Step | Hyp | Ref
| Expression |
1 | | algextdeg.e |
. . . . . 6
β’ (π β πΉ β (SubDRingβπΈ)) |
2 | | issdrg 20629 |
. . . . . 6
β’ (πΉ β (SubDRingβπΈ) β (πΈ β DivRing β§ πΉ β (SubRingβπΈ) β§ (πΈ βΎs πΉ) β DivRing)) |
3 | 1, 2 | sylib 217 |
. . . . 5
β’ (π β (πΈ β DivRing β§ πΉ β (SubRingβπΈ) β§ (πΈ βΎs πΉ) β DivRing)) |
4 | 3 | simp2d 1140 |
. . . 4
β’ (π β πΉ β (SubRingβπΈ)) |
5 | | eqid 2724 |
. . . . 5
β’
((subringAlg βπΈ)βπΉ) = ((subringAlg βπΈ)βπΉ) |
6 | 5 | sralmod 21033 |
. . . 4
β’ (πΉ β (SubRingβπΈ) β ((subringAlg
βπΈ)βπΉ) β LMod) |
7 | 4, 6 | syl 17 |
. . 3
β’ (π β ((subringAlg βπΈ)βπΉ) β LMod) |
8 | | eqid 2724 |
. . . 4
β’
(BaseβπΈ) =
(BaseβπΈ) |
9 | | eqid 2724 |
. . . 4
β’ (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) = (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) |
10 | | algextdeg.f |
. . . . . . . 8
β’ (π β πΈ β Field) |
11 | 10 | flddrngd 20589 |
. . . . . . 7
β’ (π β πΈ β DivRing) |
12 | | subrgsubg 20469 |
. . . . . . . . 9
β’ (πΉ β (SubRingβπΈ) β πΉ β (SubGrpβπΈ)) |
13 | 8 | subgss 19044 |
. . . . . . . . 9
β’ (πΉ β (SubGrpβπΈ) β πΉ β (BaseβπΈ)) |
14 | 4, 12, 13 | 3syl 18 |
. . . . . . . 8
β’ (π β πΉ β (BaseβπΈ)) |
15 | | algextdeglem.o |
. . . . . . . . . . 11
β’ π = (πΈ evalSub1 πΉ) |
16 | | algextdeg.k |
. . . . . . . . . . 11
β’ πΎ = (πΈ βΎs πΉ) |
17 | | eqid 2724 |
. . . . . . . . . . 11
β’
(0gβπΈ) = (0gβπΈ) |
18 | 10 | fldcrngd 20590 |
. . . . . . . . . . 11
β’ (π β πΈ β CRing) |
19 | 15, 16, 8, 17, 18, 4 | irngssv 33232 |
. . . . . . . . . 10
β’ (π β (πΈ IntgRing πΉ) β (BaseβπΈ)) |
20 | | algextdeg.a |
. . . . . . . . . 10
β’ (π β π΄ β (πΈ IntgRing πΉ)) |
21 | 19, 20 | sseldd 3975 |
. . . . . . . . 9
β’ (π β π΄ β (BaseβπΈ)) |
22 | 21 | snssd 4804 |
. . . . . . . 8
β’ (π β {π΄} β (BaseβπΈ)) |
23 | 14, 22 | unssd 4178 |
. . . . . . 7
β’ (π β (πΉ βͺ {π΄}) β (BaseβπΈ)) |
24 | 8, 11, 23 | fldgensdrg 32870 |
. . . . . 6
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (SubDRingβπΈ)) |
25 | | issdrg 20629 |
. . . . . 6
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubDRingβπΈ) β (πΈ β DivRing β§ (πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β§ (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) β DivRing)) |
26 | 24, 25 | sylib 217 |
. . . . 5
β’ (π β (πΈ β DivRing β§ (πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β§ (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) β DivRing)) |
27 | 26 | simp2d 1140 |
. . . 4
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ)) |
28 | 8, 11, 23 | fldgenssid 32869 |
. . . . . 6
β’ (π β (πΉ βͺ {π΄}) β (πΈ fldGen (πΉ βͺ {π΄}))) |
29 | 28 | unssad 4179 |
. . . . 5
β’ (π β πΉ β (πΈ fldGen (πΉ βͺ {π΄}))) |
30 | 9 | subsubrg 20490 |
. . . . . 6
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β (πΉ β (SubRingβ(πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄})))) β (πΉ β (SubRingβπΈ) β§ πΉ β (πΈ fldGen (πΉ βͺ {π΄}))))) |
31 | 30 | biimpar 477 |
. . . . 5
β’ (((πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β§ (πΉ β (SubRingβπΈ) β§ πΉ β (πΈ fldGen (πΉ βͺ {π΄})))) β πΉ β (SubRingβ(πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))))) |
