| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for algextdeg 33688. The polynomials 𝑋 of lower degree than the minimal polynomial are left unchanged when taking the remainder of the division by that minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
| algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
| algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
| algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
| algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) |
| algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) |
| algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
| algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
| algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
| algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
| algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) |
| algextdeglem.r | ⊢ 𝑅 = (rem1p‘𝐾) |
| algextdeglem.h | ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) |
| algextdeglem.t | ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) |
| algextdeglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| algextdeglem7 | ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝐻‘𝑋) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algextdeg.k | . . . . 5 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 2 | algextdeg.d | . . . . 5 ⊢ 𝐷 = (deg1‘𝐸) | |
| 3 | algextdeglem.y | . . . . 5 ⊢ 𝑃 = (Poly1‘𝐾) | |
| 4 | algextdeglem.u | . . . . 5 ⊢ 𝑈 = (Base‘𝑃) | |
| 5 | algextdeglem.o | . . . . . . 7 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 6 | 1 | fveq2i 6843 | . . . . . . . 8 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
| 7 | 3, 6 | eqtri 2752 | . . . . . . 7 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
| 8 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 9 | algextdeg.f | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 10 | algextdeg.e | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 11 | eqid 2729 | . . . . . . . . 9 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 12 | 9 | fldcrngd 20627 | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 13 | sdrgsubrg 20676 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
| 14 | 10, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 15 | 5, 1, 8, 11, 12, 14 | irngssv 33656 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
| 16 | algextdeg.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
| 17 | 15, 16 | sseldd 3944 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
| 18 | eqid 2729 | . . . . . . 7 ⊢ {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} | |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
| 20 | eqid 2729 | . . . . . . 7 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
| 21 | algextdeg.m | . . . . . . 7 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 22 | 5, 7, 8, 9, 10, 17, 11, 18, 19, 20, 21 | minplycl 33669 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘𝑃)) |
| 23 | 22, 4 | eleqtrrdi 2839 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
| 24 | 1, 2, 3, 4, 23, 14 | ressdeg1 33508 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) = ((deg1‘𝐾)‘(𝑀‘𝐴))) |
| 25 | 24 | breq2d 5114 | . . 3 ⊢ (𝜑 → (((deg1‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴)) ↔ ((deg1‘𝐾)‘𝑋) < ((deg1‘𝐾)‘(𝑀‘𝐴)))) |
| 26 | algextdeglem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 27 | eqid 2729 | . . . . 5 ⊢ (deg1‘𝐾) = (deg1‘𝐾) | |
| 28 | algextdeglem.t | . . . . 5 ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) | |
| 29 | 9 | flddrngd 20626 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 30 | 29 | drngringd 20622 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ Ring) |
| 31 | eqid 2729 | . . . . . . . . 9 ⊢ (Poly1‘𝐸) = (Poly1‘𝐸) | |
| 32 | eqid 2729 | . . . . . . . . 9 ⊢ (PwSer1‘𝐾) = (PwSer1‘𝐾) | |
| 33 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘(PwSer1‘𝐾)) = (Base‘(PwSer1‘𝐾)) | |
| 34 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘(Poly1‘𝐸)) = (Base‘(Poly1‘𝐸)) | |
| 35 | 31, 1, 3, 4, 14, 32, 33, 34 | ressply1bas2 22088 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 = ((Base‘(PwSer1‘𝐾)) ∩ (Base‘(Poly1‘𝐸)))) |
| 36 | inss2 4197 | . . . . . . . 8 ⊢ ((Base‘(PwSer1‘𝐾)) ∩ (Base‘(Poly1‘𝐸))) ⊆ (Base‘(Poly1‘𝐸)) | |
