Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evls1fldgencl Structured version   Visualization version   GIF version

Theorem evls1fldgencl 33224
Description: Closure of the subring polynomial evaluation in the field extention. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
evls1fldgencl.1 𝐡 = (Baseβ€˜πΈ)
evls1fldgencl.2 𝑂 = (𝐸 evalSub1 𝐹)
evls1fldgencl.3 𝑃 = (Poly1β€˜(𝐸 β†Ύs 𝐹))
evls1fldgencl.4 π‘ˆ = (Baseβ€˜π‘ƒ)
evls1fldgencl.5 (πœ‘ β†’ 𝐸 ∈ Field)
evls1fldgencl.6 (πœ‘ β†’ 𝐹 ∈ (SubDRingβ€˜πΈ))
evls1fldgencl.7 (πœ‘ β†’ 𝐴 ∈ 𝐡)
evls1fldgencl.8 (πœ‘ β†’ 𝐺 ∈ π‘ˆ)
Assertion
Ref Expression
evls1fldgencl (πœ‘ β†’ ((π‘‚β€˜πΊ)β€˜π΄) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})))

Proof of Theorem evls1fldgencl
Dummy variables π‘Ž π‘˜ π‘₯ 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fldgencl.2 . . . . . . . . 9 𝑂 = (𝐸 evalSub1 𝐹)
2 evls1fldgencl.1 . . . . . . . . 9 𝐡 = (Baseβ€˜πΈ)
3 evls1fldgencl.3 . . . . . . . . 9 𝑃 = (Poly1β€˜(𝐸 β†Ύs 𝐹))
4 eqid 2724 . . . . . . . . 9 (𝐸 β†Ύs 𝐹) = (𝐸 β†Ύs 𝐹)
5 evls1fldgencl.4 . . . . . . . . 9 π‘ˆ = (Baseβ€˜π‘ƒ)
6 evls1fldgencl.5 . . . . . . . . . 10 (πœ‘ β†’ 𝐸 ∈ Field)
76fldcrngd 20590 . . . . . . . . 9 (πœ‘ β†’ 𝐸 ∈ CRing)
8 evls1fldgencl.6 . . . . . . . . . 10 (πœ‘ β†’ 𝐹 ∈ (SubDRingβ€˜πΈ))
9 sdrgsubrg 20632 . . . . . . . . . 10 (𝐹 ∈ (SubDRingβ€˜πΈ) β†’ 𝐹 ∈ (SubRingβ€˜πΈ))
108, 9syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐹 ∈ (SubRingβ€˜πΈ))
11 evls1fldgencl.8 . . . . . . . . 9 (πœ‘ β†’ 𝐺 ∈ π‘ˆ)
12 eqid 2724 . . . . . . . . 9 (.rβ€˜πΈ) = (.rβ€˜πΈ)
13 eqid 2724 . . . . . . . . 9 (.gβ€˜(mulGrpβ€˜πΈ)) = (.gβ€˜(mulGrpβ€˜πΈ))
14 eqid 2724 . . . . . . . . 9 (coe1β€˜πΊ) = (coe1β€˜πΊ)
151, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14evls1fpws 33113 . . . . . . . 8 (πœ‘ β†’ (π‘‚β€˜πΊ) = (π‘₯ ∈ 𝐡 ↦ (𝐸 Ξ£g (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))π‘₯))))))
16 oveq2 7409 . . . . . . . . . . . 12 (π‘₯ = 𝐴 β†’ (π‘˜(.gβ€˜(mulGrpβ€˜πΈ))π‘₯) = (π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴))
1716oveq2d 7417 . . . . . . . . . . 11 (π‘₯ = 𝐴 β†’ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))π‘₯)) = (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴)))
1817mpteq2dv 5240 . . . . . . . . . 10 (π‘₯ = 𝐴 β†’ (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))π‘₯))) = (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴))))
1918oveq2d 7417 . . . . . . . . 9 (π‘₯ = 𝐴 β†’ (𝐸 Ξ£g (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))π‘₯)))) = (𝐸 Ξ£g (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴)))))
2019adantl 481 . . . . . . . 8 ((πœ‘ ∧ π‘₯ = 𝐴) β†’ (𝐸 Ξ£g (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))π‘₯)))) = (𝐸 Ξ£g (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴)))))
21 evls1fldgencl.7 . . . . . . . 8 (πœ‘ β†’ 𝐴 ∈ 𝐡)
22 ovexd 7436 . . . . . . . 8 (πœ‘ β†’ (𝐸 Ξ£g (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴)))) ∈ V)
2315, 20, 21, 22fvmptd 6995 . . . . . . 7 (πœ‘ β†’ ((π‘‚β€˜πΊ)β€˜π΄) = (𝐸 Ξ£g (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴)))))
