Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evls1fldgencl Structured version   Visualization version   GIF version

Theorem evls1fldgencl 33675
Description: Closure of the subring polynomial evaluation in the field extention. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
evls1fldgencl.1 𝐵 = (Base‘𝐸)
evls1fldgencl.2 𝑂 = (𝐸 evalSub1 𝐹)
evls1fldgencl.3 𝑃 = (Poly1‘(𝐸s 𝐹))
evls1fldgencl.4 𝑈 = (Base‘𝑃)
evls1fldgencl.5 (𝜑𝐸 ∈ Field)
evls1fldgencl.6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
evls1fldgencl.7 (𝜑𝐴𝐵)
evls1fldgencl.8 (𝜑𝐺𝑈)
Assertion
Ref Expression
evls1fldgencl (𝜑 → ((𝑂𝐺)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))

Proof of Theorem evls1fldgencl
Dummy variables 𝑎 𝑘 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fldgencl.2 . . . . . . . . 9 𝑂 = (𝐸 evalSub1 𝐹)
2 evls1fldgencl.1 . . . . . . . . 9 𝐵 = (Base‘𝐸)
3 evls1fldgencl.3 . . . . . . . . 9 𝑃 = (Poly1‘(𝐸s 𝐹))
4 eqid 2731 . . . . . . . . 9 (𝐸s 𝐹) = (𝐸s 𝐹)
5 evls1fldgencl.4 . . . . . . . . 9 𝑈 = (Base‘𝑃)
6 evls1fldgencl.5 . . . . . . . . . 10 (𝜑𝐸 ∈ Field)
76fldcrngd 20652 . . . . . . . . 9 (𝜑𝐸 ∈ CRing)
8 evls1fldgencl.6 . . . . . . . . . 10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
9 sdrgsubrg 20701 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ (SubRing‘𝐸))
11 evls1fldgencl.8 . . . . . . . . 9 (𝜑𝐺𝑈)
12 eqid 2731 . . . . . . . . 9 (.r𝐸) = (.r𝐸)
13 eqid 2731 . . . . . . . . 9 (.g‘(mulGrp‘𝐸)) = (.g‘(mulGrp‘𝐸))
14 eqid 2731 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
151, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14evls1fpws 22279 . . . . . . . 8 (𝜑 → (𝑂𝐺) = (𝑥𝐵 ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))))
16 oveq2 7349 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑘(.g‘(mulGrp‘𝐸))𝑥) = (𝑘(.g‘(mulGrp‘𝐸))𝐴))
1716oveq2d 7357 . . . . . . . . . . 11 (𝑥 = 𝐴 → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)) = (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))
1817mpteq2dv 5180 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))) = (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))))
1918oveq2d 7357 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
2019adantl 481 . . . . . . . 8 ((𝜑𝑥 = 𝐴) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
21 evls1fldgencl.7 . . . . . . . 8 (𝜑𝐴𝐵)
22 ovexd 7376 . . . . . . . 8 (𝜑 → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))) ∈ V)
2315, 20, 21, 22fvmptd 6931 . . . . . . 7 (𝜑 → ((𝑂𝐺)‘𝐴) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
2423ad2antrr 726 . . . . . 6 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑂𝐺)‘𝐴) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
25 eqid 2731 . . . . . . 7 (0g𝐸) = (0g𝐸)
267crngringd 20159 . . . . . . . . 9 (𝜑𝐸 ∈ Ring)
2726ringabld 20196 . . . . . . . 8 (𝜑𝐸 ∈ Abel)
2827ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝐸 ∈ Abel)
29 nn0ex 12382 . . . . . . . 8 0 ∈ V
3029a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ℕ0 ∈ V)
31 simplr 768 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝑎 ∈ (SubDRing‘𝐸))
32 sdrgsubrg 20701 . . . . . . . 8 (𝑎 ∈ (SubDRing‘𝐸) → 𝑎 ∈ (SubRing‘𝐸))
33 subrgsubg 20487 . . . . . . . 8 (𝑎 ∈ (SubRing‘𝐸) → 𝑎 ∈ (SubGrp‘𝐸))
3431, 32, 333syl 18 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝑎 ∈ (SubGrp‘𝐸))
3532ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ (SubRing‘𝐸))
36 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (𝐹 ∪ {𝐴}) ⊆ 𝑎)
3736unssad 4138 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐹𝑎)
3811ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐺𝑈)
39 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
40 eqid 2731 . . . . . . . . . . . . 13 (Base‘(𝐸s 𝐹)) = (Base‘(𝐸s 𝐹))
4114, 5, 3, 40coe1fvalcl 22120 . . . . . . . . . . . 12 ((𝐺𝑈𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ (Base‘(𝐸s 𝐹)))
4238, 39, 41syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ (Base‘(𝐸s 𝐹)))
432sdrgss 20703 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝐵)
448, 43syl 17 . . . . . . . . . . . . 13 (𝜑𝐹𝐵)
454, 2ressbas2 17144 . . . . . . . . . . . . 13 (𝐹𝐵𝐹 = (Base‘(𝐸s 𝐹)))
4644, 45syl 17 . . . . . . . . . . . 12 (𝜑𝐹 = (Base‘(𝐸s 𝐹)))
4746ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐹 = (Base‘(𝐸s 𝐹)))
4842, 47eleqtrrd 2834 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ 𝐹)
4937, 48sseldd 3930 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ 𝑎)
50 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ (SubDRing‘𝐸))