32 | 27, 4, 29, 31 | syl12anc 834 |
. . . 4
β’ (π β πΉ β (SubRingβ(πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))))) |
33 | 5, 8, 9, 27, 32 | lsssra 33154 |
. . 3
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (LSubSpβ((subringAlg
βπΈ)βπΉ))) |
34 | | algextdeglem.y |
. . . . . . 7
β’ π = (Poly1βπΎ) |
35 | 16 | fveq2i 6884 |
. . . . . . 7
β’
(Poly1βπΎ) = (Poly1β(πΈ βΎs πΉ)) |
36 | 34, 35 | eqtri 2752 |
. . . . . 6
β’ π =
(Poly1β(πΈ
βΎs πΉ)) |
37 | | algextdeglem.u |
. . . . . 6
β’ π = (Baseβπ) |
38 | 10 | adantr 480 |
. . . . . 6
β’ ((π β§ π β π) β πΈ β Field) |
39 | 1 | adantr 480 |
. . . . . 6
β’ ((π β§ π β π) β πΉ β (SubDRingβπΈ)) |
40 | 21 | adantr 480 |
. . . . . 6
β’ ((π β§ π β π) β π΄ β (BaseβπΈ)) |
41 | | simpr 484 |
. . . . . 6
β’ ((π β§ π β π) β π β π) |
42 | 8, 15, 36, 37, 38, 39, 40, 41 | evls1fldgencl 33224 |
. . . . 5
β’ ((π β§ π β π) β ((πβπ)βπ΄) β (πΈ fldGen (πΉ βͺ {π΄}))) |
43 | 42 | ralrimiva 3138 |
. . . 4
β’ (π β βπ β π ((πβπ)βπ΄) β (πΈ fldGen (πΉ βͺ {π΄}))) |
44 | | algextdeglem.g |
. . . . 5
β’ πΊ = (π β π β¦ ((πβπ)βπ΄)) |
45 | 44 | rnmptss 7114 |
. . . 4
β’
(βπ β
π ((πβπ)βπ΄) β (πΈ fldGen (πΉ βͺ {π΄})) β ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) |
46 | 43, 45 | syl 17 |
. . 3
β’ (π β ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) |
47 | 15, 36, 8, 37, 18, 4, 21, 44, 5 | evls1maplmhm 33240 |
. . 3
β’ (π β πΊ β (π LMHom ((subringAlg βπΈ)βπΉ))) |
48 | | eqid 2724 |
. . . . 5
β’
(((subringAlg βπΈ)βπΉ) βΎs (πΈ fldGen (πΉ βͺ {π΄}))) = (((subringAlg βπΈ)βπΉ) βΎs (πΈ fldGen (πΉ βͺ {π΄}))) |
49 | | eqid 2724 |
. . . . 5
β’
(LSubSpβ((subringAlg βπΈ)βπΉ)) = (LSubSpβ((subringAlg βπΈ)βπΉ)) |
50 | 48, 49 | reslmhm2b 20892 |
. . . 4
β’
((((subringAlg βπΈ)βπΉ) β LMod β§ (πΈ fldGen (πΉ βͺ {π΄})) β (LSubSpβ((subringAlg
βπΈ)βπΉ)) β§ ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) β (πΊ β (π LMHom ((subringAlg βπΈ)βπΉ)) β πΊ β (π LMHom (((subringAlg βπΈ)βπΉ) βΎs (πΈ fldGen (πΉ βͺ {π΄})))))) |
51 | 50 | biimpa 476 |
. . 3
β’
(((((subringAlg βπΈ)βπΉ) β LMod β§ (πΈ fldGen (πΉ βͺ {π΄})) β (LSubSpβ((subringAlg
βπΈ)βπΉ)) β§ ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) β§ πΊ β (π LMHom ((subringAlg βπΈ)βπΉ))) β πΊ β (π LMHom (((subringAlg βπΈ)βπΉ) βΎs (πΈ fldGen (πΉ βͺ {π΄}))))) |
52 | 7, 33, 46, 47, 51 | syl31anc 1370 |
. 2
β’ (π β πΊ β (π LMHom (((subringAlg βπΈ)βπΉ) βΎs (πΈ fldGen (πΉ βͺ {π΄}))))) |
53 | | algextdeg.l |
. . . 4
β’ πΏ = (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) |
54 | 8, 11, 23 | fldgenssv 32871 |
. . . 4
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (BaseβπΈ)) |
55 | 8, 53, 54, 29, 10 | resssra 33153 |
. . 3
β’ (π β ((subringAlg βπΏ)βπΉ) = (((subringAlg βπΈ)βπΉ) βΎs (πΈ fldGen (πΉ βͺ {π΄})))) |
56 | 55 | oveq2d 7417 |
. 2
β’ (π β (π LMHom ((subringAlg βπΏ)βπΉ)) = (π LMHom (((subringAlg βπΈ)βπΉ) βΎs (πΈ fldGen (πΉ βͺ {π΄}))))) |
57 | 52, 56 | eleqtrrd 2828 |
1
β’ (π β πΊ β (π LMHom ((subringAlg βπΏ)βπΉ))) |