Step | Hyp | Ref
| Expression |
1 | | evls1fldgencl.2 |
. . . . . . . . 9
β’ π = (πΈ evalSub1 πΉ) |
2 | | evls1fldgencl.1 |
. . . . . . . . 9
β’ π΅ = (BaseβπΈ) |
3 | | evls1fldgencl.3 |
. . . . . . . . 9
β’ π =
(Poly1β(πΈ
βΎs πΉ)) |
4 | | eqid 2724 |
. . . . . . . . 9
β’ (πΈ βΎs πΉ) = (πΈ βΎs πΉ) |
5 | | evls1fldgencl.4 |
. . . . . . . . 9
β’ π = (Baseβπ) |
6 | | evls1fldgencl.5 |
. . . . . . . . . 10
β’ (π β πΈ β Field) |
7 | 6 | fldcrngd 20590 |
. . . . . . . . 9
β’ (π β πΈ β CRing) |
8 | | evls1fldgencl.6 |
. . . . . . . . . 10
β’ (π β πΉ β (SubDRingβπΈ)) |
9 | | sdrgsubrg 20632 |
. . . . . . . . . 10
β’ (πΉ β (SubDRingβπΈ) β πΉ β (SubRingβπΈ)) |
10 | 8, 9 | syl 17 |
. . . . . . . . 9
β’ (π β πΉ β (SubRingβπΈ)) |
11 | | evls1fldgencl.8 |
. . . . . . . . 9
β’ (π β πΊ β π) |
12 | | eqid 2724 |
. . . . . . . . 9
β’
(.rβπΈ) = (.rβπΈ) |
13 | | eqid 2724 |
. . . . . . . . 9
β’
(.gβ(mulGrpβπΈ)) =
(.gβ(mulGrpβπΈ)) |
14 | | eqid 2724 |
. . . . . . . . 9
β’
(coe1βπΊ) = (coe1βπΊ) |
15 | 1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14 | evls1fpws 33113 |
. . . . . . . 8
β’ (π β (πβπΊ) = (π₯ β π΅ β¦ (πΈ Ξ£g (π β β0
β¦ (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π₯)))))) |
16 | | oveq2 7409 |
. . . . . . . . . . . 12
β’ (π₯ = π΄ β (π(.gβ(mulGrpβπΈ))π₯) = (π(.gβ(mulGrpβπΈ))π΄)) |
17 | 16 | oveq2d 7417 |
. . . . . . . . . . 11
β’ (π₯ = π΄ β (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π₯)) = (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))) |
18 | 17 | mpteq2dv 5240 |
. . . . . . . . . 10
β’ (π₯ = π΄ β (π β β0 β¦
(((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π₯))) = (π β β0 β¦
(((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄)))) |
19 | 18 | oveq2d 7417 |
. . . . . . . . 9
β’ (π₯ = π΄ β (πΈ Ξ£g (π β β0
β¦ (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π₯)))) = (πΈ Ξ£g (π β β0
β¦ (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))))) |
20 | 19 | adantl 481 |
. . . . . . . 8
β’ ((π β§ π₯ = π΄) β (πΈ Ξ£g (π β β0
β¦ (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π₯)))) = (πΈ Ξ£g (π β β0
β¦ (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))))) |
21 | | evls1fldgencl.7 |
. . . . . . . 8
β’ (π β π΄ β π΅) |
22 | | ovexd 7436 |
. . . . . . . 8
β’ (π β (πΈ Ξ£g (π β β0
β¦ (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄)))) β V) |
23 | 15, 20, 21, 22 | fvmptd 6995 |
. . . . . . 7
β’ (π β ((πβπΊ)βπ΄) = (πΈ Ξ£g (π β β0
β¦ (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))))) |
24 | 23 | ad2antrr 723 |
. . . . . 6
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β ((πβπΊ)βπ΄) = (πΈ Ξ£g (π β β0
β¦ (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))))) |
25 | | eqid 2724 |
. . . . . . 7
β’
(0gβπΈ) = (0gβπΈ) |
26 | 7 | crngringd 20141 |
. . . . . . . . 9
β’ (π β πΈ β Ring) |
27 | 26 | ringabld 20172 |
. . . . . . . 8
β’ (π β πΈ β Abel) |
28 | 27 | ad2antrr 723 |
. . . . . . 7
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β πΈ β Abel) |
29 | | nn0ex 12475 |
. . . . . . . 8
β’
β0 β V |
30 | 29 | a1i 11 |
. . . . . . 7
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β β0 β