5121ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐴𝐵)
5236unssbd 4139 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → {𝐴} ⊆ 𝑎)
53 snssg 4731 . . . . . . . . . . . 12 (𝐴𝐵 → (𝐴𝑎 ↔ {𝐴} ⊆ 𝑎))
5453biimpar 477 . . . . . . . . . . 11 ((𝐴𝐵 ∧ {𝐴} ⊆ 𝑎) → 𝐴𝑎)
5551, 52, 54syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐴𝑎)
56 eqid 2731 . . . . . . . . . . . 12 (mulGrp‘𝐸) = (mulGrp‘𝐸)
5756, 2mgpbas 20058 . . . . . . . . . . 11 𝐵 = (Base‘(mulGrp‘𝐸))
5856, 12mgpplusg 20057 . . . . . . . . . . 11 (.r𝐸) = (+g‘(mulGrp‘𝐸))
59 fvexd 6832 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → (mulGrp‘𝐸) ∈ V)
602sdrgss 20703 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → 𝑎𝐵)
6112subrgmcl 20494 . . . . . . . . . . . 12 ((𝑎 ∈ (SubRing‘𝐸) ∧ 𝑥𝑎𝑦𝑎) → (𝑥(.r𝐸)𝑦) ∈ 𝑎)
6232, 61syl3an1 1163 . . . . . . . . . . 11 ((𝑎 ∈ (SubDRing‘𝐸) ∧ 𝑥𝑎𝑦𝑎) → (𝑥(.r𝐸)𝑦) ∈ 𝑎)
63 eqid 2731 . . . . . . . . . . 11 (0g‘(mulGrp‘𝐸)) = (0g‘(mulGrp‘𝐸))
64 eqid 2731 . . . . . . . . . . . . . . 15 (1r𝐸) = (1r𝐸)
6556, 64ringidval 20096 . . . . . . . . . . . . . 14 (1r𝐸) = (0g‘(mulGrp‘𝐸))
6665eqcomi 2740 . . . . . . . . . . . . 13 (0g‘(mulGrp‘𝐸)) = (1r𝐸)
6766subrg1cl 20490 . . . . . . . . . . . 12 (𝑎 ∈ (SubRing‘𝐸) → (0g‘(mulGrp‘𝐸)) ∈ 𝑎)
6832, 67syl 17 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → (0g‘(mulGrp‘𝐸)) ∈ 𝑎)
6957, 13, 58, 59, 60, 62, 63, 68mulgnn0subcl 18995 . . . . . . . . . 10 ((𝑎 ∈ (SubDRing‘𝐸) ∧ 𝑘 ∈ ℕ0𝐴𝑎) → (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎)
7050, 39, 55, 69syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎)
7112subrgmcl 20494 . . . . . . . . 9 ((𝑎 ∈ (SubRing‘𝐸) ∧ ((coe1𝐺)‘𝑘) ∈ 𝑎 ∧ (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎) → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) ∈ 𝑎)
7235, 49, 70, 71syl3anc 1373 . . . . . . . 8 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) ∈ 𝑎)
7372fmpttd 7043 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))):ℕ0𝑎)
7430mptexd 7153 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∈ V)
7573ffund 6650 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))))
76 fvexd 6832 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (0g𝐸) ∈ V)
774subrgring 20484 . . . . . . . . . . . . 13 (𝐹 ∈ (SubRing‘𝐸) → (𝐸s 𝐹) ∈ Ring)
7810, 77syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸s 𝐹) ∈ Ring)
7978ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝐸s 𝐹) ∈ Ring)
8011ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝐺𝑈)
81 eqid 2731 . . . . . . . . . . . 12 (0g‘(𝐸s 𝐹)) = (0g‘(𝐸s 𝐹))
823, 5, 81mptcoe1fsupp 22123 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺𝑈) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g‘(𝐸s 𝐹)))
8379, 80, 82syl2anc 584 . . . . . . . . . 10 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g‘(𝐸s 𝐹)))
84 ringmnd 20156 . . . . . . . . . . . . 13 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
8526, 84syl 17 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Mnd)
86 subrgsubg 20487 . . . . . . . . . . . . 13 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
87 subgsubm 19056 . . . . . . . . . . . . 13 (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ∈ (SubMnd‘𝐸))
8825subm0cl 18714 . . . . . . . . . . . . 13 (𝐹 ∈ (SubMnd‘𝐸) → (0g𝐸) ∈ 𝐹)
8910, 86, 87, 884syl 19 . . . . . . . . . . . 12 (𝜑 → (0g𝐸) ∈ 𝐹)
904, 2, 25ress0g 18665 . . . . . . . . . . . 12 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝐹𝐹𝐵) → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9185, 89, 44, 90syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9291ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9383, 92breqtrrd 5114 . . . . . . . . 9 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g𝐸))
9493fsuppimpd 9248 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)) ∈ Fin)
95 fveq2 6817 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((coe1𝐺)‘𝑘) = ((coe1𝐺)‘𝑖))
96 oveq1 7348 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑘(.g‘(mulGrp‘𝐸))𝐴) = (𝑖(.g‘(mulGrp‘𝐸))𝐴))
9795, 96oveq12d 7359 . . . . . . . . . 10 (𝑘 = 𝑖 → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) = (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
9897cbvmptv 5190 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) = (𝑖 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
99 nfv 1915 . . . . . . . . . 10 𝑘((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎)
