| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for algextdeg 33711. The quotient 𝑃 / 𝑍 of the vector space 𝑃 of polynomials by the subspace 𝑍 of polynomials annihilating 𝐴 is itself a vector space. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
| algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
| algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
| algextdeglem.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
| algextdeglem.y | ⊢ 𝑃 = (Poly1‘𝐾) |
| algextdeglem.u | ⊢ 𝑈 = (Base‘𝑃) |
| algextdeglem.g | ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
| algextdeglem.n | ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
| algextdeglem.z | ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
| algextdeglem.q | ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
| algextdeglem.j | ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) |
| Ref | Expression |
|---|---|
| algextdeglem3 | ⊢ (𝜑 → 𝑄 ∈ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algextdeglem.q | . 2 ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) | |
| 2 | algextdeglem.y | . . . 4 ⊢ 𝑃 = (Poly1‘𝐾) | |
| 3 | algextdeg.k | . . . . 5 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 4 | 3 | fveq2i 6829 | . . . 4 ⊢ (Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
| 5 | 2, 4 | eqtri 2752 | . . 3 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
| 6 | algextdeg.e | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 7 | issdrg 20692 | . . . . 5 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
| 8 | 6, 7 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
| 9 | 8 | simp3d 1144 | . . 3 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 10 | 5, 9 | ply1lvec 33513 | . 2 ⊢ (𝜑 → 𝑃 ∈ LVec) |
| 11 | algextdeglem.z | . . . 4 ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) | |
| 12 | eqidd 2730 | . . . . . . 7 ⊢ (𝜑 → ((subringAlg ‘𝐿)‘𝐹) = ((subringAlg ‘𝐿)‘𝐹)) | |
| 13 | eqidd 2730 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝐿) = (0g‘𝐿)) | |
| 14 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 15 | algextdeg.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 16 | 15 | flddrngd 20645 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 17 | 8 | simp2d 1143 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 18 | subrgsubg 20481 | . . . . . . . . . . . 12 ⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) | |
| 19 | 14 | subgss 19025 | . . . . . . . . . . . 12 ⊢ (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) |
| 20 | 17, 18, 19 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
| 21 | algextdeglem.o | . . . . . . . . . . . . . 14 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 22 | eqid 2729 | . . . . . . . . . . . . . 14 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 23 | 15 | fldcrngd 20646 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 24 | 21, 3, 14, 22, 23, 17 | irngssv 33674 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
| 25 | algextdeg.a | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
| 26 | 24, 25 | sseldd 3938 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
| 27 | 26 | snssd 4763 | . . . . . . . . . . 11 ⊢ (𝜑 → {𝐴} ⊆ (Base‘𝐸)) |
| 28 | 20, 27 | unssd 4145 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸)) |
| 29 | 14, 16, 28 | fldgenssid 33271 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 30 | 29 | unssad 4146 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 31 | 14, 16, 28 | fldgenssv 33273 | . . . . . . . . 9 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸)) |
| 32 | algextdeg.l | . . . . . . . . . 10 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 33 | 32, 14 | ressbas2 17168 | . . . . . . . . 9 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝐴})) ⊆ (Base‘𝐸) → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿)) |
