Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evls1fldgencl Structured version   Visualization version   GIF version

Theorem evls1fldgencl 33695
Description: Closure of the subring polynomial evaluation in the field extention. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
evls1fldgencl.1 𝐵 = (Base‘𝐸)
evls1fldgencl.2 𝑂 = (𝐸 evalSub1 𝐹)
evls1fldgencl.3 𝑃 = (Poly1‘(𝐸s 𝐹))
evls1fldgencl.4 𝑈 = (Base‘𝑃)
evls1fldgencl.5 (𝜑𝐸 ∈ Field)
evls1fldgencl.6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
evls1fldgencl.7 (𝜑𝐴𝐵)
evls1fldgencl.8 (𝜑𝐺𝑈)
Assertion
Ref Expression
evls1fldgencl (𝜑 → ((𝑂𝐺)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))

Proof of Theorem evls1fldgencl
Dummy variables 𝑎 𝑘 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fldgencl.2 . . . . . . . . 9 𝑂 = (𝐸 evalSub1 𝐹)
2 evls1fldgencl.1 . . . . . . . . 9 𝐵 = (Base‘𝐸)
3 evls1fldgencl.3 . . . . . . . . 9 𝑃 = (Poly1‘(𝐸s 𝐹))
4 eqid 2735 . . . . . . . . 9 (𝐸s 𝐹) = (𝐸s 𝐹)
5 evls1fldgencl.4 . . . . . . . . 9 𝑈 = (Base‘𝑃)
6 evls1fldgencl.5 . . . . . . . . . 10 (𝜑𝐸 ∈ Field)
76fldcrngd 20759 . . . . . . . . 9 (𝜑𝐸 ∈ CRing)
8 evls1fldgencl.6 . . . . . . . . . 10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
9 sdrgsubrg 20809 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ (SubRing‘𝐸))
11 evls1fldgencl.8 . . . . . . . . 9 (𝜑𝐺𝑈)
12 eqid 2735 . . . . . . . . 9 (.r𝐸) = (.r𝐸)
13 eqid 2735 . . . . . . . . 9 (.g‘(mulGrp‘𝐸)) = (.g‘(mulGrp‘𝐸))
14 eqid 2735 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
151, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14evls1fpws 22389 . . . . . . . 8 (𝜑 → (𝑂𝐺) = (𝑥𝐵 ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))))
16 oveq2 7439 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑘(.g‘(mulGrp‘𝐸))𝑥) = (𝑘(.g‘(mulGrp‘𝐸))𝐴))
1716oveq2d 7447 . . . . . . . . . . 11 (𝑥 = 𝐴 → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)) = (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))
1817mpteq2dv 5250 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))) = (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))))
1918oveq2d 7447 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
2019adantl 481 . . . . . . . 8 ((𝜑𝑥 = 𝐴) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
21 evls1fldgencl.7 . . . . . . . 8 (𝜑𝐴𝐵)
22 ovexd 7466 . . . . . . . 8 (𝜑 → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))) ∈ V)
2315, 20, 21, 22fvmptd 7023 . . . . . . 7 (𝜑 → ((𝑂𝐺)‘𝐴) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
2423ad2antrr 726 . . . . . 6 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑂𝐺)‘𝐴) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
25 eqid 2735 . . . . . . 7 (0g𝐸) = (0g𝐸)
267crngringd 20264 . . . . . . . . 9 (𝜑𝐸 ∈ Ring)
2726ringabld 20297 . . . . . . . 8 (𝜑𝐸 ∈ Abel)
2827ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝐸 ∈ Abel)
29 nn0ex 12530 . . . . . . . 8 0 ∈ V
3029a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ℕ0 ∈ V)
31 simplr 769 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝑎 ∈ (SubDRing‘𝐸))
32 sdrgsubrg 20809 . . . . . . . 8 (𝑎 ∈ (SubDRing‘𝐸) → 𝑎 ∈ (SubRing‘𝐸))
33 subrgsubg 20594 . . . . . . . 8 (𝑎 ∈ (SubRing‘𝐸) → 𝑎 ∈ (SubGrp‘𝐸))
3431, 32, 333syl 18 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝑎 ∈ (SubGrp‘𝐸))
3532ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ (SubRing‘𝐸))
36 simplr 769 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (𝐹 ∪ {𝐴}) ⊆ 𝑎)
3736unssad 4203 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐹𝑎)
3811ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐺𝑈)
39 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
40 eqid 2735 . . . . . . . . . . . . 13 (Base‘(𝐸s 𝐹)) = (Base‘(𝐸s 𝐹))
4114, 5, 3, 40coe1fvalcl 22230 . . . . . . . . . . . 12 ((𝐺𝑈𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ (Base‘(𝐸s 𝐹)))
4238, 39, 41syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ (Base‘(𝐸s 𝐹)))
432sdrgss 20811 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝐵)
448, 43syl 17 . . . . . . . . . . . . 13 (𝜑𝐹𝐵)
454, 2ressbas2 17283 . . . . . . . . . . . . 13 (𝐹𝐵𝐹 = (Base‘(𝐸s 𝐹)))
4644, 45syl 17 . . . . . . . . . . . 12 (𝜑𝐹 = (Base‘(𝐸s 𝐹)))
4746ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐹 = (Base‘(𝐸s 𝐹)))
4842, 47eleqtrrd 2842 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ 𝐹)
4937, 48sseldd 3996 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ 𝑎)
