![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem7 | Structured version Visualization version GIF version |
Description: Lemma for algextdeg 33070. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
algextdeg.k | β’ πΎ = (πΈ βΎs πΉ) |
algextdeg.l | β’ πΏ = (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) |
algextdeg.d | β’ π· = ( deg1 βπΈ) |
algextdeg.m | β’ π = (πΈ minPoly πΉ) |
algextdeg.f | β’ (π β πΈ β Field) |
algextdeg.e | β’ (π β πΉ β (SubDRingβπΈ)) |
algextdeg.a | β’ (π β π΄ β (πΈ IntgRing πΉ)) |
algextdeglem.o | β’ π = (πΈ evalSub1 πΉ) |
algextdeglem.y | β’ π = (Poly1βπΎ) |
algextdeglem.u | β’ π = (Baseβπ) |
algextdeglem.g | β’ πΊ = (π β π β¦ ((πβπ)βπ΄)) |
algextdeglem.n | β’ π = (π₯ β π β¦ [π₯](π ~QG π)) |
algextdeglem.z | β’ π = (β‘πΊ β {(0gβπΏ)}) |
algextdeglem.q | β’ π = (π /s (π ~QG π)) |
algextdeglem.j | β’ π½ = (π β (Baseβπ) β¦ βͺ (πΊ β π)) |
algextdeglem.r | β’ π = (rem1pβπΎ) |
algextdeglem.h | β’ π» = (π β π β¦ (ππ (πβπ΄))) |
algextdeglem.t | β’ π = (β‘( deg1 βπΎ) β (-β[,)(π·β(πβπ΄)))) |
algextdeglem.x | β’ (π β π β π) |
Ref | Expression |
---|---|
algextdeglem7 | β’ (π β (π β π β (π»βπ) = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algextdeg.k | . . . . 5 β’ πΎ = (πΈ βΎs πΉ) | |
2 | algextdeg.d | . . . . 5 β’ π· = ( deg1 βπΈ) | |
3 | algextdeglem.y | . . . . 5 β’ π = (Poly1βπΎ) | |
4 | algextdeglem.u | . . . . 5 β’ π = (Baseβπ) | |
5 | algextdeglem.o | . . . . . . 7 β’ π = (πΈ evalSub1 πΉ) | |
6 | 1 | fveq2i 6893 | . . . . . . . 8 β’ (Poly1βπΎ) = (Poly1β(πΈ βΎs πΉ)) |
7 | 3, 6 | eqtri 2758 | . . . . . . 7 β’ π = (Poly1β(πΈ βΎs πΉ)) |
8 | eqid 2730 | . . . . . . 7 β’ (BaseβπΈ) = (BaseβπΈ) | |
9 | algextdeg.f | . . . . . . 7 β’ (π β πΈ β Field) | |
10 | algextdeg.e | . . . . . . 7 β’ (π β πΉ β (SubDRingβπΈ)) | |
11 | eqid 2730 | . . . . . . . . 9 β’ (0gβπΈ) = (0gβπΈ) | |
12 | 9 | fldcrngd 20513 | . . . . . . . . 9 β’ (π β πΈ β CRing) |
13 | sdrgsubrg 20550 | . . . . . . . . . 10 β’ (πΉ β (SubDRingβπΈ) β πΉ β (SubRingβπΈ)) | |
14 | 10, 13 | syl 17 | . . . . . . . . 9 β’ (π β πΉ β (SubRingβπΈ)) |
15 | 5, 1, 8, 11, 12, 14 | irngssv 33041 | . . . . . . . 8 β’ (π β (πΈ IntgRing πΉ) β (BaseβπΈ)) |
16 | algextdeg.a | . . . . . . . 8 β’ (π β π΄ β (πΈ IntgRing πΉ)) | |
17 | 15, 16 | sseldd 3982 | . . . . . . 7 β’ (π β π΄ β (BaseβπΈ)) |
18 | eqid 2730 | . . . . . . 7 β’ {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} | |
19 | eqid 2730 | . . . . . . 7 β’ (RSpanβπ) = (RSpanβπ) | |
20 | eqid 2730 | . . . . . . 7 β’ (idlGen1pβ(πΈ βΎs πΉ)) = (idlGen1pβ(πΈ βΎs πΉ)) | |
21 | algextdeg.m | . . . . . . 7 β’ π = (πΈ minPoly πΉ) | |
22 | 5, 7, 8, 9, 10, 17, 11, 18, 19, 20, 21 | minplycl 33056 | . . . . . 6 β’ (π β (πβπ΄) β (Baseβπ)) |
