![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fldcrngd | Structured version Visualization version GIF version |
Description: A field is a commutative ring. (Contributed by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
fldcrngd.1 | ⊢ (𝜑 → 𝑅 ∈ Field) |
Ref | Expression |
---|---|
fldcrngd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fldcrngd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Field) | |
2 | isfld 20762 | . . 3 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) | |
3 | 2 | simprbi 496 | . 2 ⊢ (𝑅 ∈ Field → 𝑅 ∈ CRing) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
Copyright terms: Public domain | W3C validator |