50 simpllr 776 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ (SubDRing‘𝐸))
5121ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐴𝐵)
5236unssbd 4204 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → {𝐴} ⊆ 𝑎)
53 snssg 4788 . . . . . . . . . . . 12 (𝐴𝐵 → (𝐴𝑎 ↔ {𝐴} ⊆ 𝑎))
5453biimpar 477 . . . . . . . . . . 11 ((𝐴𝐵 ∧ {𝐴} ⊆ 𝑎) → 𝐴𝑎)
5551, 52, 54syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐴𝑎)
56 eqid 2735 . . . . . . . . . . . 12 (mulGrp‘𝐸) = (mulGrp‘𝐸)
5756, 2mgpbas 20158 . . . . . . . . . . 11 𝐵 = (Base‘(mulGrp‘𝐸))
5856, 12mgpplusg 20156 . . . . . . . . . . 11 (.r𝐸) = (+g‘(mulGrp‘𝐸))
59 fvexd 6922 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → (mulGrp‘𝐸) ∈ V)
602sdrgss 20811 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → 𝑎𝐵)
6112subrgmcl 20601 . . . . . . . . . . . 12 ((𝑎 ∈ (SubRing‘𝐸) ∧ 𝑥𝑎𝑦𝑎) → (𝑥(.r𝐸)𝑦) ∈ 𝑎)
6232, 61syl3an1 1162 . . . . . . . . . . 11 ((𝑎 ∈ (SubDRing‘𝐸) ∧ 𝑥𝑎𝑦𝑎) → (𝑥(.r𝐸)𝑦) ∈ 𝑎)
63 eqid 2735 . . . . . . . . . . 11 (0g‘(mulGrp‘𝐸)) = (0g‘(mulGrp‘𝐸))
64 eqid 2735 . . . . . . . . . . . . . . 15 (1r𝐸) = (1r𝐸)
6556, 64ringidval 20201 . . . . . . . . . . . . . 14 (1r𝐸) = (0g‘(mulGrp‘𝐸))
6665eqcomi 2744 . . . . . . . . . . . . 13 (0g‘(mulGrp‘𝐸)) = (1r𝐸)
6766subrg1cl 20597 . . . . . . . . . . . 12 (𝑎 ∈ (SubRing‘𝐸) → (0g‘(mulGrp‘𝐸)) ∈ 𝑎)
6832, 67syl 17 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → (0g‘(mulGrp‘𝐸)) ∈ 𝑎)
6957, 13, 58, 59, 60, 62, 63, 68mulgnn0subcl 19118 . . . . . . . . . 10 ((𝑎 ∈ (SubDRing‘𝐸) ∧ 𝑘 ∈ ℕ0𝐴𝑎) → (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎)
7050, 39, 55, 69syl3anc 1370 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎)
7112subrgmcl 20601 . . . . . . . . 9 ((𝑎 ∈ (SubRing‘𝐸) ∧ ((coe1𝐺)‘𝑘) ∈ 𝑎 ∧ (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎) → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) ∈ 𝑎)
7235, 49, 70, 71syl3anc 1370 . . . . . . . 8 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) ∈ 𝑎)
7372fmpttd 7135 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))):ℕ0𝑎)
7430mptexd 7244 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∈ V)
7573ffund 6741 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))))
76 fvexd 6922 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (0g𝐸) ∈ V)
774subrgring 20591 . . . . . . . . . . . . 13 (𝐹 ∈ (SubRing‘𝐸) → (𝐸s 𝐹) ∈ Ring)
7810, 77syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸s 𝐹) ∈ Ring)
7978ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝐸s 𝐹) ∈ Ring)
8011ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝐺𝑈)
81 eqid 2735 . . . . . . . . . . . 12 (0g‘(𝐸s 𝐹)) = (0g‘(𝐸s 𝐹))
823, 5, 81mptcoe1fsupp 22233 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺𝑈) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g‘(𝐸s 𝐹)))
8379, 80, 82syl2anc 584 . . . . . . . . . 10 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g‘(𝐸s 𝐹)))
84 ringmnd 20261 . . . . . . . . . . . . 13 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
8526, 84syl 17 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Mnd)
86 subrgsubg 20594 . . . . . . . . . . . . 13 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
87 subgsubm 19179 . . . . . . . . . . . . 13 (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ∈ (SubMnd‘𝐸))
8825subm0cl 18837 . . . . . . . . . . . . 13 (𝐹 ∈ (SubMnd‘𝐸) → (0g𝐸) ∈ 𝐹)
8910, 86, 87, 884syl 19 . . . . . . . . . . . 12 (𝜑 → (0g𝐸) ∈ 𝐹)
904, 2, 25ress0g 18788 . . . . . . . . . . . 12 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝐹𝐹𝐵) → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9185, 89, 44, 90syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9291ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9383, 92breqtrrd 5176 . . . . . . . . 9 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g𝐸))
9493fsuppimpd 9407 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)) ∈ Fin)
95 fveq2 6907 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((coe1𝐺)‘𝑘) = ((coe1𝐺)‘𝑖))
96 oveq1 7438 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑘(.g‘(mulGrp‘𝐸))𝐴) = (𝑖(.g‘(mulGrp‘𝐸))𝐴))
9795, 96oveq12d 7449 . . . . . . . . . 10 (𝑘 = 𝑖 → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) = (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
9897cbvmptv 5261 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) = (𝑖 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