23 | 22, 4 | eleqtrrdi 2842 | . . . . 5 β’ (π β (πβπ΄) β π) |
24 | 1, 2, 3, 4, 23, 14 | ressdeg1 32925 | . . . 4 β’ (π β (π·β(πβπ΄)) = (( deg1 βπΎ)β(πβπ΄))) |
25 | 24 | breq2d 5159 | . . 3 β’ (π β ((( deg1 βπΎ)βπ) < (π·β(πβπ΄)) β (( deg1 βπΎ)βπ) < (( deg1 βπΎ)β(πβπ΄)))) |
26 | algextdeglem.x | . . . 4 β’ (π β π β π) | |
27 | eqid 2730 | . . . . 5 β’ ( deg1 βπΎ) = ( deg1 βπΎ) | |
28 | algextdeglem.t | . . . . 5 β’ π = (β‘( deg1 βπΎ) β (-β[,)(π·β(πβπ΄)))) | |
29 | 9 | flddrngd 20512 | . . . . . . 7 β’ (π β πΈ β DivRing) |
30 | 29 | drngringd 20508 | . . . . . 6 β’ (π β πΈ β Ring) |
31 | eqid 2730 | . . . . . . . . 9 β’ (Poly1βπΈ) = (Poly1βπΈ) | |
32 | eqid 2730 | . . . . . . . . 9 β’ (PwSer1βπΎ) = (PwSer1βπΎ) | |
33 | eqid 2730 | . . . . . . . . 9 β’ (Baseβ(PwSer1βπΎ)) = (Baseβ(PwSer1βπΎ)) | |
34 | eqid 2730 | . . . . . . . . 9 β’ (Baseβ(Poly1βπΈ)) = (Baseβ(Poly1βπΈ)) | |
35 | 31, 1, 3, 4, 14, 32, 33, 34 | ressply1bas2 21970 | . . . . . . . 8 β’ (π β π = ((Baseβ(PwSer1βπΎ)) β© (Baseβ(Poly1βπΈ)))) |
36 | inss2 4228 | . . . . . . . 8 β’ ((Baseβ(PwSer1βπΎ)) β© (Baseβ(Poly1βπΈ))) β (Baseβ(Poly1βπΈ)) | |
37 | 35, 36 | eqsstrdi 4035 | . . . . . . 7 β’ (π β π β (Baseβ(Poly1βπΈ))) |
38 | 37, 23 | sseldd 3982 | . . . . . 6 β’ (π β (πβπ΄) β (Baseβ(Poly1βπΈ))) |
39 | eqid 2730 | . . . . . . 7 β’ (0gβ(Poly1βπΈ)) = (0gβ(Poly1βπΈ)) | |
40 | 39, 9, 10, 21, 16 | irngnminplynz 33060 | . . . . . 6 β’ (π β (πβπ΄) β (0gβ(Poly1βπΈ))) |
41 | 2, 31, 39, 34 | deg1nn0cl 25841 | . . . . . 6 β’ ((πΈ β Ring β§ (πβπ΄) β (Baseβ(Poly1βπΈ)) β§ (πβπ΄) β (0gβ(Poly1βπΈ))) β (π·β(πβπ΄)) β β0) |
42 | 30, 38, 40, 41 | syl3anc 1369 | . . . . 5 β’ (π β (π·β(πβπ΄)) β β0) |
43 | fldsdrgfld 20557 | . . . . . . . . 9 β’ ((πΈ β Field β§ πΉ β (SubDRingβπΈ)) β (πΈ βΎs πΉ) β Field) | |
44 | 9, 10, 43 | syl2anc 582 | . . . . . . . 8 β’ (π β (πΈ βΎs πΉ) β Field) |
45 | 1, 44 | eqeltrid 2835 | . . . . . . 7 β’ (π β πΎ β Field) |
46 | fldidom 21123 | . . . . . . 7 β’ (πΎ β Field β πΎ β IDomn) | |
47 | 45, 46 | syl 17 | . . . . . 6 β’ (π β πΎ β IDomn) |
48 | 47 | idomringd 32645 | . . . . 5 β’ (π β πΎ β Ring) |
49 | 3, 27, 28, 42, 48, 4 | ply1degleel 32941 | . . . 4 β’ (π β (π β π β (π β π β§ (( deg1 βπΎ)βπ) < (π·β(πβπ΄))))) |
50 | 26, 49 | mpbirand 703 | . . 3 β’ (π β (π β π β (( deg1 βπΎ)βπ) < (π·β(πβπ΄)))) |
51 | eqid 2730 | . . . 4 β’ (Unic1pβπΎ) = (Unic1pβπΎ) | |
52 | algextdeglem.r | . . . 4 β’ π = (rem1pβπΎ) | |
53 | 1 | fveq2i 6893 | . . . . . 6 β’ (Monic1pβπΎ) = (Monic1pβ(πΈ βΎs πΉ)) |
54 | 39, 9, 10, 21, 16, 53 | minplym1p 33061 | . . . . 5 β’ (π β (πβπ΄) β (Monic1pβπΎ)) |
55 | eqid 2730 | . . . . . 6 β’ (Monic1pβπΎ) = (Monic1pβπΎ) | |