| 37 | 35, 36 | eqsstrdi 3988 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊆ (Base‘(Poly1‘𝐸))) |
| 38 | 37, 23 | sseldd 3944 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘𝐸))) |
| 39 | eqid 2729 | . . . . . . 7 ⊢ (0g‘(Poly1‘𝐸)) = (0g‘(Poly1‘𝐸)) | |
| 40 | 39, 9, 10, 21, 16 | irngnminplynz 33675 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ≠ (0g‘(Poly1‘𝐸))) |
| 41 | 2, 31, 39, 34 | deg1nn0cl 25969 | . . . . . 6 ⊢ ((𝐸 ∈ Ring ∧ (𝑀‘𝐴) ∈ (Base‘(Poly1‘𝐸)) ∧ (𝑀‘𝐴) ≠ (0g‘(Poly1‘𝐸))) → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
| 42 | 30, 38, 40, 41 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
| 43 | fldsdrgfld 20683 | . . . . . . . . 9 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) | |
| 44 | 9, 10, 43 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) |
| 45 | 1, 44 | eqeltrid 2832 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Field) |
| 46 | fldidom 20656 | . . . . . . 7 ⊢ (𝐾 ∈ Field → 𝐾 ∈ IDomn) | |
| 47 | 45, 46 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ IDomn) |
| 48 | 47 | idomringd 20613 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Ring) |
| 49 | 3, 27, 28, 42, 48, 4 | ply1degleel 33534 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝑋 ∈ 𝑈 ∧ ((deg1‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴))))) |
| 50 | 26, 49 | mpbirand 707 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ ((deg1‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴)))) |
| 51 | eqid 2729 | . . . 4 ⊢ (Unic1p‘𝐾) = (Unic1p‘𝐾) | |
| 52 | algextdeglem.r | . . . 4 ⊢ 𝑅 = (rem1p‘𝐾) | |
| 53 | 47 | idomdomd 20611 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Domn) |
| 54 | 1 | fveq2i 6843 | . . . . . 6 ⊢ (Monic1p‘𝐾) = (Monic1p‘(𝐸 ↾s 𝐹)) |
| 55 | 39, 9, 10, 21, 16, 54 | minplym1p 33676 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) |
| 56 | eqid 2729 | . . . . . 6 ⊢ (Monic1p‘𝐾) = (Monic1p‘𝐾) | |
| 57 | 51, 56 | mon1puc1p 26032 | . . . . 5 ⊢ ((𝐾 ∈ Ring ∧ (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
| 58 | 48, 55, 57 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
| 59 | 3, 4, 51, 52, 27, 53, 26, 58 | r1pid2 26043 | . . 3 ⊢ (𝜑 → ((𝑋𝑅(𝑀‘𝐴)) = 𝑋 ↔ ((deg1‘𝐾)‘𝑋) < ((deg1‘𝐾)‘(𝑀‘𝐴)))) |
| 60 | 25, 50, 59 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝑋𝑅(𝑀‘𝐴)) = 𝑋)) |
| 61 | algextdeglem.h | . . . 4 ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) | |
| 62 | oveq1 7376 | . . . 4 ⊢ (𝑝 = 𝑋 → (𝑝𝑅(𝑀‘𝐴)) = (𝑋𝑅(𝑀‘𝐴))) | |
| 63 | ovexd 7404 | . . . 4 ⊢ (𝜑 → (𝑋𝑅(𝑀‘𝐴)) ∈ V) | |
| 64 | 61, 62, 26, 63 | fvmptd3 6973 | . . 3 ⊢ (𝜑 → (𝐻‘𝑋) = (𝑋𝑅(𝑀‘𝐴))) |
| 65 | 64 | eqeq1d 2731 | . 2 ⊢ (𝜑 → ((𝐻‘𝑋) = 𝑋 ↔ (𝑋𝑅(𝑀‘𝐴)) = 𝑋)) |
| 66 | 60, 65 | bitr4d 282 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝐻‘𝑋) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3402 Vcvv 3444 ∪ cun 3909 ∩ cin 3910 {csn 4585 ∪ cuni 4867 class class class wbr 5102 ↦ cmpt 5183 ◡ccnv 5630 dom cdm 5631 “ cima 5634 ‘cfv 6499 (class class class)co 7369 [cec 8646 -∞cmnf 11182 < clt 11184 ℕ0cn0 12418 [,)cico 13284 Basecbs 17155 ↾s cress 17176 0gc0g 17378 /s cqus 17444 ~QG cqg 19030 Ringcrg 20118 SubRingcsubrg 20454 IDomncidom 20578 Fieldcfield 20615 SubDRingcsdrg 20671 RSpancrsp 21093 PwSer1cps1 22035 Poly1cpl1 22037 evalSub1 ces1 22176 deg1cdg1 25935 Monic1pcmn1 26007 Unic1pcuc1p 26008 rem1pcr1p 26010 idlGen1pcig1p 26011 fldGen cfldgen 33233 IntgRing cirng 33651 minPoly cminply 33662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-ico 13288 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-rhm 20357 df-nzr 20398 df-subrng 20431 df-subrg 20455 df-rlreg 20579 df-domn 20580 df-idom 20581 df-drng 20616 df-field 20617 df-sdrg 20672 df-lmod 20744 df-lss 20814 df-lsp 20854 df-sra 21056 df-rgmod 21057 df-lidl 21094 df-rsp 21095 df-cnfld 21241 df-assa 21738 df-asp 21739 df-ascl 21740 df-psr 21794 df-mvr 21795 df-mpl 21796 df-opsr 21798 df-evls 21957 df-evl 21958 df-psr1 22040 df-vr1 22041 df-ply1 22042 df-coe1 22043 df-evls1 22178 df-evl1 22179 df-mdeg 25936 df-deg1 25937 df-mon1 26012 df-uc1p 26013 df-q1p 26014 df-r1p 26015 df-ig1p 26016 df-irng 33652 df-minply 33663 |
| This theorem is referenced by: algextdeglem8 33687 |
| Copyright terms: Public domain | W3C validator |