100 eqid 2731 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) = (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))
10199, 42, 100fnmptd 6617 . . . . . . . . 9 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) Fn ℕ0)
102 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝑖 ∈ ℕ0)
103 fvexd 6832 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((coe1𝐺)‘𝑖) ∈ V)
104100, 95, 102, 103fvmptd3 6947 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = ((coe1𝐺)‘𝑖))
105 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸))
106104, 105eqtr3d 2768 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((coe1𝐺)‘𝑖) = (0g𝐸))
107106oveq1d 7356 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = ((0g𝐸)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
10826ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝐸 ∈ Ring)
10956ringmgp 20152 . . . . . . . . . . . . . . 15 (𝐸 ∈ Ring → (mulGrp‘𝐸) ∈ Mnd)
11026, 109syl 17 . . . . . . . . . . . . . 14 (𝜑 → (mulGrp‘𝐸) ∈ Mnd)
111110ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (mulGrp‘𝐸) ∈ Mnd)
11221ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝐴𝐵)
11357, 13, 111, 102, 112mulgnn0cld 19003 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (𝑖(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝐵)
1142, 12, 25, 108, 113ringlzd 20208 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((0g𝐸)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
115107, 114eqtrd 2766 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
1161153impa 1109 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0 ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
11798, 30, 76, 101, 116suppss3 32698 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) supp (0g𝐸)) ⊆ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)))
118 suppssfifsupp 9259 . . . . . . . 8 ((((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∧ (0g𝐸) ∈ V) ∧ (((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) supp (0g𝐸)) ⊆ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)))) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) finSupp (0g𝐸))
11974, 75, 76, 94, 117, 118syl32anc 1380 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) finSupp (0g𝐸))
12025, 28, 30, 34, 73, 119gsumsubgcl 19827 . . . . . 6 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))) ∈ 𝑎)
12124, 120eqeltrd 2831 . . . . 5 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑂𝐺)‘𝐴) ∈ 𝑎)
122121ex 412 . . . 4 ((𝜑𝑎 ∈ (SubDRing‘𝐸)) → ((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
123122ralrimiva 3124 . . 3 (𝜑 → ∀𝑎 ∈ (SubDRing‘𝐸)((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
124 fvex 6830 . . . 4 ((𝑂𝐺)‘𝐴) ∈ V
125124elintrab 4905 . . 3 (((𝑂𝐺)‘𝐴) ∈ {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎} ↔ ∀𝑎 ∈ (SubDRing‘𝐸)((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
126123, 125sylibr 234 . 2 (𝜑 → ((𝑂𝐺)‘𝐴) ∈ {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎})
1276flddrngd 20651 . . 3 (𝜑𝐸 ∈ DivRing)
12821snssd 4756 . . . 4 (𝜑 → {𝐴} ⊆ 𝐵)
12944, 128unssd 4137 . . 3 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ 𝐵)
1302, 127, 129fldgenval 33270 . 2 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) = {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎})
131126, 130eleqtrrd 2834 1 (𝜑 → ((𝑂𝐺)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  cun 3895  wss 3897  {csn 4571   cint 4892   class class class wbr 5086  cmpt 5167  Fun wfun 6470  cfv 6476  (class class class)co 7341   supp csupp 8085  Fincfn 8864   finSupp cfsupp 9240  0cn0 12376  Basecbs 17115  s cress 17136  .rcmulr 17157  0gc0g 17338   Σg cgsu 17339  Mndcmnd 18637  SubMndcsubmnd 18685  .gcmg 18975  SubGrpcsubg 19028  Abelcabl 19688  mulGrpcmgp 20053  1rcur 20094  Ringcrg 20146  SubRingcsubrg 20479  Fieldcfield 20640  SubDRingcsdrg 20696  Poly1cpl1 22084  coe1cco1 22085   evalSub1 ces1 22223   fldGen cfldgen 33268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-srg 20100  df-ring 20148  df-cring 20149  df-rhm 20385  df-subrng 20456  df-subrg 20480  df-drng 20641  df-field 20642  df-sdrg 20697  df-lmod 20790  df-lss 20860  df-lsp 20900  df-assa 21785  df-asp 21786  df-ascl 21787  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-evls 22004  df-evl 22005  df-psr1 22087  df-vr1 22088  df-ply1 22089  df-coe1 22090  df-evls1 22225  df-evl1 22226  df-fldgen 33269
This theorem is referenced by:  algextdeglem2  33723  algextdeglem4  33725
  Copyright terms: Public domain W3C validator