Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evls1fldgencl Structured version   Visualization version   GIF version

Theorem evls1fldgencl 33048
Description: Closure of the subring polynomial evaluation in the field extention. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
evls1fldgencl.1 𝐵 = (Base‘𝐸)
evls1fldgencl.2 𝑂 = (𝐸 evalSub1 𝐹)
evls1fldgencl.3 𝑃 = (Poly1‘(𝐸s 𝐹))
evls1fldgencl.4 𝑈 = (Base‘𝑃)
evls1fldgencl.5 (𝜑𝐸 ∈ Field)
evls1fldgencl.6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
evls1fldgencl.7 (𝜑𝐴𝐵)
evls1fldgencl.8 (𝜑𝐺𝑈)
Assertion
Ref Expression
evls1fldgencl (𝜑 → ((𝑂𝐺)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))

Proof of Theorem evls1fldgencl
Dummy variables 𝑎 𝑘 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fldgencl.2 . . . . . . . . 9 𝑂 = (𝐸 evalSub1 𝐹)
2 evls1fldgencl.1 . . . . . . . . 9 𝐵 = (Base‘𝐸)
3 evls1fldgencl.3 . . . . . . . . 9 𝑃 = (Poly1‘(𝐸s 𝐹))
4 eqid 2731 . . . . . . . . 9 (𝐸s 𝐹) = (𝐸s 𝐹)
5 evls1fldgencl.4 . . . . . . . . 9 𝑈 = (Base‘𝑃)
6 evls1fldgencl.5 . . . . . . . . . 10 (𝜑𝐸 ∈ Field)
76fldcrngd 20517 . . . . . . . . 9 (𝜑𝐸 ∈ CRing)
8 evls1fldgencl.6 . . . . . . . . . 10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
9 sdrgsubrg 20554 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ (SubRing‘𝐸))
11 evls1fldgencl.8 . . . . . . . . 9 (𝜑𝐺𝑈)
12 eqid 2731 . . . . . . . . 9 (.r𝐸) = (.r𝐸)
13 eqid 2731 . . . . . . . . 9 (.g‘(mulGrp‘𝐸)) = (.g‘(mulGrp‘𝐸))
14 eqid 2731 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
151, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14evls1fpws 32935 . . . . . . . 8 (𝜑 → (𝑂𝐺) = (𝑥𝐵 ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))))
16 oveq2 7420 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑘(.g‘(mulGrp‘𝐸))𝑥) = (𝑘(.g‘(mulGrp‘𝐸))𝐴))
1716oveq2d 7428 . . . . . . . . . . 11 (𝑥 = 𝐴 → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)) = (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))
1817mpteq2dv 5250 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))) = (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))))
1918oveq2d 7428 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
2019adantl 481 . . . . . . . 8 ((𝜑𝑥 = 𝐴) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
21 evls1fldgencl.7 . . . . . . . 8 (𝜑𝐴𝐵)
22 ovexd 7447 . . . . . . . 8 (𝜑 → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))) ∈ V)
2315, 20, 21, 22fvmptd 7005 . . . . . . 7 (𝜑 → ((𝑂𝐺)‘𝐴) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
2423ad2antrr 723 . . . . . 6 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑂𝐺)‘𝐴) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
25 eqid 2731 . . . . . . 7 (0g𝐸) = (0g𝐸)
267crngringd 20144 . . . . . . . . 9 (𝜑𝐸 ∈ Ring)
2726ringabld 20175 . . . . . . . 8 (𝜑𝐸 ∈ Abel)
2827ad2antrr 723 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝐸 ∈ Abel)
29 nn0ex 12485 . . . . . . . 8 0 ∈ V
3029a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ℕ0 ∈ V)
31 simplr 766 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝑎 ∈ (SubDRing‘𝐸))
32 sdrgsubrg 20554 . . . . . . . 8 (𝑎 ∈ (SubDRing‘𝐸) → 𝑎 ∈ (SubRing‘𝐸))
33 subrgsubg 20471 . . . . . . . 8 (𝑎 ∈ (SubRing‘𝐸) → 𝑎 ∈ (SubGrp‘𝐸))
3431, 32, 333syl 18 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝑎 ∈ (SubGrp‘𝐸))
3532ad3antlr 728 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ (SubRing‘𝐸))
