| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for algextdeg 33759. The polynomials 𝑋 of lower degree than the minimal polynomial are left unchanged when taking the remainder of the division by that minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
| algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
| algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
| algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
| algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) |
| algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) |
| algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
| algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
| algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
| algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
| algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) |
| algextdeglem.r | ⊢ 𝑅 = (rem1p‘𝐾) |
| algextdeglem.h | ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) |
| algextdeglem.t | ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) |
| algextdeglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| algextdeglem7 | ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝐻‘𝑋) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algextdeg.k | . . . . 5 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 2 | algextdeg.d | . . . . 5 ⊢ 𝐷 = (deg1‘𝐸) | |
| 3 | algextdeglem.y | . . . . 5 ⊢ 𝑃 = (Poly1‘𝐾) | |
| 4 | algextdeglem.u | . . . . 5 ⊢ 𝑈 = (Base‘𝑃) | |
| 5 | algextdeglem.o | . . . . . . 7 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 6 | 1 | fveq2i 6879 | . . . . . . . 8 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
| 7 | 3, 6 | eqtri 2758 | . . . . . . 7 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
| 8 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 9 | algextdeg.f | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 10 | algextdeg.e | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 11 | eqid 2735 | . . . . . . . . 9 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 12 | 9 | fldcrngd 20702 | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 13 | sdrgsubrg 20751 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
| 14 | 10, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 15 | 5, 1, 8, 11, 12, 14 | irngssv 33729 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
| 16 | algextdeg.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
| 17 | 15, 16 | sseldd 3959 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
| 18 | eqid 2735 | . . . . . . 7 ⊢ {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} | |
| 19 | eqid 2735 | . . . . . . 7 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
| 20 | eqid 2735 | . . . . . . 7 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
| 21 | algextdeg.m | . . . . . . 7 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 22 | 5, 7, 8, 9, 10, 17, 11, 18, 19, 20, 21 | minplycl 33740 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘𝑃)) |
| 23 | 22, 4 | eleqtrrdi 2845 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
| 24 | 1, 2, 3, 4, 23, 14 | ressdeg1 33579 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) = ((deg1‘𝐾)‘(𝑀‘𝐴))) |
| 25 | 24 | breq2d 5131 | . . 3 ⊢ (𝜑 → (((deg1‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴)) ↔ ((deg1‘𝐾)‘𝑋) < ((deg1‘𝐾)‘(𝑀‘𝐴)))) |
| 26 | algextdeglem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 27 | eqid 2735 | . . . . 5 ⊢ (deg1‘𝐾) = (deg1‘𝐾) | |
| 28 | algextdeglem.t | . . . . 5 ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) | |
| 29 | 9 | flddrngd 20701 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 30 | 29 | drngringd 20697 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ Ring) |
| 31 | eqid 2735 | . . . . . . . . 9 ⊢ (Poly1‘𝐸) = (Poly1‘𝐸) | |
| 32 | eqid 2735 | . . . . . . . . 9 ⊢ (PwSer1‘𝐾) = (PwSer1‘𝐾) | |
| 33 | eqid 2735 | . . . . . . . . 9 ⊢ (Base‘(PwSer1‘𝐾)) = (Base‘(PwSer1‘𝐾)) | |
| 34 | eqid 2735 | . . . . . . . . 9 ⊢ (Base‘(Poly1‘𝐸)) = (Base‘(Poly1‘𝐸)) | |
| 35 | 31, 1, 3, 4, 14, 32, 33, 34 | ressply1bas2 22163 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 = ((Base‘(PwSer1‘𝐾)) ∩ (Base‘(Poly1‘𝐸)))) |
| 36 | inss2 4213 | . . . . . . . 8 ⊢ ((Base‘(PwSer1‘𝐾)) ∩ (Base‘(Poly1‘𝐸))) ⊆ (Base‘(Poly1‘𝐸)) | |
