MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldcrngd Structured version   Visualization version   GIF version

Theorem fldcrngd 20374
Description: A field is a commutative ring. (Contributed by SN, 23-Nov-2024.)
Hypothesis
Ref Expression
fldcrngd.1 (𝜑𝑅 ∈ Field)
Assertion
Ref Expression
fldcrngd (𝜑𝑅 ∈ CRing)

Proof of Theorem fldcrngd
StepHypRef Expression
1 fldcrngd.1 . 2 (𝜑𝑅 ∈ Field)
2 isfld 20372 . . 3 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
32simprbi 497 . 2 (𝑅 ∈ Field → 𝑅 ∈ CRing)
41, 3syl 17 1 (𝜑𝑅 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  CRingccrg 20059  DivRingcdr 20361  Fieldcfield 20362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-field 20364
This theorem is referenced by:  resrng  21180  frlmphl  21342  ply1asclunit  32699  evls1fldgencl  32804  irngnzply1lem  32814  irngnzply1  32815  ply1annig1p  32825  minplycl  32827  ply1annprmidl  32828  minplyirredlem  32829  minplyirred  32830  irngnminplynz  32831  minplym1p  32832  algextdeglem1  32833  algextdeglem2  32834  algextdeglem3  32835  algextdeglem4  32836  algextdeglem5  32837  algextdeglem6  32838  algextdeglem7  32839  algextdeglem8  32840  prjcrv0  41457
  Copyright terms: Public domain W3C validator