36 simplr 766 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (𝐹 ∪ {𝐴}) ⊆ 𝑎)
3736unssad 4187 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐹𝑎)
3811ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐺𝑈)
39 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
40 eqid 2731 . . . . . . . . . . . . 13 (Base‘(𝐸s 𝐹)) = (Base‘(𝐸s 𝐹))
4114, 5, 3, 40coe1fvalcl 21968 . . . . . . . . . . . 12 ((𝐺𝑈𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ (Base‘(𝐸s 𝐹)))
4238, 39, 41syl2anc 583 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ (Base‘(𝐸s 𝐹)))
432sdrgss 20556 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝐵)
448, 43syl 17 . . . . . . . . . . . . 13 (𝜑𝐹𝐵)
454, 2ressbas2 17189 . . . . . . . . . . . . 13 (𝐹𝐵𝐹 = (Base‘(𝐸s 𝐹)))
4644, 45syl 17 . . . . . . . . . . . 12 (𝜑𝐹 = (Base‘(𝐸s 𝐹)))
4746ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐹 = (Base‘(𝐸s 𝐹)))
4842, 47eleqtrrd 2835 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ 𝐹)
4937, 48sseldd 3983 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ 𝑎)
50 simpllr 773 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ (SubDRing‘𝐸))
5121ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐴𝐵)
5236unssbd 4188 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → {𝐴} ⊆ 𝑎)
53 snssg 4787 . . . . . . . . . . . 12 (𝐴𝐵 → (𝐴𝑎 ↔ {𝐴} ⊆ 𝑎))
5453biimpar 477 . . . . . . . . . . 11 ((𝐴𝐵 ∧ {𝐴} ⊆ 𝑎) → 𝐴𝑎)
5551, 52, 54syl2anc 583 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐴𝑎)
56 eqid 2731 . . . . . . . . . . . 12 (mulGrp‘𝐸) = (mulGrp‘𝐸)
5756, 2mgpbas 20038 . . . . . . . . . . 11 𝐵 = (Base‘(mulGrp‘𝐸))
5856, 12mgpplusg 20036 . . . . . . . . . . 11 (.r𝐸) = (+g‘(mulGrp‘𝐸))
59 fvexd 6906 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → (mulGrp‘𝐸) ∈ V)
602sdrgss 20556 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → 𝑎𝐵)
6112subrgmcl 20478 . . . . . . . . . . . 12 ((𝑎 ∈ (SubRing‘𝐸) ∧ 𝑥𝑎𝑦𝑎) → (𝑥(.r𝐸)𝑦) ∈ 𝑎)
6232, 61syl3an1 1162 . . . . . . . . . . 11 ((𝑎 ∈ (SubDRing‘𝐸) ∧ 𝑥𝑎𝑦𝑎) → (𝑥(.r𝐸)𝑦) ∈ 𝑎)
63 eqid 2731 . . . . . . . . . . 11 (0g‘(mulGrp‘𝐸)) = (0g‘(mulGrp‘𝐸))
64 eqid 2731 . . . . . . . . . . . . . . 15 (1r𝐸) = (1r𝐸)
6556, 64ringidval 20081 . . . . . . . . . . . . . 14 (1r𝐸) = (0g‘(mulGrp‘𝐸))
6665eqcomi 2740 . . . . . . . . . . . . 13 (0g‘(mulGrp‘𝐸)) = (1r𝐸)
6766subrg1cl 20474 . . . . . . . . . . . 12 (𝑎 ∈ (SubRing‘𝐸) → (0g‘(mulGrp‘𝐸)) ∈ 𝑎)
6832, 67syl 17 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → (0g‘(mulGrp‘𝐸)) ∈ 𝑎)
6957, 13, 58, 59, 60, 62, 63, 68mulgnn0subcl 19007 . . . . . . . . . 10 ((𝑎 ∈ (SubDRing‘𝐸) ∧ 𝑘 ∈ ℕ0𝐴𝑎) → (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎)
7050, 39, 55, 69syl3anc 1370 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎)
7112subrgmcl 20478 . . . . . . . . 9 ((𝑎 ∈ (SubRing‘𝐸) ∧ ((coe1𝐺)‘𝑘) ∈ 𝑎 ∧ (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎) → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) ∈ 𝑎)
7235, 49, 70, 71syl3anc 1370 . . . . . . . 8 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) ∈ 𝑎)
7372fmpttd 7116 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))):ℕ0𝑎)
7430mptexd 7228 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∈ V)
7573ffund 6721 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))))
76 fvexd 6906 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (0g𝐸) ∈ V)
774subrgring 20468 . . . . . . . . . . . . 13 (𝐹 ∈ (SubRing‘𝐸) → (𝐸s 𝐹) ∈ Ring)
7810, 77syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸s 𝐹) ∈ Ring)
