![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem7 | Structured version Visualization version GIF version |
Description: Lemma for algextdeg 33716. The polynomials 𝑋 of lower degree than the minimal polynomial are left unchanged when taking the remainder of the division by that minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) |
algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) |
algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) |
algextdeglem.r | ⊢ 𝑅 = (rem1p‘𝐾) |
algextdeglem.h | ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) |
algextdeglem.t | ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) |
algextdeglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
algextdeglem7 | ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝐻‘𝑋) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algextdeg.k | . . . . 5 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
2 | algextdeg.d | . . . . 5 ⊢ 𝐷 = (deg1‘𝐸) | |
3 | algextdeglem.y | . . . . 5 ⊢ 𝑃 = (Poly1‘𝐾) | |
4 | algextdeglem.u | . . . . 5 ⊢ 𝑈 = (Base‘𝑃) | |
5 | algextdeglem.o | . . . . . . 7 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
6 | 1 | fveq2i 6923 | . . . . . . . 8 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
7 | 3, 6 | eqtri 2768 | . . . . . . 7 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
8 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
9 | algextdeg.f | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Field) | |
10 | algextdeg.e | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
11 | eqid 2740 | . . . . . . . . 9 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
12 | 9 | fldcrngd 20764 | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ CRing) |
13 | sdrgsubrg 20814 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
14 | 10, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
15 | 5, 1, 8, 11, 12, 14 | irngssv 33688 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
16 | algextdeg.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
17 | 15, 16 | sseldd 4009 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
18 | eqid 2740 | . . . . . . 7 ⊢ {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} | |
19 | eqid 2740 | . . . . . . 7 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
20 | eqid 2740 | . . . . . . 7 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
21 | algextdeg.m | . . . . . . 7 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
22 | 5, 7, 8, 9, 10, 17, 11, 18, 19, 20, 21 | minplycl 33699 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘𝑃)) |
23 | 22, 4 | eleqtrrdi 2855 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
24 | 1, 2, 3, 4, 23, 14 | ressdeg1 33556 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) = ((deg1‘𝐾)‘(𝑀‘𝐴))) |
25 | 24 | breq2d 5178 | . . 3 ⊢ (𝜑 → (((deg1‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴)) ↔ ((deg1‘𝐾)‘𝑋) < ((deg1‘𝐾)‘(𝑀‘𝐴)))) |
26 | algextdeglem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
27 | eqid 2740 | . . . . 5 ⊢ (deg1‘𝐾) = (deg1‘𝐾) | |
28 | algextdeglem.t | . . . . 5 ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) | |
29 | 9 | flddrngd 20763 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
30 | 29 | drngringd 20759 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ Ring) |
31 | eqid 2740 | . . . . . . . . 9 ⊢ (Poly1‘𝐸) = (Poly1‘𝐸) | |
32 | eqid 2740 | . . . . . . . . 9 ⊢ (PwSer1‘𝐾) = (PwSer1‘𝐾) | |
33 | eqid 2740 | . . . . . . . . 9 ⊢ (Base‘(PwSer1‘𝐾)) = (Base‘(PwSer1‘𝐾)) | |
34 | eqid 2740 | . . . . . . . . 9 ⊢ (Base‘(Poly1‘𝐸)) = (Base‘(Poly1‘𝐸)) | |
35 | 31, 1, 3, 4, 14, 32, 33, 34 | ressply1bas2 22250 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 = ((Base‘(PwSer1‘𝐾)) ∩ (Base‘(Poly1‘𝐸)))) |
36 | inss2 4259 | . . . . . . . 8 ⊢ ((Base‘(PwSer1‘𝐾)) ∩ (Base‘(Poly1‘𝐸))) ⊆ (Base‘(Poly1‘𝐸)) | |
37 | 35, 36 | eqsstrdi 4063 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊆ (Base‘(Poly1‘𝐸))) |
38 | 37, 23 | sseldd 4009 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘𝐸))) |