2423ad2antrr 723 . . . . . 6 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ ((π‘‚β€˜πΊ)β€˜π΄) = (𝐸 Ξ£g (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴)))))
25 eqid 2724 . . . . . . 7 (0gβ€˜πΈ) = (0gβ€˜πΈ)
267crngringd 20141 . . . . . . . . 9 (πœ‘ β†’ 𝐸 ∈ Ring)
2726ringabld 20172 . . . . . . . 8 (πœ‘ β†’ 𝐸 ∈ Abel)
2827ad2antrr 723 . . . . . . 7 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ 𝐸 ∈ Abel)
29 nn0ex 12475 . . . . . . . 8 β„•0 ∈ V
3029a1i 11 . . . . . . 7 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ β„•0 ∈ V)
31 simplr 766 . . . . . . . 8 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ π‘Ž ∈ (SubDRingβ€˜πΈ))
32 sdrgsubrg 20632 . . . . . . . 8 (π‘Ž ∈ (SubDRingβ€˜πΈ) β†’ π‘Ž ∈ (SubRingβ€˜πΈ))
33 subrgsubg 20469 . . . . . . . 8 (π‘Ž ∈ (SubRingβ€˜πΈ) β†’ π‘Ž ∈ (SubGrpβ€˜πΈ))
3431, 32, 333syl 18 . . . . . . 7 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ π‘Ž ∈ (SubGrpβ€˜πΈ))
3532ad3antlr 728 . . . . . . . . 9 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ π‘Ž ∈ (SubRingβ€˜πΈ))
36 simplr 766 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž)
3736unssad 4179 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ 𝐹 βŠ† π‘Ž)
3811ad3antrrr 727 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ 𝐺 ∈ π‘ˆ)
39 simpr 484 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ π‘˜ ∈ β„•0)
40 eqid 2724 . . . . . . . . . . . . 13 (Baseβ€˜(𝐸 β†Ύs 𝐹)) = (Baseβ€˜(𝐸 β†Ύs 𝐹))
4114, 5, 3, 40coe1fvalcl 22054 . . . . . . . . . . . 12 ((𝐺 ∈ π‘ˆ ∧ π‘˜ ∈ β„•0) β†’ ((coe1β€˜πΊ)β€˜π‘˜) ∈ (Baseβ€˜(𝐸 β†Ύs 𝐹)))
4238, 39, 41syl2anc 583 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ ((coe1β€˜πΊ)β€˜π‘˜) ∈ (Baseβ€˜(𝐸 β†Ύs 𝐹)))
432sdrgss 20634 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubDRingβ€˜πΈ) β†’ 𝐹 βŠ† 𝐡)
448, 43syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐹 βŠ† 𝐡)
454, 2ressbas2 17181 . . . . . . . . . . . . 13 (𝐹 βŠ† 𝐡 β†’ 𝐹 = (Baseβ€˜(𝐸 β†Ύs 𝐹)))
4644, 45syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐹 = (Baseβ€˜(𝐸 β†Ύs 𝐹)))
4746ad3antrrr 727 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ 𝐹 = (Baseβ€˜(𝐸 β†Ύs 𝐹)))
4842, 47eleqtrrd 2828 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ ((coe1β€˜πΊ)β€˜π‘˜) ∈ 𝐹)
4937, 48sseldd 3975 . . . . . . . . 9 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ ((coe1β€˜πΊ)β€˜π‘˜) ∈ π‘Ž)
50 simpllr 773 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ π‘Ž ∈ (SubDRingβ€˜πΈ))
5121ad3antrrr 727 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ 𝐴 ∈ 𝐡)
5236unssbd 4180 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ {𝐴} βŠ† π‘Ž)
53 snssg 4779 . . . . . . . . . . . 12 (𝐴 ∈ 𝐡 β†’ (𝐴 ∈ π‘Ž ↔ {𝐴} βŠ† π‘Ž))
5453biimpar 477 . . . . . . . . . . 11 ((𝐴 ∈ 𝐡 ∧ {𝐴} βŠ† π‘Ž) β†’ 𝐴 ∈ π‘Ž)
5551, 52, 54syl2anc 583 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ 𝐴 ∈ π‘Ž)
56 eqid 2724 . . . . . . . . . . . 12 (mulGrpβ€˜πΈ) = (mulGrpβ€˜πΈ)
5756, 2mgpbas 20035 . . . . . . . . . . 11 𝐡 = (Baseβ€˜(mulGrpβ€˜πΈ))