99 nfv 1912 . . . . . . . . . 10 𝑘((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎)
100 eqid 2735 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) = (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))
10199, 42, 100fnmptd 6710 . . . . . . . . 9 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) Fn ℕ0)
102 simplr 769 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝑖 ∈ ℕ0)
103 fvexd 6922 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((coe1𝐺)‘𝑖) ∈ V)
104100, 95, 102, 103fvmptd3 7039 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = ((coe1𝐺)‘𝑖))
105 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸))
106104, 105eqtr3d 2777 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((coe1𝐺)‘𝑖) = (0g𝐸))
107106oveq1d 7446 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = ((0g𝐸)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
10826ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝐸 ∈ Ring)
10956ringmgp 20257 . . . . . . . . . . . . . . 15 (𝐸 ∈ Ring → (mulGrp‘𝐸) ∈ Mnd)
11026, 109syl 17 . . . . . . . . . . . . . 14 (𝜑 → (mulGrp‘𝐸) ∈ Mnd)
111110ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (mulGrp‘𝐸) ∈ Mnd)
11221ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝐴𝐵)
11357, 13, 111, 102, 112mulgnn0cld 19126 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (𝑖(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝐵)
1142, 12, 25, 108, 113ringlzd 20309 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((0g𝐸)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
115107, 114eqtrd 2775 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
1161153impa 1109 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0 ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
11798, 30, 76, 101, 116suppss3 32742 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) supp (0g𝐸)) ⊆ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)))
118 suppssfifsupp 9418 . . . . . . . 8 ((((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∧ (0g𝐸) ∈ V) ∧ (((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) supp (0g𝐸)) ⊆ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)))) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) finSupp (0g𝐸))
11974, 75, 76, 94, 117, 118syl32anc 1377 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) finSupp (0g𝐸))
12025, 28, 30, 34, 73, 119gsumsubgcl 19953 . . . . . 6 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))) ∈ 𝑎)
12124, 120eqeltrd 2839 . . . . 5 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑂𝐺)‘𝐴) ∈ 𝑎)
122121ex 412 . . . 4 ((𝜑𝑎 ∈ (SubDRing‘𝐸)) → ((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
123122ralrimiva 3144 . . 3 (𝜑 → ∀𝑎 ∈ (SubDRing‘𝐸)((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
124 fvex 6920 . . . 4 ((𝑂𝐺)‘𝐴) ∈ V
125124elintrab 4965 . . 3 (((𝑂𝐺)‘𝐴) ∈ {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎} ↔ ∀𝑎 ∈ (SubDRing‘𝐸)((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
126123, 125sylibr 234 . 2 (𝜑 → ((𝑂𝐺)‘𝐴) ∈ {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎})
1276flddrngd 20758 . . 3 (𝜑𝐸 ∈ DivRing)
12821snssd 4814 . . . 4 (𝜑 → {𝐴} ⊆ 𝐵)
12944, 128unssd 4202 . . 3 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ 𝐵)
1302, 127, 129fldgenval 33294 . 2 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) = {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎})
131126, 130eleqtrrd 2842 1 (𝜑 → ((𝑂𝐺)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478  cun 3961  wss 3963  {csn 4631   cint 4951   class class class wbr 5148  cmpt 5231  Fun wfun 6557  cfv 6563  (class class class)co 7431   supp csupp 8184  Fincfn 8984   finSupp cfsupp 9399  0cn0 12524  Basecbs 17245  s cress 17274  .rcmulr 17299  0gc0g 17486   Σg cgsu 17487  Mndcmnd 18760  SubMndcsubmnd 18808  .gcmg 19098  SubGrpcsubg 19151  Abelcabl 19814  mulGrpcmgp 20152  1rcur 20199  Ringcrg 20251  SubRingcsubrg 20586  Fieldcfield 20747  SubDRingcsdrg 20804  Poly1cpl1 22194  coe1cco1 22195   evalSub1 ces1 22333   fldGen cfldgen 33292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-sdrg 20805  df-lmod 20877  df-lss 20948  df-lsp 20988  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-evls 22116  df-evl 22117  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-evls1 22335  df-evl1 22336  df-fldgen 33293
This theorem is referenced by:  algextdeglem2  33724  algextdeglem4  33726
  Copyright terms: Public domain W3C validator