Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evls1fldgencl Structured version   Visualization version   GIF version

Theorem evls1fldgencl 33672
Description: Closure of the subring polynomial evaluation in the field extention. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
evls1fldgencl.1 𝐵 = (Base‘𝐸)
evls1fldgencl.2 𝑂 = (𝐸 evalSub1 𝐹)
evls1fldgencl.3 𝑃 = (Poly1‘(𝐸s 𝐹))
evls1fldgencl.4 𝑈 = (Base‘𝑃)
evls1fldgencl.5 (𝜑𝐸 ∈ Field)
evls1fldgencl.6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
evls1fldgencl.7 (𝜑𝐴𝐵)
evls1fldgencl.8 (𝜑𝐺𝑈)
Assertion
Ref Expression
evls1fldgencl (𝜑 → ((𝑂𝐺)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))

Proof of Theorem evls1fldgencl
Dummy variables 𝑎 𝑘 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fldgencl.2 . . . . . . . . 9 𝑂 = (𝐸 evalSub1 𝐹)
2 evls1fldgencl.1 . . . . . . . . 9 𝐵 = (Base‘𝐸)
3 evls1fldgencl.3 . . . . . . . . 9 𝑃 = (Poly1‘(𝐸s 𝐹))
4 eqid 2730 . . . . . . . . 9 (𝐸s 𝐹) = (𝐸s 𝐹)
5 evls1fldgencl.4 . . . . . . . . 9 𝑈 = (Base‘𝑃)
6 evls1fldgencl.5 . . . . . . . . . 10 (𝜑𝐸 ∈ Field)
76fldcrngd 20658 . . . . . . . . 9 (𝜑𝐸 ∈ CRing)
8 evls1fldgencl.6 . . . . . . . . . 10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
9 sdrgsubrg 20707 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ (SubRing‘𝐸))
11 evls1fldgencl.8 . . . . . . . . 9 (𝜑𝐺𝑈)
12 eqid 2730 . . . . . . . . 9 (.r𝐸) = (.r𝐸)
13 eqid 2730 . . . . . . . . 9 (.g‘(mulGrp‘𝐸)) = (.g‘(mulGrp‘𝐸))
14 eqid 2730 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
151, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14evls1fpws 22263 . . . . . . . 8 (𝜑 → (𝑂𝐺) = (𝑥𝐵 ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))))
16 oveq2 7398 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑘(.g‘(mulGrp‘𝐸))𝑥) = (𝑘(.g‘(mulGrp‘𝐸))𝐴))
1716oveq2d 7406 . . . . . . . . . . 11 (𝑥 = 𝐴 → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)) = (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))
1817mpteq2dv 5204 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))) = (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))))
1918oveq2d 7406 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
2019adantl 481 . . . . . . . 8 ((𝜑𝑥 = 𝐴) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
21 evls1fldgencl.7 . . . . . . . 8 (𝜑𝐴𝐵)
22 ovexd 7425 . . . . . . . 8 (𝜑 → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))) ∈ V)
2315, 20, 21, 22fvmptd 6978 . . . . . . 7 (𝜑 → ((𝑂𝐺)‘𝐴) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
2423ad2antrr 726 . . . . . 6 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑂𝐺)‘𝐴) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
25 eqid 2730 . . . . . . 7 (0g𝐸) = (0g𝐸)
267crngringd 20162 . . . . . . . . 9 (𝜑𝐸 ∈ Ring)
2726ringabld 20199 . . . . . . . 8 (𝜑𝐸 ∈ Abel)
2827ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝐸 ∈ Abel)
29 nn0ex 12455 . . . . . . . 8 0 ∈ V
3029a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ℕ0 ∈ V)
31 simplr 768 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝑎 ∈ (SubDRing‘𝐸))
32 sdrgsubrg 20707 . . . . . . . 8 (𝑎 ∈ (SubDRing‘𝐸) → 𝑎 ∈ (SubRing‘𝐸))
33 subrgsubg 20493 . . . . . . . 8 (𝑎 ∈ (SubRing‘𝐸) → 𝑎 ∈ (SubGrp‘𝐸))
3431, 32, 333syl 18 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝑎 ∈ (SubGrp‘𝐸))
3532ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ (SubRing‘𝐸))
36 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (𝐹 ∪ {𝐴}) ⊆ 𝑎)
3736unssad 4159 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐹𝑎)
3811ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐺𝑈)
39 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
40 eqid 2730 . . . . . . . . . . . . 13 (Base‘(𝐸s 𝐹)) = (Base‘(𝐸s 𝐹))
4114, 5, 3, 40coe1fvalcl 22104 . . . . . . . . . . . 12 ((𝐺𝑈𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ (Base‘(𝐸s 𝐹)))
4238, 39, 41syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ (Base‘(𝐸s 𝐹)))
432sdrgss 20709 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝐵)
448, 43syl 17 . . . . . . . . . . . . 13 (𝜑𝐹𝐵)
454, 2ressbas2 17215 . . . . . . . . . . . . 13 (𝐹𝐵𝐹 = (Base‘(𝐸s 𝐹)))
4644, 45syl 17 . . . . . . . . . . . 12 (𝜑𝐹 = (Base‘(𝐸s 𝐹)))
4746ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐹 = (Base‘(𝐸s 𝐹)))
4842, 47eleqtrrd 2832 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ 𝐹)
4937, 48sseldd 3950 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ 𝑎)
