ (SubRing‘𝐸) ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))) → 𝐹 ∈ (SubRing‘(𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
3227, 4, 29, 31syl12anc 836 . . . 4 (𝜑𝐹 ∈ (SubRing‘(𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
335, 8, 9, 27, 32lsssra 33640 . . 3 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)))
34 algextdeglem.y . . . . . . 7 𝑃 = (Poly1𝐾)
3516fveq2i 6908 . . . . . . 7 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
3634, 35eqtri 2764 . . . . . 6 𝑃 = (Poly1‘(𝐸s 𝐹))
37 algextdeglem.u . . . . . 6 𝑈 = (Base‘𝑃)
3810adantr 480 . . . . . 6 ((𝜑𝑝𝑈) → 𝐸 ∈ Field)
391adantr 480 . . . . . 6 ((𝜑𝑝𝑈) → 𝐹 ∈ (SubDRing‘𝐸))
4021adantr 480 . . . . . 6 ((𝜑𝑝𝑈) → 𝐴 ∈ (Base‘𝐸))
41 simpr 484 . . . . . 6 ((𝜑𝑝𝑈) → 𝑝𝑈)
428, 15, 36, 37, 38, 39, 40, 41evls1fldgencl 33721 . . . . 5 ((𝜑𝑝𝑈) → ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4342ralrimiva 3145 . . . 4 (𝜑 → ∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
44 algextdeglem.g . . . . 5 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
4544rnmptss 7142 . . . 4 (∀𝑝𝑈 ((𝑂𝑝)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})) → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4643, 45syl 17 . . 3 (𝜑 → ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴})))
4715, 36, 8, 37, 18, 4, 21, 44, 5evls1maplmhm 22382 . . 3 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)))
48 eqid 2736 . . . . 5 (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))
49 eqid 2736 . . . . 5 (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) = (LSubSp‘((subringAlg ‘𝐸)‘𝐹))
5048, 49reslmhm2b 21054 . . . 4 ((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → (𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹)) ↔ 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))))
5150biimpa 476 . . 3 (((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ (LSubSp‘((subringAlg ‘𝐸)‘𝐹)) ∧ ran 𝐺 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) ∧ 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐸)‘𝐹))) → 𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
527, 33, 46, 47, 51syl31anc 1374 . 2 (𝜑𝐺 ∈ (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
53 algextdeg.l . . . 4 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
548, 11, 23fldgenssv 33318 . . . 4 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸))
558, 53, 54, 29, 10resssra 33639 . . 3 (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))))
5655oveq2d 7448 . 2 (𝜑 → (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)) = (𝑃 LMHom (((subringAlg ‘𝐸)‘𝐹) ↾s (𝐸 fldGen (𝐹 ∪ {𝐴})))))
5752, 56eleqtrrd 2843 1 (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  cun 3948  wss 3950  {csn 4625   cuni 4906  cmpt 5224  ccnv 5683  ran crn 5685  cima 5687  cfv 6560  (class class class)co 7432  [cec 8744  Basecbs 17248  s cress 17275  0gc0g 17485   /s cqus 17551  SubGrpcsubg 19139   ~QG cqg 19141  SubRingcsubrg 20570  DivRingcdr 20730  Fieldcfield 20731  SubDRingcsdrg 20788  LModclmod 20859  LSubSpclss 20930   LMHom clmhm 21019  subringAlg csra 21171  Poly1cpl1 22179   evalSub1 ces1 22318  deg1cdg1 26094   fldGen cfldgen 33313   IntgRing cirng 33734   minPoly cminply 33743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-srg 20185  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-drng 20732  df-field 20733  df-sdrg 20789  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lmhm 21022  df-sra 21173  df-assa 21874  df-asp 21875  df-ascl 21876  df-psr 21930  df-mvr 21931  df-mpl 21932  df-opsr 21934  df-evls 22099  df-evl 22100  df-psr1 22182  df-vr1 22183  df-ply1 22184  df-coe1 22185  df-evls1 22320  df-evl1 22321  df-mon1 26171  df-fldgen 33314  df-irng 33735
This theorem is referenced by:  algextdeglem3  33761  algextdeglem4  33762
  Copyright terms: Public domain W3C validator