| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for algextdeg 33692. The polynomials 𝑋 of lower degree than the minimal polynomial are left unchanged when taking the remainder of the division by that minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
| algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
| algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
| algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
| algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) |
| algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) |
| algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
| algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
| algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
| algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
| algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) |
| algextdeglem.r | ⊢ 𝑅 = (rem1p‘𝐾) |
| algextdeglem.h | ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) |
| algextdeglem.t | ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) |
| algextdeglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| algextdeglem7 | ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝐻‘𝑋) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algextdeg.k | . . . . 5 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 2 | algextdeg.d | . . . . 5 ⊢ 𝐷 = (deg1‘𝐸) | |
| 3 | algextdeglem.y | . . . . 5 ⊢ 𝑃 = (Poly1‘𝐾) | |
| 4 | algextdeglem.u | . . . . 5 ⊢ 𝑈 = (Base‘𝑃) | |
| 5 | algextdeglem.o | . . . . . . 7 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 6 | 1 | fveq2i 6825 | . . . . . . . 8 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
| 7 | 3, 6 | eqtri 2752 | . . . . . . 7 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
| 8 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 9 | algextdeg.f | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 10 | algextdeg.e | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 11 | eqid 2729 | . . . . . . . . 9 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 12 | 9 | fldcrngd 20627 | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 13 | sdrgsubrg 20676 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
| 14 | 10, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 15 | 5, 1, 8, 11, 12, 14 | irngssv 33655 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
| 16 | algextdeg.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
| 17 | 15, 16 | sseldd 3936 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
| 18 | eqid 2729 | . . . . . . 7 ⊢ {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} | |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
| 20 | eqid 2729 | . . . . . . 7 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
| 21 | algextdeg.m | . . . . . . 7 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 22 | 5, 7, 8, 9, 10, 17, 11, 18, 19, 20, 21 | minplycl 33673 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘𝑃)) |
| 23 | 22, 4 | eleqtrrdi 2839 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
| 24 | 1, 2, 3, 4, 23, 14 | ressdeg1 33501 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) = ((deg1‘𝐾)‘(𝑀‘𝐴))) |
| 25 | 24 | breq2d 5104 | . . 3 ⊢ (𝜑 → (((deg1‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴)) ↔ ((deg1‘𝐾)‘𝑋) < ((deg1‘𝐾)‘(𝑀‘𝐴)))) |
| 26 | algextdeglem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 27 | eqid 2729 | . . . . 5 ⊢ (deg1‘𝐾) = (deg1‘𝐾) | |
| 28 | algextdeglem.t | . . . . 5 ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) | |
| 29 | 9 | flddrngd 20626 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 30 | 29 | drngringd 20622 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ Ring) |
| 31 | eqid 2729 | . . . . . . . . 9 ⊢ (Poly1‘𝐸) = (Poly1‘𝐸) | |
| 32 | eqid 2729 | . . . . . . . . 9 ⊢ (PwSer1‘𝐾) = (PwSer1‘𝐾) | |
| 33 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘(PwSer1‘𝐾)) = (Base‘(PwSer1‘𝐾)) | |
| 34 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘(Poly1‘𝐸)) = (Base‘(Poly1‘𝐸)) | |
| 35 | 31, 1, 3, 4, 14, 32, 33, 34 | ressply1bas2 22110 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 = ((Base‘(PwSer1‘𝐾)) ∩ (Base‘(Poly1‘𝐸)))) |
| 36 | inss2 4189 | . . . . . . . 8 ⊢ ((Base‘(PwSer1‘𝐾)) ∩ (Base‘(Poly1‘𝐸))) ⊆ (Base‘(Poly1‘𝐸)) | |