7978ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝐸s 𝐹) ∈ Ring)
8011ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝐺𝑈)
81 eqid 2731 . . . . . . . . . . . 12 (0g‘(𝐸s 𝐹)) = (0g‘(𝐸s 𝐹))
823, 5, 81mptcoe1fsupp 21971 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺𝑈) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g‘(𝐸s 𝐹)))
8379, 80, 82syl2anc 583 . . . . . . . . . 10 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g‘(𝐸s 𝐹)))
84 ringmnd 20141 . . . . . . . . . . . . 13 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
8526, 84syl 17 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Mnd)
86 subrgsubg 20471 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
87 subgsubm 19068 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ∈ (SubMnd‘𝐸))
8810, 86, 873syl 18 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubMnd‘𝐸))
8925subm0cl 18731 . . . . . . . . . . . . 13 (𝐹 ∈ (SubMnd‘𝐸) → (0g𝐸) ∈ 𝐹)
9088, 89syl 17 . . . . . . . . . . . 12 (𝜑 → (0g𝐸) ∈ 𝐹)
914, 2, 25ress0g 18690 . . . . . . . . . . . 12 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝐹𝐹𝐵) → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9285, 90, 44, 91syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9392ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9483, 93breqtrrd 5176 . . . . . . . . 9 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g𝐸))
9594fsuppimpd 9375 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)) ∈ Fin)
96 fveq2 6891 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((coe1𝐺)‘𝑘) = ((coe1𝐺)‘𝑖))
97 oveq1 7419 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑘(.g‘(mulGrp‘𝐸))𝐴) = (𝑖(.g‘(mulGrp‘𝐸))𝐴))
9896, 97oveq12d 7430 . . . . . . . . . 10 (𝑘 = 𝑖 → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) = (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
9998cbvmptv 5261 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) = (𝑖 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
100 nfv 1916 . . . . . . . . . 10 𝑘((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎)
101 eqid 2731 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) = (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))
102100, 42, 101fnmptd 6691 . . . . . . . . 9 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) Fn ℕ0)
103 simplr 766 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝑖 ∈ ℕ0)
104 fvexd 6906 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((coe1𝐺)‘𝑖) ∈ V)
105101, 96, 103, 104fvmptd3 7021 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = ((coe1𝐺)‘𝑖))
106 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸))
107105, 106eqtr3d 2773 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((coe1𝐺)‘𝑖) = (0g𝐸))
108107oveq1d 7427 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = ((0g𝐸)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
10926ad4antr 729 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝐸 ∈ Ring)
11056ringmgp 20137 . . . . . . . . . . . . . . 15 (𝐸 ∈ Ring → (mulGrp‘𝐸) ∈ Mnd)
11126, 110syl 17 . . . . . . . . . . . . . 14 (𝜑 → (mulGrp‘𝐸) ∈ Mnd)
112111ad4antr 729 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (mulGrp‘𝐸) ∈ Mnd)
11321ad4antr 729 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝐴𝐵)
11457, 13, 112, 103, 113mulgnn0cld 19015 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (𝑖(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝐵)