5856, 12mgpplusg 20033 . . . . . . . . . . 11 (.rβ€˜πΈ) = (+gβ€˜(mulGrpβ€˜πΈ))
59 fvexd 6896 . . . . . . . . . . 11 (π‘Ž ∈ (SubDRingβ€˜πΈ) β†’ (mulGrpβ€˜πΈ) ∈ V)
602sdrgss 20634 . . . . . . . . . . 11 (π‘Ž ∈ (SubDRingβ€˜πΈ) β†’ π‘Ž βŠ† 𝐡)
6112subrgmcl 20476 . . . . . . . . . . . 12 ((π‘Ž ∈ (SubRingβ€˜πΈ) ∧ π‘₯ ∈ π‘Ž ∧ 𝑦 ∈ π‘Ž) β†’ (π‘₯(.rβ€˜πΈ)𝑦) ∈ π‘Ž)
6232, 61syl3an1 1160 . . . . . . . . . . 11 ((π‘Ž ∈ (SubDRingβ€˜πΈ) ∧ π‘₯ ∈ π‘Ž ∧ 𝑦 ∈ π‘Ž) β†’ (π‘₯(.rβ€˜πΈ)𝑦) ∈ π‘Ž)
63 eqid 2724 . . . . . . . . . . 11 (0gβ€˜(mulGrpβ€˜πΈ)) = (0gβ€˜(mulGrpβ€˜πΈ))
64 eqid 2724 . . . . . . . . . . . . . . 15 (1rβ€˜πΈ) = (1rβ€˜πΈ)
6556, 64ringidval 20078 . . . . . . . . . . . . . 14 (1rβ€˜πΈ) = (0gβ€˜(mulGrpβ€˜πΈ))
6665eqcomi 2733 . . . . . . . . . . . . 13 (0gβ€˜(mulGrpβ€˜πΈ)) = (1rβ€˜πΈ)
6766subrg1cl 20472 . . . . . . . . . . . 12 (π‘Ž ∈ (SubRingβ€˜πΈ) β†’ (0gβ€˜(mulGrpβ€˜πΈ)) ∈ π‘Ž)
6832, 67syl 17 . . . . . . . . . . 11 (π‘Ž ∈ (SubDRingβ€˜πΈ) β†’ (0gβ€˜(mulGrpβ€˜πΈ)) ∈ π‘Ž)
6957, 13, 58, 59, 60, 62, 63, 68mulgnn0subcl 19004 . . . . . . . . . 10 ((π‘Ž ∈ (SubDRingβ€˜πΈ) ∧ π‘˜ ∈ β„•0 ∧ 𝐴 ∈ π‘Ž) β†’ (π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴) ∈ π‘Ž)
7050, 39, 55, 69syl3anc 1368 . . . . . . . . 9 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ (π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴) ∈ π‘Ž)
7112subrgmcl 20476 . . . . . . . . 9 ((π‘Ž ∈ (SubRingβ€˜πΈ) ∧ ((coe1β€˜πΊ)β€˜π‘˜) ∈ π‘Ž ∧ (π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴) ∈ π‘Ž) β†’ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴)) ∈ π‘Ž)
7235, 49, 70, 71syl3anc 1368 . . . . . . . 8 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ π‘˜ ∈ β„•0) β†’ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴)) ∈ π‘Ž)
7372fmpttd 7106 . . . . . . 7 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴))):β„•0βŸΆπ‘Ž)
7430mptexd 7217 . . . . . . . 8 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴))) ∈ V)
7573ffund 6711 . . . . . . . 8 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ Fun (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴))))
76 fvexd 6896 . . . . . . . 8 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ (0gβ€˜πΈ) ∈ V)
774subrgring 20466 . . . . . . . . . . . . 13 (𝐹 ∈ (SubRingβ€˜πΈ) β†’ (𝐸 β†Ύs 𝐹) ∈ Ring)
7810, 77syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ Ring)
7978ad2antrr 723 . . . . . . . . . . 11 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ (𝐸 β†Ύs 𝐹) ∈ Ring)
8011ad2antrr 723 . . . . . . . . . . 11 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ 𝐺 ∈ π‘ˆ)
81 eqid 2724 . . . . . . . . . . . 12 (0gβ€˜(𝐸 β†Ύs 𝐹)) = (0gβ€˜(𝐸 β†Ύs 𝐹))
823, 5, 81mptcoe1fsupp 22057 . . . . . . . . . . 11 (((𝐸 β†Ύs 𝐹) ∈ Ring ∧ 𝐺 ∈ π‘ˆ) β†’ (π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜)) finSupp (0gβ€˜(𝐸 β†Ύs 𝐹)))
8379, 80, 82syl2anc 583 . . . . . . . . . 10 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ (π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜)) finSupp (0gβ€˜(𝐸 β†Ύs 𝐹)))
