| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fldcrngd | Structured version Visualization version GIF version | ||
| Description: A field is a commutative ring. (Contributed by SN, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| fldcrngd.1 | ⊢ (𝜑 → 𝑅 ∈ Field) |
| Ref | Expression |
|---|---|
| fldcrngd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldcrngd.1 | . 2 ⊢ (𝜑 → 𝑅 ∈ Field) | |
| 2 | isfld 20705 | . . 3 ⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) | |
| 3 | 2 | simprbi 496 | . 2 ⊢ (𝑅 ∈ Field → 𝑅 ∈ CRing) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Copyright terms: Public domain | W3C validator |