1152, 12, 25, 109, 114ringlzd 20187 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((0g𝐸)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
116108, 115eqtrd 2771 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
1171163impa 1109 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0 ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
11899, 30, 76, 102, 117suppss3 32231 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) supp (0g𝐸)) ⊆ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)))
119 suppssfifsupp 9384 . . . . . . . 8 ((((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∧ (0g𝐸) ∈ V) ∧ (((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) supp (0g𝐸)) ⊆ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)))) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) finSupp (0g𝐸))
12074, 75, 76, 95, 118, 119syl32anc 1377 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) finSupp (0g𝐸))
12125, 28, 30, 34, 73, 120gsumsubgcl 19833 . . . . . 6 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))) ∈ 𝑎)
12224, 121eqeltrd 2832 . . . . 5 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑂𝐺)‘𝐴) ∈ 𝑎)
123122ex 412 . . . 4 ((𝜑𝑎 ∈ (SubDRing‘𝐸)) → ((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
124123ralrimiva 3145 . . 3 (𝜑 → ∀𝑎 ∈ (SubDRing‘𝐸)((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
125 fvex 6904 . . . 4 ((𝑂𝐺)‘𝐴) ∈ V
126125elintrab 4964 . . 3 (((𝑂𝐺)‘𝐴) ∈ {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎} ↔ ∀𝑎 ∈ (SubDRing‘𝐸)((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
127124, 126sylibr 233 . 2 (𝜑 → ((𝑂𝐺)‘𝐴) ∈ {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎})
1286flddrngd 20516 . . 3 (𝜑𝐸 ∈ DivRing)
12921snssd 4812 . . . 4 (𝜑 → {𝐴} ⊆ 𝐵)
13044, 129unssd 4186 . . 3 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ 𝐵)
1312, 128, 130fldgenval 32687 . 2 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) = {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎})
132127, 131eleqtrrd 2835 1 (𝜑 → ((𝑂𝐺)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  {crab 3431  Vcvv 3473  cun 3946  wss 3948  {csn 4628   cint 4950   class class class wbr 5148  cmpt 5231  Fun wfun 6537  cfv 6543  (class class class)co 7412   supp csupp 8151  Fincfn 8945   finSupp cfsupp 9367  0cn0 12479  Basecbs 17151  s cress 17180  .rcmulr 17205  0gc0g 17392   Σg cgsu 17393  Mndcmnd 18662  SubMndcsubmnd 18707  .gcmg 18990  SubGrpcsubg 19040  Abelcabl 19694  mulGrpcmgp 20032  1rcur 20079  Ringcrg 20131  SubRingcsubrg 20461  Fieldcfield 20505  SubDRingcsdrg 20549  Poly1cpl1 21933  coe1cco1 21934   evalSub1 ces1 22065   fldGen cfldgen 32685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-submnd 18709  df-grp 18861  df-minusg 18862  df-sbg 18863  df-mulg 18991  df-subg 19043  df-ghm 19132  df-cntz 19226  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-srg 20085  df-ring 20133  df-cring 20134  df-rhm 20367  df-subrng 20438  df-subrg 20463  df-drng 20506  df-field 20507  df-sdrg 20550  df-lmod 20620  df-lss 20691  df-lsp 20731  df-assa 21631  df-asp 21632  df-ascl 21633  df-psr 21685  df-mvr 21686  df-mpl 21687  df-opsr 21689  df-evls 21859  df-evl 21860  df-psr1 21936  df-vr1 21937  df-ply1 21938  df-coe1 21939  df-evls1 22067  df-evl1 22068  df-fldgen 32686
This theorem is referenced by:  algextdeglem2  33078  algextdeglem4  33080
  Copyright terms: Public domain W3C validator