84 ringmnd 20138 . . . . . . . . . . . . 13 (𝐸 ∈ Ring β†’ 𝐸 ∈ Mnd)
8526, 84syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐸 ∈ Mnd)
86 subrgsubg 20469 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubRingβ€˜πΈ) β†’ 𝐹 ∈ (SubGrpβ€˜πΈ))
87 subgsubm 19065 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubGrpβ€˜πΈ) β†’ 𝐹 ∈ (SubMndβ€˜πΈ))
8810, 86, 873syl 18 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐹 ∈ (SubMndβ€˜πΈ))
8925subm0cl 18726 . . . . . . . . . . . . 13 (𝐹 ∈ (SubMndβ€˜πΈ) β†’ (0gβ€˜πΈ) ∈ 𝐹)
9088, 89syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ (0gβ€˜πΈ) ∈ 𝐹)
914, 2, 25ress0g 18685 . . . . . . . . . . . 12 ((𝐸 ∈ Mnd ∧ (0gβ€˜πΈ) ∈ 𝐹 ∧ 𝐹 βŠ† 𝐡) β†’ (0gβ€˜πΈ) = (0gβ€˜(𝐸 β†Ύs 𝐹)))
9285, 90, 44, 91syl3anc 1368 . . . . . . . . . . 11 (πœ‘ β†’ (0gβ€˜πΈ) = (0gβ€˜(𝐸 β†Ύs 𝐹)))
9392ad2antrr 723 . . . . . . . . . 10 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ (0gβ€˜πΈ) = (0gβ€˜(𝐸 β†Ύs 𝐹)))
9483, 93breqtrrd 5166 . . . . . . . . 9 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ (π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜)) finSupp (0gβ€˜πΈ))
9594fsuppimpd 9365 . . . . . . . 8 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜)) supp (0gβ€˜πΈ)) ∈ Fin)
96 fveq2 6881 . . . . . . . . . . 11 (π‘˜ = 𝑖 β†’ ((coe1β€˜πΊ)β€˜π‘˜) = ((coe1β€˜πΊ)β€˜π‘–))
97 oveq1 7408 . . . . . . . . . . 11 (π‘˜ = 𝑖 β†’ (π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴) = (𝑖(.gβ€˜(mulGrpβ€˜πΈ))𝐴))
9896, 97oveq12d 7419 . . . . . . . . . 10 (π‘˜ = 𝑖 β†’ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴)) = (((coe1β€˜πΊ)β€˜π‘–)(.rβ€˜πΈ)(𝑖(.gβ€˜(mulGrpβ€˜πΈ))𝐴)))
9998cbvmptv 5251 . . . . . . . . 9 (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴))) = (𝑖 ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘–)(.rβ€˜πΈ)(𝑖(.gβ€˜(mulGrpβ€˜πΈ))𝐴)))
100 nfv 1909 . . . . . . . . . 10 β„²π‘˜((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž)
101 eqid 2724 . . . . . . . . . 10 (π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜)) = (π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))
102100, 42, 101fnmptd 6681 . . . . . . . . 9 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ (π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜)) Fn β„•0)
103 simplr 766 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ 𝑖 ∈ β„•0) ∧ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ)) β†’ 𝑖 ∈ β„•0)
104 fvexd 6896 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ 𝑖 ∈ β„•0) ∧ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ)) β†’ ((coe1β€˜πΊ)β€˜π‘–) ∈ V)
105101, 96, 103, 104fvmptd3 7011 . . . . . . . . . . . . 13 (((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ 𝑖 ∈ β„•0) ∧ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ)) β†’ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = ((coe1β€˜πΊ)β€˜π‘–))
106 simpr 484 . . . . . . . . . . . . 13 (((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ 𝑖 ∈ β„•0) ∧ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ)) β†’ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ))