39 | eqid 2740 | . . . . . . 7 ⊢ (0g‘(Poly1‘𝐸)) = (0g‘(Poly1‘𝐸)) | |
40 | 39, 9, 10, 21, 16 | irngnminplynz 33705 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ≠ (0g‘(Poly1‘𝐸))) |
41 | 2, 31, 39, 34 | deg1nn0cl 26147 | . . . . . 6 ⊢ ((𝐸 ∈ Ring ∧ (𝑀‘𝐴) ∈ (Base‘(Poly1‘𝐸)) ∧ (𝑀‘𝐴) ≠ (0g‘(Poly1‘𝐸))) → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
42 | 30, 38, 40, 41 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
43 | fldsdrgfld 20821 | . . . . . . . . 9 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) | |
44 | 9, 10, 43 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) |
45 | 1, 44 | eqeltrid 2848 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Field) |
46 | fldidom 20793 | . . . . . . 7 ⊢ (𝐾 ∈ Field → 𝐾 ∈ IDomn) | |
47 | 45, 46 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ IDomn) |
48 | 47 | idomringd 20750 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Ring) |
49 | 3, 27, 28, 42, 48, 4 | ply1degleel 33581 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝑋 ∈ 𝑈 ∧ ((deg1‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴))))) |
50 | 26, 49 | mpbirand 706 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ ((deg1‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴)))) |
51 | eqid 2740 | . . . 4 ⊢ (Unic1p‘𝐾) = (Unic1p‘𝐾) | |
52 | algextdeglem.r | . . . 4 ⊢ 𝑅 = (rem1p‘𝐾) | |
53 | 47 | idomdomd 20748 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Domn) |
54 | 1 | fveq2i 6923 | . . . . . 6 ⊢ (Monic1p‘𝐾) = (Monic1p‘(𝐸 ↾s 𝐹)) |
55 | 39, 9, 10, 21, 16, 54 | minplym1p 33706 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) |
56 | eqid 2740 | . . . . . 6 ⊢ (Monic1p‘𝐾) = (Monic1p‘𝐾) | |
57 | 51, 56 | mon1puc1p 26210 | . . . . 5 ⊢ ((𝐾 ∈ Ring ∧ (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
58 | 48, 55, 57 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
59 | 3, 4, 51, 52, 27, 53, 26, 58 | r1pid2 26221 | . . 3 ⊢ (𝜑 → ((𝑋𝑅(𝑀‘𝐴)) = 𝑋 ↔ ((deg1‘𝐾)‘𝑋) < ((deg1‘𝐾)‘(𝑀‘𝐴)))) |
60 | 25, 50, 59 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝑋𝑅(𝑀‘𝐴)) = 𝑋)) |
61 | algextdeglem.h | . . . 4 ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) | |
62 | oveq1 7455 | . . . 4 ⊢ (𝑝 = 𝑋 → (𝑝𝑅(𝑀‘𝐴)) = (𝑋𝑅(𝑀‘𝐴))) | |
63 | ovexd 7483 | . . . 4 ⊢ (𝜑 → (𝑋𝑅(𝑀‘𝐴)) ∈ V) | |
64 | 61, 62, 26, 63 | fvmptd3 7052 | . . 3 ⊢ (𝜑 → (𝐻‘𝑋) = (𝑋𝑅(𝑀‘𝐴))) |
65 | 64 | eqeq1d 2742 | . 2 ⊢ (𝜑 → ((𝐻‘𝑋) = 𝑋 ↔ (𝑋𝑅(𝑀‘𝐴)) = 𝑋)) |
66 | 60, 65 | bitr4d 282 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝐻‘𝑋) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 Vcvv 3488 ∪ cun 3974 ∩ cin 3975 {csn 4648 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 ◡ccnv 5699 dom cdm 5700 “ cima 5703 ‘cfv 6573 (class class class)co 7448 [cec 8761 -∞cmnf 11322 < clt 11324 ℕ0cn0 12553 [,)cico 13409 Basecbs 17258 ↾s cress 17287 0gc0g 17499 /s cqus 17565 ~QG cqg 19162 Ringcrg 20260 SubRingcsubrg 20595 IDomncidom 20715 Fieldcfield 20752 SubDRingcsdrg 20809 RSpancrsp 21240 PwSer1cps1 22197 Poly1cpl1 22199 evalSub1 ces1 22338 deg1cdg1 26113 Monic1pcmn1 26185 Unic1pcuc1p 26186 rem1pcr1p 26188 idlGen1pcig1p 26189 fldGen cfldgen 33277 IntgRing cirng 33683 minPoly cminply 33692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-ico 13413 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-srg 20214 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-rhm 20498 df-nzr 20539 df-subrng 20572 df-subrg 20597 df-rlreg 20716 df-domn 20717 df-idom 20718 df-drng 20753 df-field 20754 df-sdrg 20810 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-cnfld 21388 df-assa 21896 df-asp 21897 df-ascl 21898 df-psr 21952 df-mvr 21953 df-mpl 21954 df-opsr 21956 df-evls 22121 df-evl 22122 df-psr1 22202 df-vr1 22203 df-ply1 22204 df-coe1 22205 df-evls1 22340 df-evl1 22341 df-mdeg 26114 df-deg1 26115 df-mon1 26190 df-uc1p 26191 df-q1p 26192 df-r1p 26193 df-ig1p 26194 df-irng 33684 df-minply 33693 |
This theorem is referenced by: algextdeglem8 33715 |
Copyright terms: Public domain | W3C validator |