![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem7 | Structured version Visualization version GIF version |
Description: Lemma for algextdeg 33085. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
algextdeg.d | ⊢ 𝐷 = ( deg1 ‘𝐸) |
algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) |
algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) |
algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) |
algextdeglem.r | ⊢ 𝑅 = (rem1p‘𝐾) |
algextdeglem.h | ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) |
algextdeglem.t | ⊢ 𝑇 = (◡( deg1 ‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) |
algextdeglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
algextdeglem7 | ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝐻‘𝑋) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algextdeg.k | . . . . 5 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
2 | algextdeg.d | . . . . 5 ⊢ 𝐷 = ( deg1 ‘𝐸) | |
3 | algextdeglem.y | . . . . 5 ⊢ 𝑃 = (Poly1‘𝐾) | |
4 | algextdeglem.u | . . . . 5 ⊢ 𝑈 = (Base‘𝑃) | |
5 | algextdeglem.o | . . . . . . 7 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
6 | 1 | fveq2i 6894 | . . . . . . . 8 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
7 | 3, 6 | eqtri 2759 | . . . . . . 7 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
8 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
9 | algextdeg.f | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Field) | |
10 | algextdeg.e | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
11 | eqid 2731 | . . . . . . . . 9 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
12 | 9 | fldcrngd 20517 | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ CRing) |
13 | sdrgsubrg 20554 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
14 | 10, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
15 | 5, 1, 8, 11, 12, 14 | irngssv 33056 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
16 | algextdeg.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
17 | 15, 16 | sseldd 3983 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
18 | eqid 2731 | . . . . . . 7 ⊢ {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} | |
19 | eqid 2731 | . . . . . . 7 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
20 | eqid 2731 | . . . . . . 7 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
21 | algextdeg.m | . . . . . . 7 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
22 | 5, 7, 8, 9, 10, 17, 11, 18, 19, 20, 21 | minplycl 33071 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘𝑃)) |
23 | 22, 4 | eleqtrrdi 2843 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
24 | 1, 2, 3, 4, 23, 14 | ressdeg1 32940 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) = (( deg1 ‘𝐾)‘(𝑀‘𝐴))) |
25 | 24 | breq2d 5160 | . . 3 ⊢ (𝜑 → ((( deg1 ‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴)) ↔ (( deg1 ‘𝐾)‘𝑋) < (( deg1 ‘𝐾)‘(𝑀‘𝐴)))) |
26 | algextdeglem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
27 | eqid 2731 | . . . . 5 ⊢ ( deg1 ‘𝐾) = ( deg1 ‘𝐾) | |
28 | algextdeglem.t | . . . . 5 ⊢ 𝑇 = (◡( deg1 ‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) | |
29 | 9 | flddrngd 20516 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
30 | 29 | drngringd 20512 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ Ring) |
31 | eqid 2731 | . . . . . . . . 9 ⊢ (Poly1‘𝐸) = (Poly1‘𝐸) | |
32 | eqid 2731 | . . . . . . . . 9 ⊢ (PwSer1‘𝐾) = (PwSer1‘𝐾) | |
33 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘(PwSer1‘𝐾)) = (Base‘(PwSer1‘𝐾)) | |
34 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘(Poly1‘𝐸)) = (Base‘(Poly1‘𝐸)) | |
35 | 31, 1, 3, 4, 14, 32, 33, 34 | ressply1bas2 21983 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 = ((Base‘(PwSer1‘𝐾)) ∩ (Base‘(Poly1‘𝐸)))) |
36 | inss2 4229 | . . . . . . . 8 ⊢ ((Base‘(PwSer1‘𝐾)) ∩ (Base‘(Poly1‘𝐸))) ⊆ (Base‘(Poly1‘𝐸)) | |
37 | 35, 36 | eqsstrdi 4036 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊆ (Base‘(Poly1‘𝐸))) |
38 | 37, 23 | sseldd 3983 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘𝐸))) |
39 | eqid 2731 | . . . . . . 7 ⊢ (0g‘(Poly1‘𝐸)) = (0g‘(Poly1‘𝐸)) | |
40 | 39, 9, 10, 21, 16 | irngnminplynz 33075 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ≠ (0g‘(Poly1‘𝐸))) |
