Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evls1fldgencl Structured version   Visualization version   GIF version

Theorem evls1fldgencl 33665
Description: Closure of the subring polynomial evaluation in the field extention. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
evls1fldgencl.1 𝐵 = (Base‘𝐸)
evls1fldgencl.2 𝑂 = (𝐸 evalSub1 𝐹)
evls1fldgencl.3 𝑃 = (Poly1‘(𝐸s 𝐹))
evls1fldgencl.4 𝑈 = (Base‘𝑃)
evls1fldgencl.5 (𝜑𝐸 ∈ Field)
evls1fldgencl.6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
evls1fldgencl.7 (𝜑𝐴𝐵)
evls1fldgencl.8 (𝜑𝐺𝑈)
Assertion
Ref Expression
evls1fldgencl (𝜑 → ((𝑂𝐺)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))

Proof of Theorem evls1fldgencl
Dummy variables 𝑎 𝑘 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fldgencl.2 . . . . . . . . 9 𝑂 = (𝐸 evalSub1 𝐹)
2 evls1fldgencl.1 . . . . . . . . 9 𝐵 = (Base‘𝐸)
3 evls1fldgencl.3 . . . . . . . . 9 𝑃 = (Poly1‘(𝐸s 𝐹))
4 eqid 2729 . . . . . . . . 9 (𝐸s 𝐹) = (𝐸s 𝐹)
5 evls1fldgencl.4 . . . . . . . . 9 𝑈 = (Base‘𝑃)
6 evls1fldgencl.5 . . . . . . . . . 10 (𝜑𝐸 ∈ Field)
76fldcrngd 20651 . . . . . . . . 9 (𝜑𝐸 ∈ CRing)
8 evls1fldgencl.6 . . . . . . . . . 10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
9 sdrgsubrg 20700 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ (SubRing‘𝐸))
11 evls1fldgencl.8 . . . . . . . . 9 (𝜑𝐺𝑈)
12 eqid 2729 . . . . . . . . 9 (.r𝐸) = (.r𝐸)
13 eqid 2729 . . . . . . . . 9 (.g‘(mulGrp‘𝐸)) = (.g‘(mulGrp‘𝐸))
14 eqid 2729 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
151, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14evls1fpws 22256 . . . . . . . 8 (𝜑 → (𝑂𝐺) = (𝑥𝐵 ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))))
16 oveq2 7395 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑘(.g‘(mulGrp‘𝐸))𝑥) = (𝑘(.g‘(mulGrp‘𝐸))𝐴))
1716oveq2d 7403 . . . . . . . . . . 11 (𝑥 = 𝐴 → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)) = (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))
1817mpteq2dv 5201 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))) = (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))))
1918oveq2d 7403 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
2019adantl 481 . . . . . . . 8 ((𝜑𝑥 = 𝐴) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
21 evls1fldgencl.7 . . . . . . . 8 (𝜑𝐴𝐵)
22 ovexd 7422 . . . . . . . 8 (𝜑 → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))) ∈ V)
2315, 20, 21, 22fvmptd 6975 . . . . . . 7 (𝜑 → ((𝑂𝐺)‘𝐴) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
2423ad2antrr 726 . . . . . 6 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑂𝐺)‘𝐴) = (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))))
25 eqid 2729 . . . . . . 7 (0g𝐸) = (0g𝐸)
267crngringd 20155 . . . . . . . . 9 (𝜑𝐸 ∈ Ring)
2726ringabld 20192 . . . . . . . 8 (𝜑𝐸 ∈ Abel)
2827ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝐸 ∈ Abel)
29 nn0ex 12448 . . . . . . . 8 0 ∈ V
3029a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ℕ0 ∈ V)
31 simplr 768 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝑎 ∈ (SubDRing‘𝐸))
32 sdrgsubrg 20700 . . . . . . . 8 (𝑎 ∈ (SubDRing‘𝐸) → 𝑎 ∈ (SubRing‘𝐸))
33 subrgsubg 20486 . . . . . . . 8 (𝑎 ∈ (SubRing‘𝐸) → 𝑎 ∈ (SubGrp‘𝐸))
3431, 32, 333syl 18 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝑎 ∈ (SubGrp‘𝐸))