| 34 | 31, 33 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) = (Base‘𝐿)) |
| 35 | 30, 34 | sseqtrd 3974 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐿)) |
| 36 | 12, 13, 35 | sralmod0 21111 | . . . . . 6 ⊢ (𝜑 → (0g‘𝐿) = (0g‘((subringAlg ‘𝐿)‘𝐹))) |
| 37 | 36 | sneqd 4591 | . . . . 5 ⊢ (𝜑 → {(0g‘𝐿)} = {(0g‘((subringAlg ‘𝐿)‘𝐹))}) |
| 38 | 37 | imaeq2d 6015 | . . . 4 ⊢ (𝜑 → (◡𝐺 “ {(0g‘𝐿)}) = (◡𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})) |
| 39 | 11, 38 | eqtrid 2776 | . . 3 ⊢ (𝜑 → 𝑍 = (◡𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))})) |
| 40 | algextdeg.d | . . . . 5 ⊢ 𝐷 = (deg1‘𝐸) | |
| 41 | algextdeg.m | . . . . 5 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 42 | algextdeglem.u | . . . . 5 ⊢ 𝑈 = (Base‘𝑃) | |
| 43 | algextdeglem.g | . . . . 5 ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) | |
| 44 | algextdeglem.n | . . . . 5 ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) | |
| 45 | algextdeglem.j | . . . . 5 ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) | |
| 46 | 3, 32, 40, 41, 15, 6, 25, 21, 2, 42, 43, 44, 11, 1, 45 | algextdeglem2 33704 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹))) |
| 47 | eqid 2729 | . . . . 5 ⊢ (◡𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}) = (◡𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}) | |
| 48 | eqid 2729 | . . . . 5 ⊢ (0g‘((subringAlg ‘𝐿)‘𝐹)) = (0g‘((subringAlg ‘𝐿)‘𝐹)) | |
| 49 | eqid 2729 | . . . . 5 ⊢ (LSubSp‘𝑃) = (LSubSp‘𝑃) | |
| 50 | 47, 48, 49 | lmhmkerlss 20974 | . . . 4 ⊢ (𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)) → (◡𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}) ∈ (LSubSp‘𝑃)) |
| 51 | 46, 50 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐺 “ {(0g‘((subringAlg ‘𝐿)‘𝐹))}) ∈ (LSubSp‘𝑃)) |
| 52 | 39, 51 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝑍 ∈ (LSubSp‘𝑃)) |
| 53 | 1, 10, 52 | quslvec 33316 | 1 ⊢ (𝜑 → 𝑄 ∈ LVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 ⊆ wss 3905 {csn 4579 ∪ cuni 4861 ↦ cmpt 5176 ◡ccnv 5622 “ cima 5626 ‘cfv 6486 (class class class)co 7353 [cec 8630 Basecbs 17139 ↾s cress 17160 0gc0g 17362 /s cqus 17428 SubGrpcsubg 19018 ~QG cqg 19020 SubRingcsubrg 20473 DivRingcdr 20633 Fieldcfield 20634 SubDRingcsdrg 20690 LSubSpclss 20853 LMHom clmhm 20942 LVecclvec 21025 subringAlg csra 21094 Poly1cpl1 22078 evalSub1 ces1 22217 deg1cdg1 25976 fldGen cfldgen 33268 IntgRing cirng 33669 minPoly cminply 33685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-ec 8634 df-qs 8638 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-fz 13430 df-fzo 13577 df-seq 13928 df-hash 14257 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-hom 17204 df-cco 17205 df-0g 17364 df-gsum 17365 df-prds 17370 df-pws 17372 df-imas 17431 df-qus 17432 df-mre 17507 df-mrc 17508 df-acs 17510 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-mhm 18676 df-submnd 18677 df-grp 18834 df-minusg 18835 df-sbg 18836 df-mulg 18966 df-subg 19021 df-nsg 19022 df-eqg 19023 df-ghm 19111 df-cntz 19215 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-srg 20091 df-ring 20139 df-cring 20140 df-oppr 20241 df-dvdsr 20261 df-unit 20262 df-invr 20292 df-dvr 20305 df-rhm 20376 df-subrng 20450 df-subrg 20474 df-drng 20635 df-field 20636 df-sdrg 20691 df-lmod 20784 df-lss 20854 df-lsp 20894 df-lmhm 20945 df-lvec 21026 df-sra 21096 df-assa 21779 df-asp 21780 df-ascl 21781 df-psr 21835 df-mvr 21836 df-mpl 21837 df-opsr 21839 df-evls 21998 df-evl 21999 df-psr1 22081 df-vr1 22082 df-ply1 22083 df-coe1 22084 df-evls1 22219 df-evl1 22220 df-mon1 26053 df-fldgen 33269 df-irng 33670 |
| This theorem is referenced by: algextdeglem4 33706 algextdeglem6 33708 |
| Copyright terms: Public domain | W3C validator |