50 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ (SubDRing‘𝐸))
5121ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐴𝐵)
5236unssbd 4160 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → {𝐴} ⊆ 𝑎)
53 snssg 4750 . . . . . . . . . . . 12 (𝐴𝐵 → (𝐴𝑎 ↔ {𝐴} ⊆ 𝑎))
5453biimpar 477 . . . . . . . . . . 11 ((𝐴𝐵 ∧ {𝐴} ⊆ 𝑎) → 𝐴𝑎)
5551, 52, 54syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐴𝑎)
56 eqid 2730 . . . . . . . . . . . 12 (mulGrp‘𝐸) = (mulGrp‘𝐸)
5756, 2mgpbas 20061 . . . . . . . . . . 11 𝐵 = (Base‘(mulGrp‘𝐸))
5856, 12mgpplusg 20060 . . . . . . . . . . 11 (.r𝐸) = (+g‘(mulGrp‘𝐸))
59 fvexd 6876 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → (mulGrp‘𝐸) ∈ V)
602sdrgss 20709 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → 𝑎𝐵)
6112subrgmcl 20500 . . . . . . . . . . . 12 ((𝑎 ∈ (SubRing‘𝐸) ∧ 𝑥𝑎𝑦𝑎) → (𝑥(.r𝐸)𝑦) ∈ 𝑎)
6232, 61syl3an1 1163 . . . . . . . . . . 11 ((𝑎 ∈ (SubDRing‘𝐸) ∧ 𝑥𝑎𝑦𝑎) → (𝑥(.r𝐸)𝑦) ∈ 𝑎)
63 eqid 2730 . . . . . . . . . . 11 (0g‘(mulGrp‘𝐸)) = (0g‘(mulGrp‘𝐸))
64 eqid 2730 . . . . . . . . . . . . . . 15 (1r𝐸) = (1r𝐸)
6556, 64ringidval 20099 . . . . . . . . . . . . . 14 (1r𝐸) = (0g‘(mulGrp‘𝐸))
6665eqcomi 2739 . . . . . . . . . . . . 13 (0g‘(mulGrp‘𝐸)) = (1r𝐸)
6766subrg1cl 20496 . . . . . . . . . . . 12 (𝑎 ∈ (SubRing‘𝐸) → (0g‘(mulGrp‘𝐸)) ∈ 𝑎)
6832, 67syl 17 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → (0g‘(mulGrp‘𝐸)) ∈ 𝑎)
6957, 13, 58, 59, 60, 62, 63, 68mulgnn0subcl 19026 . . . . . . . . . 10 ((𝑎 ∈ (SubDRing‘𝐸) ∧ 𝑘 ∈ ℕ0𝐴𝑎) → (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎)
7050, 39, 55, 69syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎)
7112subrgmcl 20500 . . . . . . . . 9 ((𝑎 ∈ (SubRing‘𝐸) ∧ ((coe1𝐺)‘𝑘) ∈ 𝑎 ∧ (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎) → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) ∈ 𝑎)
7235, 49, 70, 71syl3anc 1373 . . . . . . . 8 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) ∈ 𝑎)
7372fmpttd 7090 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))):ℕ0𝑎)
7430mptexd 7201 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∈ V)
7573ffund 6695 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))))
76 fvexd 6876 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (0g𝐸) ∈ V)
774subrgring 20490 . . . . . . . . . . . . 13 (𝐹 ∈ (SubRing‘𝐸) → (𝐸s 𝐹) ∈ Ring)
7810, 77syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸s 𝐹) ∈ Ring)
7978ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝐸s 𝐹) ∈ Ring)
8011ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝐺𝑈)
81 eqid 2730 . . . . . . . . . . . 12 (0g‘(𝐸s 𝐹)) = (0g‘(𝐸s 𝐹))
823, 5, 81mptcoe1fsupp 22107 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺𝑈) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g‘(𝐸s 𝐹)))
8379, 80, 82syl2anc 584 . . . . . . . . . 10 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g‘(𝐸s 𝐹)))
84 ringmnd 20159 . . . . . . . . . . . . 13 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
8526, 84syl 17 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Mnd)
86 subrgsubg 20493 . . . . . . . . . . . . 13 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
87 subgsubm 19087 . . . . . . . . . . . . 13 (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ∈ (SubMnd‘𝐸))
8825subm0cl 18745 . . . . . . . . . . . . 13 (𝐹 ∈ (SubMnd‘𝐸) → (0g𝐸) ∈ 𝐹)
8910, 86, 87, 884syl 19 . . . . . . . . . . . 12 (𝜑 → (0g𝐸) ∈ 𝐹)
904, 2, 25ress0g 18696 . . . . . . . . . . . 12 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝐹𝐹𝐵) → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9185, 89, 44, 90syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9291ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9383, 92breqtrrd 5138 . . . . . . . . 9 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g𝐸))
9493fsuppimpd 9327 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)) ∈ Fin)
95 fveq2 6861 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((coe1𝐺)‘𝑘) = ((coe1𝐺)‘𝑖))
96 oveq1 7397 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑘(.g‘(mulGrp‘𝐸))𝐴) = (𝑖(.g‘(mulGrp‘𝐸))𝐴))
9795, 96oveq12d 7408 . . . . . . . . . 10 (𝑘 = 𝑖 → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) = (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
9897cbvmptv 5214 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) = (𝑖 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