3532ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ (SubRing‘𝐸))
36 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (𝐹 ∪ {𝐴}) ⊆ 𝑎)
3736unssad 4156 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐹𝑎)
3811ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐺𝑈)
39 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
40 eqid 2729 . . . . . . . . . . . . 13 (Base‘(𝐸s 𝐹)) = (Base‘(𝐸s 𝐹))
4114, 5, 3, 40coe1fvalcl 22097 . . . . . . . . . . . 12 ((𝐺𝑈𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ (Base‘(𝐸s 𝐹)))
4238, 39, 41syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ (Base‘(𝐸s 𝐹)))
432sdrgss 20702 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝐵)
448, 43syl 17 . . . . . . . . . . . . 13 (𝜑𝐹𝐵)
454, 2ressbas2 17208 . . . . . . . . . . . . 13 (𝐹𝐵𝐹 = (Base‘(𝐸s 𝐹)))
4644, 45syl 17 . . . . . . . . . . . 12 (𝜑𝐹 = (Base‘(𝐸s 𝐹)))
4746ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐹 = (Base‘(𝐸s 𝐹)))
4842, 47eleqtrrd 2831 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ 𝐹)
4937, 48sseldd 3947 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐺)‘𝑘) ∈ 𝑎)
50 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ (SubDRing‘𝐸))
5121ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐴𝐵)
5236unssbd 4157 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → {𝐴} ⊆ 𝑎)
53 snssg 4747 . . . . . . . . . . . 12 (𝐴𝐵 → (𝐴𝑎 ↔ {𝐴} ⊆ 𝑎))
5453biimpar 477 . . . . . . . . . . 11 ((𝐴𝐵 ∧ {𝐴} ⊆ 𝑎) → 𝐴𝑎)
5551, 52, 54syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → 𝐴𝑎)
56 eqid 2729 . . . . . . . . . . . 12 (mulGrp‘𝐸) = (mulGrp‘𝐸)
5756, 2mgpbas 20054 . . . . . . . . . . 11 𝐵 = (Base‘(mulGrp‘𝐸))
5856, 12mgpplusg 20053 . . . . . . . . . . 11 (.r𝐸) = (+g‘(mulGrp‘𝐸))
59 fvexd 6873 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → (mulGrp‘𝐸) ∈ V)
602sdrgss 20702 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → 𝑎𝐵)
6112subrgmcl 20493 . . . . . . . . . . . 12 ((𝑎 ∈ (SubRing‘𝐸) ∧ 𝑥𝑎𝑦𝑎) → (𝑥(.r𝐸)𝑦) ∈ 𝑎)
6232, 61syl3an1 1163 . . . . . . . . . . 11 ((𝑎 ∈ (SubDRing‘𝐸) ∧ 𝑥𝑎𝑦𝑎) → (𝑥(.r𝐸)𝑦) ∈ 𝑎)
63 eqid 2729 . . . . . . . . . . 11 (0g‘(mulGrp‘𝐸)) = (0g‘(mulGrp‘𝐸))
64 eqid 2729 . . . . . . . . . . . . . . 15 (1r𝐸) = (1r𝐸)
6556, 64ringidval 20092 . . . . . . . . . . . . . 14 (1r𝐸) = (0g‘(mulGrp‘𝐸))
6665eqcomi 2738 . . . . . . . . . . . . 13 (0g‘(mulGrp‘𝐸)) = (1r𝐸)
6766subrg1cl 20489 . . . . . . . . . . . 12 (𝑎 ∈ (SubRing‘𝐸) → (0g‘(mulGrp‘𝐸)) ∈ 𝑎)
6832, 67syl 17 . . . . . . . . . . 11 (𝑎 ∈ (SubDRing‘𝐸) → (0g‘(mulGrp‘𝐸)) ∈ 𝑎)
6957, 13, 58, 59, 60, 62, 63, 68mulgnn0subcl 19019 . . . . . . . . . 10 ((𝑎 ∈ (SubDRing‘𝐸) ∧ 𝑘 ∈ ℕ0𝐴𝑎) → (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎)
7050, 39, 55, 69syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎)
7112subrgmcl 20493 . . . . . . . . 9 ((𝑎 ∈ (SubRing‘𝐸) ∧ ((coe1𝐺)‘𝑘) ∈ 𝑎 ∧ (𝑘(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝑎) → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) ∈ 𝑎)
7235, 49, 70, 71syl3anc 1373 . . . . . . . 8 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) ∈ 𝑎)
7372fmpttd 7087 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))):ℕ0𝑎)
7430mptexd 7198 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∈ V)
7573ffund 6692 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))))
76 fvexd 6873 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (0g𝐸) ∈ V)