107105, 106eqtr3d 2766 . . . . . . . . . . . 12 (((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ 𝑖 ∈ β„•0) ∧ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ)) β†’ ((coe1β€˜πΊ)β€˜π‘–) = (0gβ€˜πΈ))
108107oveq1d 7416 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ 𝑖 ∈ β„•0) ∧ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ)) β†’ (((coe1β€˜πΊ)β€˜π‘–)(.rβ€˜πΈ)(𝑖(.gβ€˜(mulGrpβ€˜πΈ))𝐴)) = ((0gβ€˜πΈ)(.rβ€˜πΈ)(𝑖(.gβ€˜(mulGrpβ€˜πΈ))𝐴)))
10926ad4antr 729 . . . . . . . . . . . 12 (((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ 𝑖 ∈ β„•0) ∧ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ)) β†’ 𝐸 ∈ Ring)
11056ringmgp 20134 . . . . . . . . . . . . . . 15 (𝐸 ∈ Ring β†’ (mulGrpβ€˜πΈ) ∈ Mnd)
11126, 110syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ (mulGrpβ€˜πΈ) ∈ Mnd)
112111ad4antr 729 . . . . . . . . . . . . 13 (((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ 𝑖 ∈ β„•0) ∧ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ)) β†’ (mulGrpβ€˜πΈ) ∈ Mnd)
11321ad4antr 729 . . . . . . . . . . . . 13 (((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ 𝑖 ∈ β„•0) ∧ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ)) β†’ 𝐴 ∈ 𝐡)
11457, 13, 112, 103, 113mulgnn0cld 19012 . . . . . . . . . . . 12 (((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ 𝑖 ∈ β„•0) ∧ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ)) β†’ (𝑖(.gβ€˜(mulGrpβ€˜πΈ))𝐴) ∈ 𝐡)
1152, 12, 25, 109, 114ringlzd 20184 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ 𝑖 ∈ β„•0) ∧ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ)) β†’ ((0gβ€˜πΈ)(.rβ€˜πΈ)(𝑖(.gβ€˜(mulGrpβ€˜πΈ))𝐴)) = (0gβ€˜πΈ))
116108, 115eqtrd 2764 . . . . . . . . . 10 (((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ 𝑖 ∈ β„•0) ∧ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ)) β†’ (((coe1β€˜πΊ)β€˜π‘–)(.rβ€˜πΈ)(𝑖(.gβ€˜(mulGrpβ€˜πΈ))𝐴)) = (0gβ€˜πΈ))
1171163impa 1107 . . . . . . . . 9 ((((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) ∧ 𝑖 ∈ β„•0 ∧ ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜))β€˜π‘–) = (0gβ€˜πΈ)) β†’ (((coe1β€˜πΊ)β€˜π‘–)(.rβ€˜πΈ)(𝑖(.gβ€˜(mulGrpβ€˜πΈ))𝐴)) = (0gβ€˜πΈ))
11899, 30, 76, 102, 117suppss3 32418 . . . . . . . 8 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ ((π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴))) supp (0gβ€˜πΈ)) βŠ† ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜)) supp (0gβ€˜πΈ)))
119 suppssfifsupp 9374 . . . . . . . 8 ((((π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴))) ∈ V ∧ Fun (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴))) ∧ (0gβ€˜πΈ) ∈ V) ∧ (((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜)) supp (0gβ€˜πΈ)) ∈ Fin ∧ ((π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴))) supp (0gβ€˜πΈ)) βŠ† ((π‘˜ ∈ β„•0 ↦ ((coe1β€˜πΊ)β€˜π‘˜)) supp (0gβ€˜πΈ)))) β†’ (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴))) finSupp (0gβ€˜πΈ))
12074, 75, 76, 95, 118, 119syl32anc 1375 . . . . . . 7 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴))) finSupp (0gβ€˜πΈ))