56 | 51, 55 | mon1puc1p 25903 | . . . . 5 β’ ((πΎ β Ring β§ (πβπ΄) β (Monic1pβπΎ)) β (πβπ΄) β (Unic1pβπΎ)) |
57 | 48, 54, 56 | syl2anc 582 | . . . 4 β’ (π β (πβπ΄) β (Unic1pβπΎ)) |
58 | 3, 4, 51, 52, 47, 27, 26, 57 | r1pid2 32954 | . . 3 β’ (π β ((ππ (πβπ΄)) = π β (( deg1 βπΎ)βπ) < (( deg1 βπΎ)β(πβπ΄)))) |
59 | 25, 50, 58 | 3bitr4d 310 | . 2 β’ (π β (π β π β (ππ (πβπ΄)) = π)) |
60 | algextdeglem.h | . . . 4 β’ π» = (π β π β¦ (ππ (πβπ΄))) | |
61 | oveq1 7418 | . . . 4 β’ (π = π β (ππ (πβπ΄)) = (ππ (πβπ΄))) | |
62 | ovexd 7446 | . . . 4 β’ (π β (ππ (πβπ΄)) β V) | |
63 | 60, 61, 26, 62 | fvmptd3 7020 | . . 3 β’ (π β (π»βπ) = (ππ (πβπ΄))) |
64 | 63 | eqeq1d 2732 | . 2 β’ (π β ((π»βπ) = π β (ππ (πβπ΄)) = π)) |
65 | 59, 64 | bitr4d 281 | 1 β’ (π β (π β π β (π»βπ) = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1539 β wcel 2104 β wne 2938 {crab 3430 Vcvv 3472 βͺ cun 3945 β© cin 3946 {csn 4627 βͺ cuni 4907 class class class wbr 5147 β¦ cmpt 5230 β‘ccnv 5674 dom cdm 5675 β cima 5678 βcfv 6542 (class class class)co 7411 [cec 8703 -βcmnf 11250 < clt 11252 β0cn0 12476 [,)cico 13330 Basecbs 17148 βΎs cress 17177 0gc0g 17389 /s cqus 17455 ~QG cqg 19038 Ringcrg 20127 SubRingcsubrg 20457 Fieldcfield 20501 SubDRingcsdrg 20545 RSpancrsp 20929 IDomncidom 21097 PwSer1cps1 21918 Poly1cpl1 21920 evalSub1 ces1 22052 deg1 cdg1 25804 Monic1pcmn1 25878 Unic1pcuc1p 25879 rem1pcr1p 25881 idlGen1pcig1p 25882 fldGen cfldgen 32670 IntgRing cirng 33036 minPoly cminply 33045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-ofr 7673 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-ico 13334 df-fz 13489 df-fzo 13632 df-seq 13971 df-hash 14295 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-0g 17391 df-gsum 17392 df-prds 17397 df-pws 17399 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18987 df-subg 19039 df-ghm 19128 df-cntz 19222 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-srg 20081 df-ring 20129 df-cring 20130 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-rhm 20363 df-nzr 20404 df-subrng 20434 df-subrg 20459 df-drng 20502 df-field 20503 df-sdrg 20546 df-lmod 20616 df-lss 20687 df-lsp 20727 df-sra 20930 df-rgmod 20931 df-lidl 20932 df-rsp 20933 df-rlreg 21099 df-domn 21100 df-idom 21101 df-cnfld 21145 df-assa 21627 df-asp 21628 df-ascl 21629 df-psr 21681 df-mvr 21682 df-mpl 21683 df-opsr 21685 df-evls 21854 df-evl 21855 df-psr1 21923 df-vr1 21924 df-ply1 21925 df-coe1 21926 df-evls1 22054 df-evl1 22055 df-mdeg 25805 df-deg1 25806 df-mon1 25883 df-uc1p 25884 df-q1p 25885 df-r1p 25886 df-ig1p 25887 df-irng 33037 df-minply 33046 |
This theorem is referenced by: algextdeglem8 33069 |
Copyright terms: Public domain | W3C validator |