774subrgring 20483 . . . . . . . . . . . . 13 (𝐹 ∈ (SubRing‘𝐸) → (𝐸s 𝐹) ∈ Ring)
7810, 77syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸s 𝐹) ∈ Ring)
7978ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝐸s 𝐹) ∈ Ring)
8011ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → 𝐺𝑈)
81 eqid 2729 . . . . . . . . . . . 12 (0g‘(𝐸s 𝐹)) = (0g‘(𝐸s 𝐹))
823, 5, 81mptcoe1fsupp 22100 . . . . . . . . . . 11 (((𝐸s 𝐹) ∈ Ring ∧ 𝐺𝑈) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g‘(𝐸s 𝐹)))
8379, 80, 82syl2anc 584 . . . . . . . . . 10 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g‘(𝐸s 𝐹)))
84 ringmnd 20152 . . . . . . . . . . . . 13 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
8526, 84syl 17 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Mnd)
86 subrgsubg 20486 . . . . . . . . . . . . 13 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
87 subgsubm 19080 . . . . . . . . . . . . 13 (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ∈ (SubMnd‘𝐸))
8825subm0cl 18738 . . . . . . . . . . . . 13 (𝐹 ∈ (SubMnd‘𝐸) → (0g𝐸) ∈ 𝐹)
8910, 86, 87, 884syl 19 . . . . . . . . . . . 12 (𝜑 → (0g𝐸) ∈ 𝐹)
904, 2, 25ress0g 18689 . . . . . . . . . . . 12 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝐹𝐹𝐵) → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9185, 89, 44, 90syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9291ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (0g𝐸) = (0g‘(𝐸s 𝐹)))
9383, 92breqtrrd 5135 . . . . . . . . 9 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) finSupp (0g𝐸))
9493fsuppimpd 9320 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)) ∈ Fin)
95 fveq2 6858 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((coe1𝐺)‘𝑘) = ((coe1𝐺)‘𝑖))
96 oveq1 7394 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑘(.g‘(mulGrp‘𝐸))𝐴) = (𝑖(.g‘(mulGrp‘𝐸))𝐴))
9795, 96oveq12d 7405 . . . . . . . . . 10 (𝑘 = 𝑖 → (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)) = (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
9897cbvmptv 5211 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) = (𝑖 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
99 nfv 1914 . . . . . . . . . 10 𝑘((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎)
100 eqid 2729 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) = (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))
10199, 42, 100fnmptd 6659 . . . . . . . . 9 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) Fn ℕ0)
102 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝑖 ∈ ℕ0)
103 fvexd 6873 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((coe1𝐺)‘𝑖) ∈ V)
104100, 95, 102, 103fvmptd3 6991 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = ((coe1𝐺)‘𝑖))
105 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸))
106104, 105eqtr3d 2766 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((coe1𝐺)‘𝑖) = (0g𝐸))
107106oveq1d 7402 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = ((0g𝐸)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)))
10826ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝐸 ∈ Ring)
10956ringmgp 20148 . . . . . . . . . . . . . . 15 (𝐸 ∈ Ring → (mulGrp‘𝐸) ∈ Mnd)
11026, 109syl 17 . . . . . . . . . . . . . 14 (𝜑 → (mulGrp‘𝐸) ∈ Mnd)
111110ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (mulGrp‘𝐸) ∈ Mnd)