99 nfv 1914 . . . . . . . . . 10 𝑘((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎)
100 eqid 2730 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) = (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))
10199, 42, 100fnmptd 6662 . . . . . . . . 9 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) Fn ℕ0)
102 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝑖 ∈ ℕ0)
103 fvexd 6876 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((coe1𝐺)‘𝑖) ∈ V)
104100, 95, 102, 103fvmptd3 6994 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = ((coe1𝐺)‘𝑖))
105 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸))
106104, 105eqtr3d 2767 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((coe1𝐺)‘𝑖) = (0g𝐸))
107106oveq1d 7405 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = ((0g𝐸)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
10826ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝐸 ∈ Ring)
10956ringmgp 20155 . . . . . . . . . . . . . . 15 (𝐸 ∈ Ring → (mulGrp‘𝐸) ∈ Mnd)
11026, 109syl 17 . . . . . . . . . . . . . 14 (𝜑 → (mulGrp‘𝐸) ∈ Mnd)
111110ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (mulGrp‘𝐸) ∈ Mnd)
11221ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝐴𝐵)
11357, 13, 111, 102, 112mulgnn0cld 19034 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (𝑖(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝐵)
1142, 12, 25, 108, 113ringlzd 20211 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((0g𝐸)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
115107, 114eqtrd 2765 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
1161153impa 1109 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0 ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
11798, 30, 76, 101, 116suppss3 32654 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) supp (0g𝐸)) ⊆ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)))
118 suppssfifsupp 9338 . . . . . . . 8 ((((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∧ (0g𝐸) ∈ V) ∧ (((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) supp (0g𝐸)) ⊆ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)))) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) finSupp (0g𝐸))
11974, 75, 76, 94, 117, 118syl32anc 1380 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) finSupp (0g𝐸))
12025, 28, 30, 34, 73, 119gsumsubgcl 19857 . . . . . 6 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))) ∈ 𝑎)
12124, 120eqeltrd 2829 . . . . 5 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑂𝐺)‘𝐴) ∈ 𝑎)
122121ex 412 . . . 4 ((𝜑𝑎 ∈ (SubDRing‘𝐸)) → ((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
123122ralrimiva 3126 . . 3 (𝜑 → ∀𝑎 ∈ (SubDRing‘𝐸)((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
124 fvex 6874 . . . 4 ((𝑂𝐺)‘𝐴) ∈ V
125124elintrab 4927 . . 3 (((𝑂𝐺)‘𝐴) ∈ {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎} ↔ ∀𝑎 ∈ (SubDRing‘𝐸)((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
126123, 125sylibr 234 . 2 (𝜑 → ((𝑂𝐺)‘𝐴) ∈ {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎})
1276flddrngd 20657 . . 3 (𝜑𝐸 ∈ DivRing)
12821snssd 4776 . . . 4 (𝜑 → {𝐴} ⊆ 𝐵)
12944, 128unssd 4158 . . 3 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ 𝐵)
1302, 127, 129fldgenval 33269 . 2 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) = {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎})
131126, 130eleqtrrd 2832 1 (𝜑 → ((𝑂𝐺)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cun 3915  wss 3917  {csn 4592   cint 4913   class class class wbr 5110  cmpt 5191  Fun wfun 6508  cfv 6514  (class class class)co 7390   supp csupp 8142  Fincfn 8921   finSupp cfsupp 9319  0cn0 12449  Basecbs 17186  s cress 17207  .rcmulr 17228  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  SubMndcsubmnd 18716  .gcmg 19006  SubGrpcsubg 19059  Abelcabl 19718  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  SubRingcsubrg 20485  Fieldcfield 20646  SubDRingcsdrg 20702  Poly1cpl1 22068  coe1cco1 22069   evalSub1 ces1 22207   fldGen cfldgen 33267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-field 20648  df-sdrg 20703  df-lmod 20775  df-lss 20845  df-lsp 20885  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210  df-fldgen 33268
This theorem is referenced by:  algextdeglem2  33715  algextdeglem4  33717
  Copyright terms: Public domain W3C validator