12125, 28, 30, 34, 73, 120gsumsubgcl 19830 . . . . . 6 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ (𝐸 Ξ£g (π‘˜ ∈ β„•0 ↦ (((coe1β€˜πΊ)β€˜π‘˜)(.rβ€˜πΈ)(π‘˜(.gβ€˜(mulGrpβ€˜πΈ))𝐴)))) ∈ π‘Ž)
12224, 121eqeltrd 2825 . . . . 5 (((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) ∧ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž) β†’ ((π‘‚β€˜πΊ)β€˜π΄) ∈ π‘Ž)
123122ex 412 . . . 4 ((πœ‘ ∧ π‘Ž ∈ (SubDRingβ€˜πΈ)) β†’ ((𝐹 βˆͺ {𝐴}) βŠ† π‘Ž β†’ ((π‘‚β€˜πΊ)β€˜π΄) ∈ π‘Ž))
124123ralrimiva 3138 . . 3 (πœ‘ β†’ βˆ€π‘Ž ∈ (SubDRingβ€˜πΈ)((𝐹 βˆͺ {𝐴}) βŠ† π‘Ž β†’ ((π‘‚β€˜πΊ)β€˜π΄) ∈ π‘Ž))
125 fvex 6894 . . . 4 ((π‘‚β€˜πΊ)β€˜π΄) ∈ V
126125elintrab 4954 . . 3 (((π‘‚β€˜πΊ)β€˜π΄) ∈ ∩ {π‘Ž ∈ (SubDRingβ€˜πΈ) ∣ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž} ↔ βˆ€π‘Ž ∈ (SubDRingβ€˜πΈ)((𝐹 βˆͺ {𝐴}) βŠ† π‘Ž β†’ ((π‘‚β€˜πΊ)β€˜π΄) ∈ π‘Ž))
127124, 126sylibr 233 . 2 (πœ‘ β†’ ((π‘‚β€˜πΊ)β€˜π΄) ∈ ∩ {π‘Ž ∈ (SubDRingβ€˜πΈ) ∣ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž})
1286flddrngd 20589 . . 3 (πœ‘ β†’ 𝐸 ∈ DivRing)
12921snssd 4804 . . . 4 (πœ‘ β†’ {𝐴} βŠ† 𝐡)
13044, 129unssd 4178 . . 3 (πœ‘ β†’ (𝐹 βˆͺ {𝐴}) βŠ† 𝐡)
1312, 128, 130fldgenval 32868 . 2 (πœ‘ β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) = ∩ {π‘Ž ∈ (SubDRingβ€˜πΈ) ∣ (𝐹 βˆͺ {𝐴}) βŠ† π‘Ž})
132127, 131eleqtrrd 2828 1 (πœ‘ β†’ ((π‘‚β€˜πΊ)β€˜π΄) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  {crab 3424  Vcvv 3466   βˆͺ cun 3938   βŠ† wss 3940  {csn 4620  βˆ© cint 4940   class class class wbr 5138   ↦ cmpt 5221  Fun wfun 6527  β€˜cfv 6533  (class class class)co 7401   supp csupp 8140  Fincfn 8935   finSupp cfsupp 9357  β„•0cn0 12469  Basecbs 17143   β†Ύs cress 17172  .rcmulr 17197  0gc0g 17384   Ξ£g cgsu 17385  Mndcmnd 18657  SubMndcsubmnd 18702  .gcmg 18985  SubGrpcsubg 19037  Abelcabl 19691  mulGrpcmgp 20029  1rcur 20076  Ringcrg 20128  SubRingcsubrg 20459  Fieldcfield 20578  SubDRingcsdrg 20627  Poly1cpl1 22019  coe1cco1 22020   evalSub1 ces1 22154   fldGen cfldgen 32866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-ofr 7664  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-fzo 13625  df-seq 13964  df-hash 14288  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17386  df-gsum 17387  df-prds 17392  df-pws 17394  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-mhm 18703  df-submnd 18704  df-grp 18856  df-minusg 18857  df-sbg 18858  df-mulg 18986  df-subg 19040  df-ghm 19129  df-cntz 19223  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-srg 20082  df-ring 20130  df-cring 20131  df-rhm 20364  df-subrng 20436  df-subrg 20461  df-drng 20579  df-field 20580  df-sdrg 20628  df-lmod 20698  df-lss 20769  df-lsp 20809  df-assa 21716  df-asp 21717  df-ascl 21718  df-psr 21771  df-mvr 21772  df-mpl 21773  df-opsr 21775  df-evls 21945  df-evl 21946  df-psr1 22022  df-vr1 22023  df-ply1 22024  df-coe1 22025  df-evls1 22156  df-evl1 22157  df-fldgen 32867
This theorem is referenced by:  algextdeglem2  33254  algextdeglem4  33256
  Copyright terms: Public domain W3C validator