| 37 | 35, 36 | eqsstrdi 4003 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊆ (Base‘(Poly1‘𝐸))) |
| 38 | 37, 23 | sseldd 3959 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘𝐸))) |
| 39 | eqid 2735 | . . . . . . 7 ⊢ (0g‘(Poly1‘𝐸)) = (0g‘(Poly1‘𝐸)) | |
| 40 | 39, 9, 10, 21, 16 | irngnminplynz 33746 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ≠ (0g‘(Poly1‘𝐸))) |
| 41 | 2, 31, 39, 34 | deg1nn0cl 26045 | . . . . . 6 ⊢ ((𝐸 ∈ Ring ∧ (𝑀‘𝐴) ∈ (Base‘(Poly1‘𝐸)) ∧ (𝑀‘𝐴) ≠ (0g‘(Poly1‘𝐸))) → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
| 42 | 30, 38, 40, 41 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
| 43 | fldsdrgfld 20758 | . . . . . . . . 9 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) | |
| 44 | 9, 10, 43 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) |
| 45 | 1, 44 | eqeltrid 2838 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Field) |
| 46 | fldidom 20731 | . . . . . . 7 ⊢ (𝐾 ∈ Field → 𝐾 ∈ IDomn) | |
| 47 | 45, 46 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ IDomn) |
| 48 | 47 | idomringd 20688 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Ring) |
| 49 | 3, 27, 28, 42, 48, 4 | ply1degleel 33605 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝑋 ∈ 𝑈 ∧ ((deg1‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴))))) |
| 50 | 26, 49 | mpbirand 707 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ ((deg1‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴)))) |
| 51 | eqid 2735 | . . . 4 ⊢ (Unic1p‘𝐾) = (Unic1p‘𝐾) | |
| 52 | algextdeglem.r | . . . 4 ⊢ 𝑅 = (rem1p‘𝐾) | |
| 53 | 47 | idomdomd 20686 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Domn) |
| 54 | 1 | fveq2i 6879 | . . . . . 6 ⊢ (Monic1p‘𝐾) = (Monic1p‘(𝐸 ↾s 𝐹)) |
| 55 | 39, 9, 10, 21, 16, 54 | minplym1p 33747 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) |
| 56 | eqid 2735 | . . . . . 6 ⊢ (Monic1p‘𝐾) = (Monic1p‘𝐾) | |
| 57 | 51, 56 | mon1puc1p 26108 | . . . . 5 ⊢ ((𝐾 ∈ Ring ∧ (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
| 58 | 48, 55, 57 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
| 59 | 3, 4, 51, 52, 27, 53, 26, 58 | r1pid2 26119 | . . 3 ⊢ (𝜑 → ((𝑋𝑅(𝑀‘𝐴)) = 𝑋 ↔ ((deg1‘𝐾)‘𝑋) < ((deg1‘𝐾)‘(𝑀‘𝐴)))) |
| 60 | 25, 50, 59 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝑋𝑅(𝑀‘𝐴)) = 𝑋)) |
| 61 | algextdeglem.h | . . . 4 ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) | |
| 62 | oveq1 7412 | . . . 4 ⊢ (𝑝 = 𝑋 → (𝑝𝑅(𝑀‘𝐴)) = (𝑋𝑅(𝑀‘𝐴))) | |
| 63 | ovexd 7440 | . . . 4 ⊢ (𝜑 → (𝑋𝑅(𝑀‘𝐴)) ∈ V) | |
| 64 | 61, 62, 26, 63 | fvmptd3 7009 | . . 3 ⊢ (𝜑 → (𝐻‘𝑋) = (𝑋𝑅(𝑀‘𝐴))) |
| 65 | 64 | eqeq1d 2737 | . 2 ⊢ (𝜑 → ((𝐻‘𝑋) = 𝑋 ↔ (𝑋𝑅(𝑀‘𝐴)) = 𝑋)) |
| 66 | 60, 65 | bitr4d 282 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝐻‘𝑋) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 {crab 3415 Vcvv 3459 ∪ cun 3924 ∩ cin 3925 {csn 4601 ∪ cuni 4883 class class class wbr 5119 ↦ cmpt 5201 ◡ccnv 5653 dom cdm 5654 “ cima 5657 ‘cfv 6531 (class class class)co 7405 [cec 8717 -∞cmnf 11267 < clt 11269 ℕ0cn0 12501 [,)cico 13364 Basecbs 17228 ↾s cress 17251 0gc0g 17453 /s cqus 17519 ~QG cqg 19105 Ringcrg 20193 SubRingcsubrg 20529 IDomncidom 20653 Fieldcfield 20690 SubDRingcsdrg 20746 RSpancrsp 21168 PwSer1cps1 22110 Poly1cpl1 22112 evalSub1 ces1 22251 deg1cdg1 26011 Monic1pcmn1 26083 Unic1pcuc1p 26084 rem1pcr1p 26086 idlGen1pcig1p 26087 fldGen cfldgen 33304 IntgRing cirng 33724 minPoly cminply 33733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-ico 13368 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-srg 20147 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-rhm 20432 df-nzr 20473 df-subrng 20506 df-subrg 20530 df-rlreg 20654 df-domn 20655 df-idom 20656 df-drng 20691 df-field 20692 df-sdrg 20747 df-lmod 20819 df-lss 20889 df-lsp 20929 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-rsp 21170 df-cnfld 21316 df-assa 21813 df-asp 21814 df-ascl 21815 df-psr 21869 df-mvr 21870 df-mpl 21871 df-opsr 21873 df-evls 22032 df-evl 22033 df-psr1 22115 df-vr1 22116 df-ply1 22117 df-coe1 22118 df-evls1 22253 df-evl1 22254 df-mdeg 26012 df-deg1 26013 df-mon1 26088 df-uc1p 26089 df-q1p 26090 df-r1p 26091 df-ig1p 26092 df-irng 33725 df-minply 33734 |
| This theorem is referenced by: algextdeglem8 33758 |
| Copyright terms: Public domain | W3C validator |