11221ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → 𝐴𝐵)
11357, 13, 111, 102, 112mulgnn0cld 19027 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (𝑖(.g‘(mulGrp‘𝐸))𝐴) ∈ 𝐵)
1142, 12, 25, 108, 113ringlzd 20204 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → ((0g𝐸)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
115107, 114eqtrd 2764 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0) ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
1161153impa 1109 . . . . . . . . 9 ((((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) ∧ 𝑖 ∈ ℕ0 ∧ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘))‘𝑖) = (0g𝐸)) → (((coe1𝐺)‘𝑖)(.r𝐸)(𝑖(.g‘(mulGrp‘𝐸))𝐴)) = (0g𝐸))
11798, 30, 76, 101, 116suppss3 32647 . . . . . . . 8 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) supp (0g𝐸)) ⊆ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)))
118 suppssfifsupp 9331 . . . . . . . 8 ((((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) ∧ (0g𝐸) ∈ V) ∧ (((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) supp (0g𝐸)) ⊆ ((𝑘 ∈ ℕ0 ↦ ((coe1𝐺)‘𝑘)) supp (0g𝐸)))) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) finSupp (0g𝐸))
11974, 75, 76, 94, 117, 118syl32anc 1380 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴))) finSupp (0g𝐸))
12025, 28, 30, 34, 73, 119gsumsubgcl 19850 . . . . . 6 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐺)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝐴)))) ∈ 𝑎)
12124, 120eqeltrd 2828 . . . . 5 (((𝜑𝑎 ∈ (SubDRing‘𝐸)) ∧ (𝐹 ∪ {𝐴}) ⊆ 𝑎) → ((𝑂𝐺)‘𝐴) ∈ 𝑎)
122121ex 412 . . . 4 ((𝜑𝑎 ∈ (SubDRing‘𝐸)) → ((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
123122ralrimiva 3125 . . 3 (𝜑 → ∀𝑎 ∈ (SubDRing‘𝐸)((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
124 fvex 6871 . . . 4 ((𝑂𝐺)‘𝐴) ∈ V
125124elintrab 4924 . . 3 (((𝑂𝐺)‘𝐴) ∈ {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎} ↔ ∀𝑎 ∈ (SubDRing‘𝐸)((𝐹 ∪ {𝐴}) ⊆ 𝑎 → ((𝑂𝐺)‘𝐴) ∈ 𝑎))
126123, 125sylibr 234 . 2 (𝜑 → ((𝑂𝐺)‘𝐴) ∈ {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎})
1276flddrngd 20650 . . 3 (𝜑𝐸 ∈ DivRing)
12821snssd 4773 . . . 4 (𝜑 → {𝐴} ⊆ 𝐵)
12944, 128unssd 4155 . . 3 (𝜑 → (𝐹 ∪ {𝐴}) ⊆ 𝐵)
1302, 127, 129fldgenval 33262 . 2 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝐴})) = {𝑎 ∈ (SubDRing‘𝐸) ∣ (𝐹 ∪ {𝐴}) ⊆ 𝑎})
131126, 130eleqtrrd 2831 1 (𝜑 → ((𝑂𝐺)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  cun 3912  wss 3914  {csn 4589   cint 4910   class class class wbr 5107  cmpt 5188  Fun wfun 6505  cfv 6511  (class class class)co 7387   supp csupp 8139  Fincfn 8918   finSupp cfsupp 9312  0cn0 12442  Basecbs 17179  s cress 17200  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  SubMndcsubmnd 18709  .gcmg 18999  SubGrpcsubg 19052  Abelcabl 19711  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  SubRingcsubrg 20478  Fieldcfield 20639  SubDRingcsdrg 20695  Poly1cpl1 22061  coe1cco1 22062   evalSub1 ces1 22200   fldGen cfldgen 33260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-field 20641  df-sdrg 20696  df-lmod 20768  df-lss 20838  df-lsp 20878  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evls1 22202  df-evl1 22203  df-fldgen 33261
This theorem is referenced by:  algextdeglem2  33708  algextdeglem4  33710
  Copyright terms: Public domain W3C validator