| 37 | 35, 36 | eqsstrdi 3980 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊆ (Base‘(Poly1‘𝐸))) |
| 38 | 37, 23 | sseldd 3936 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘𝐸))) |
| 39 | eqid 2729 | . . . . . . 7 ⊢ (0g‘(Poly1‘𝐸)) = (0g‘(Poly1‘𝐸)) | |
| 40 | 39, 9, 10, 21, 16 | irngnminplynz 33679 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ≠ (0g‘(Poly1‘𝐸))) |
| 41 | 2, 31, 39, 34 | deg1nn0cl 25991 | . . . . . 6 ⊢ ((𝐸 ∈ Ring ∧ (𝑀‘𝐴) ∈ (Base‘(Poly1‘𝐸)) ∧ (𝑀‘𝐴) ≠ (0g‘(Poly1‘𝐸))) → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
| 42 | 30, 38, 40, 41 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
| 43 | fldsdrgfld 20683 | . . . . . . . . 9 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) | |
| 44 | 9, 10, 43 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) |
| 45 | 1, 44 | eqeltrid 2832 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Field) |
| 46 | fldidom 20656 | . . . . . . 7 ⊢ (𝐾 ∈ Field → 𝐾 ∈ IDomn) | |
| 47 | 45, 46 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ IDomn) |
| 48 | 47 | idomringd 20613 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Ring) |
| 49 | 3, 27, 28, 42, 48, 4 | ply1degleel 33528 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝑋 ∈ 𝑈 ∧ ((deg1‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴))))) |
| 50 | 26, 49 | mpbirand 707 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ ((deg1‘𝐾)‘𝑋) < (𝐷‘(𝑀‘𝐴)))) |
| 51 | eqid 2729 | . . . 4 ⊢ (Unic1p‘𝐾) = (Unic1p‘𝐾) | |
| 52 | algextdeglem.r | . . . 4 ⊢ 𝑅 = (rem1p‘𝐾) | |
| 53 | 47 | idomdomd 20611 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Domn) |
| 54 | 1 | fveq2i 6825 | . . . . . 6 ⊢ (Monic1p‘𝐾) = (Monic1p‘(𝐸 ↾s 𝐹)) |
| 55 | 39, 9, 10, 21, 16, 54 | minplym1p 33680 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) |
| 56 | eqid 2729 | . . . . . 6 ⊢ (Monic1p‘𝐾) = (Monic1p‘𝐾) | |
| 57 | 51, 56 | mon1puc1p 26054 | . . . . 5 ⊢ ((𝐾 ∈ Ring ∧ (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
| 58 | 48, 55, 57 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
| 59 | 3, 4, 51, 52, 27, 53, 26, 58 | r1pid2 26065 | . . 3 ⊢ (𝜑 → ((𝑋𝑅(𝑀‘𝐴)) = 𝑋 ↔ ((deg1‘𝐾)‘𝑋) < ((deg1‘𝐾)‘(𝑀‘𝐴)))) |
| 60 | 25, 50, 59 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝑋𝑅(𝑀‘𝐴)) = 𝑋)) |
| 61 | algextdeglem.h | . . . 4 ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) | |
| 62 | oveq1 7356 | . . . 4 ⊢ (𝑝 = 𝑋 → (𝑝𝑅(𝑀‘𝐴)) = (𝑋𝑅(𝑀‘𝐴))) | |
| 63 | ovexd 7384 | . . . 4 ⊢ (𝜑 → (𝑋𝑅(𝑀‘𝐴)) ∈ V) | |
| 64 | 61, 62, 26, 63 | fvmptd3 6953 | . . 3 ⊢ (𝜑 → (𝐻‘𝑋) = (𝑋𝑅(𝑀‘𝐴))) |
| 65 | 64 | eqeq1d 2731 | . 2 ⊢ (𝜑 → ((𝐻‘𝑋) = 𝑋 ↔ (𝑋𝑅(𝑀‘𝐴)) = 𝑋)) |
| 66 | 60, 65 | bitr4d 282 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝐻‘𝑋) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3394 Vcvv 3436 ∪ cun 3901 ∩ cin 3902 {csn 4577 ∪ cuni 4858 class class class wbr 5092 ↦ cmpt 5173 ◡ccnv 5618 dom cdm 5619 “ cima 5622 ‘cfv 6482 (class class class)co 7349 [cec 8623 -∞cmnf 11147 < clt 11149 ℕ0cn0 12384 [,)cico 13250 Basecbs 17120 ↾s cress 17141 0gc0g 17343 /s cqus 17409 ~QG cqg 19001 Ringcrg 20118 SubRingcsubrg 20454 IDomncidom 20578 Fieldcfield 20615 SubDRingcsdrg 20671 RSpancrsp 21114 PwSer1cps1 22057 Poly1cpl1 22059 evalSub1 ces1 22198 deg1cdg1 25957 Monic1pcmn1 26029 Unic1pcuc1p 26030 rem1pcr1p 26032 idlGen1pcig1p 26033 fldGen cfldgen 33249 IntgRing cirng 33650 minPoly cminply 33666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-ico 13254 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-rhm 20357 df-nzr 20398 df-subrng 20431 df-subrg 20455 df-rlreg 20579 df-domn 20580 df-idom 20581 df-drng 20616 df-field 20617 df-sdrg 20672 df-lmod 20765 df-lss 20835 df-lsp 20875 df-sra 21077 df-rgmod 21078 df-lidl 21115 df-rsp 21116 df-cnfld 21262 df-assa 21760 df-asp 21761 df-ascl 21762 df-psr 21816 df-mvr 21817 df-mpl 21818 df-opsr 21820 df-evls 21979 df-evl 21980 df-psr1 22062 df-vr1 22063 df-ply1 22064 df-coe1 22065 df-evls1 22200 df-evl1 22201 df-mdeg 25958 df-deg1 25959 df-mon1 26034 df-uc1p 26035 df-q1p 26036 df-r1p 26037 df-ig1p 26038 df-irng 33651 df-minply 33667 |
| This theorem is referenced by: algextdeglem8 33691 |
| Copyright terms: Public domain | W3C validator |