41 | 2, 31, 39, 34 | deg1nn0cl 25855 | . . . . . 6 ⊢ ((𝐸 ∈ Ring ∧ (𝑀‘𝐴) ∈ (Base‘(Poly1‘𝐸)) ∧ (𝑀‘𝐴) ≠ (0g‘(Poly1‘𝐸))) → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
42 | 30, 38, 40, 41 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
43 | fldsdrgfld 20561 | . . . . . . . . 9 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) | |
44 | 9, 10, 43 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) |
45 | 1, 44 | eqeltrid 2836 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Field) |
46 | fldidom 21127 | . . . . . . 7 ⊢ (𝐾 ∈ Field → 𝐾 ∈ IDomn) | |
47 | 45, 46 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ IDomn) |
48 | 47 | idomringd 32660 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Ring) |
49 | 3, 27, 28, 42, 48, 4 | ply1degleel 32956 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝑋 ∈ 𝑈 ∧ (( deg1 ‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴))))) |
50 | 26, 49 | mpbirand 704 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (( deg1 ‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴)))) |
51 | eqid 2731 | . . . 4 ⊢ (Unic1p‘𝐾) = (Unic1p‘𝐾) | |
52 | algextdeglem.r | . . . 4 ⊢ 𝑅 = (rem1p‘𝐾) | |
53 | 1 | fveq2i 6894 | . . . . . 6 ⊢ (Monic1p‘𝐾) = (Monic1p‘(𝐸 ↾s 𝐹)) |
54 | 39, 9, 10, 21, 16, 53 | minplym1p 33076 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) |
55 | eqid 2731 | . . . . . 6 ⊢ (Monic1p‘𝐾) = (Monic1p‘𝐾) | |
56 | 51, 55 | mon1puc1p 25917 | . . . . 5 ⊢ ((𝐾 ∈ Ring ∧ (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
57 | 48, 54, 56 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
58 | 3, 4, 51, 52, 47, 27, 26, 57 | r1pid2 32969 | . . 3 ⊢ (𝜑 → ((𝑋𝑅(𝑀‘𝐴)) = 𝑋 ↔ (( deg1 ‘𝐾)‘𝑋) < (( deg1 ‘𝐾)‘(𝑀‘𝐴)))) |
59 | 25, 50, 58 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝑋𝑅(𝑀‘𝐴)) = 𝑋)) |
60 | algextdeglem.h | . . . 4 ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) | |
61 | oveq1 7419 | . . . 4 ⊢ (𝑝 = 𝑋 → (𝑝𝑅(𝑀‘𝐴)) = (𝑋𝑅(𝑀‘𝐴))) | |
62 | ovexd 7447 | . . . 4 ⊢ (𝜑 → (𝑋𝑅(𝑀‘𝐴)) ∈ V) | |
63 | 60, 61, 26, 62 | fvmptd3 7021 | . . 3 ⊢ (𝜑 → (𝐻‘𝑋) = (𝑋𝑅(𝑀‘𝐴))) |
64 | 63 | eqeq1d 2733 | . 2 ⊢ (𝜑 → ((𝐻‘𝑋) = 𝑋 ↔ (𝑋𝑅(𝑀‘𝐴)) = 𝑋)) |
65 | 59, 64 | bitr4d 282 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝐻‘𝑋) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 {crab 3431 Vcvv 3473 ∪ cun 3946 ∩ cin 3947 {csn 4628 ∪ cuni 4908 class class class wbr 5148 ↦ cmpt 5231 ◡ccnv 5675 dom cdm 5676 “ cima 5679 ‘cfv 6543 (class class class)co 7412 [cec 8707 -∞cmnf 11253 < clt 11255 ℕ0cn0 12479 [,)cico 13333 Basecbs 17151 ↾s cress 17180 0gc0g 17392 /s cqus 17458 ~QG cqg 19042 Ringcrg 20131 SubRingcsubrg 20461 Fieldcfield 20505 SubDRingcsdrg 20549 RSpancrsp 20933 IDomncidom 21101 PwSer1cps1 21931 Poly1cpl1 21933 evalSub1 ces1 22065 deg1 cdg1 25818 Monic1pcmn1 25892 Unic1pcuc1p 25893 rem1pcr1p 25895 idlGen1pcig1p 25896 fldGen cfldgen 32685 IntgRing cirng 33051 minPoly cminply 33060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-ofr 7675 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-ico 13337 df-fz 13492 df-fzo 13635 df-seq 13974 df-hash 14298 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-0g 17394 df-gsum 17395 df-prds 17400 df-pws 17402 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-mhm 18708 df-submnd 18709 df-grp 18861 df-minusg 18862 df-sbg 18863 df-mulg 18991 df-subg 19043 df-ghm 19132 df-cntz 19226 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-srg 20085 df-ring 20133 df-cring 20134 df-oppr 20229 df-dvdsr 20252 df-unit 20253 df-invr 20283 df-rhm 20367 df-nzr 20408 df-subrng 20438 df-subrg 20463 df-drng 20506 df-field 20507 df-sdrg 20550 df-lmod 20620 df-lss 20691 df-lsp 20731 df-sra 20934 df-rgmod 20935 df-lidl 20936 df-rsp 20937 df-rlreg 21103 df-domn 21104 df-idom 21105 df-cnfld 21149 df-assa 21631 df-asp 21632 df-ascl 21633 df-psr 21685 df-mvr 21686 df-mpl 21687 df-opsr 21689 df-evls 21859 df-evl 21860 df-psr1 21936 df-vr1 21937 df-ply1 21938 df-coe1 21939 df-evls1 22067 df-evl1 22068 df-mdeg 25819 df-deg1 25820 df-mon1 25897 df-uc1p 25898 df-q1p 25899 df-r1p 25900 df-ig1p 25901 df-irng 33052 df-minply 33061 |
This theorem is referenced by: algextdeglem8 33084 |
Copyright terms: Public domain | W3C validator |