V) |
31 | | simplr 766 |
. . . . . . . 8
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β π β (SubDRingβπΈ)) |
32 | | sdrgsubrg 20632 |
. . . . . . . 8
β’ (π β (SubDRingβπΈ) β π β (SubRingβπΈ)) |
33 | | subrgsubg 20469 |
. . . . . . . 8
β’ (π β (SubRingβπΈ) β π β (SubGrpβπΈ)) |
34 | 31, 32, 33 | 3syl 18 |
. . . . . . 7
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β π β (SubGrpβπΈ)) |
35 | 32 | ad3antlr 728 |
. . . . . . . . 9
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β π β (SubRingβπΈ)) |
36 | | simplr 766 |
. . . . . . . . . . 11
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β (πΉ βͺ {π΄}) β π) |
37 | 36 | unssad 4179 |
. . . . . . . . . 10
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β πΉ β π) |
38 | 11 | ad3antrrr 727 |
. . . . . . . . . . . 12
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β πΊ β π) |
39 | | simpr 484 |
. . . . . . . . . . . 12
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β π β
β0) |
40 | | eqid 2724 |
. . . . . . . . . . . . 13
β’
(Baseβ(πΈ
βΎs πΉ)) =
(Baseβ(πΈ
βΎs πΉ)) |
41 | 14, 5, 3, 40 | coe1fvalcl 22054 |
. . . . . . . . . . . 12
β’ ((πΊ β π β§ π β β0) β
((coe1βπΊ)βπ) β (Baseβ(πΈ βΎs πΉ))) |
42 | 38, 39, 41 | syl2anc 583 |
. . . . . . . . . . 11
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β
((coe1βπΊ)βπ) β (Baseβ(πΈ βΎs πΉ))) |
43 | 2 | sdrgss 20634 |
. . . . . . . . . . . . . 14
β’ (πΉ β (SubDRingβπΈ) β πΉ β π΅) |
44 | 8, 43 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β πΉ β π΅) |
45 | 4, 2 | ressbas2 17181 |
. . . . . . . . . . . . 13
β’ (πΉ β π΅ β πΉ = (Baseβ(πΈ βΎs πΉ))) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . 12
β’ (π β πΉ = (Baseβ(πΈ βΎs πΉ))) |
47 | 46 | ad3antrrr 727 |
. . . . . . . . . . 11
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β πΉ = (Baseβ(πΈ βΎs πΉ))) |
48 | 42, 47 | eleqtrrd 2828 |
. . . . . . . . . 10
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β
((coe1βπΊ)βπ) β πΉ) |
49 | 37, 48 | sseldd 3975 |
. . . . . . . . 9
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β
((coe1βπΊ)βπ) β π) |
50 | | simpllr 773 |
. . . . . . . . . 10
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β π β (SubDRingβπΈ)) |
51 | 21 | ad3antrrr 727 |
. . . . . . . . . . 11
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β π΄ β π΅) |
52 | 36 | unssbd 4180 |
. . . . . . . . . . 11
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β {π΄} β π) |
53 | | snssg 4779 |
. . . . . . . . . . . 12
β’ (π΄ β π΅ β (π΄ β π β {π΄} β π)) |
54 | 53 | biimpar 477 |
. . . . . . . . . . 11
β’ ((π΄ β π΅ β§ {π΄} β π) β π΄ β π) |
55 | 51, 52, 54 | syl2anc 583 |
. . . . . . . . . 10
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β π΄ β π) |
56 | | eqid 2724 |
. . . . . . . . . . . 12
β’
(mulGrpβπΈ) =
(mulGrpβπΈ) |
57 | 56, 2 | mgpbas 20035 |
. . . . . . . . . . 11
β’ π΅ =
(Baseβ(mulGrpβπΈ)) |
58 | 56, 12 | mgpplusg 20033 |
. . . . . . . . . . 11
β’
(.rβπΈ) = (+gβ(mulGrpβπΈ)) |
59 | | fvexd 6896 |
. . . . . . . . . . 11
β’ (π β (SubDRingβπΈ) β (mulGrpβπΈ) β V) |
60 | 2 | sdrgss 20634 |
. . . . . . . . . . 11
β’ (π β (SubDRingβπΈ) β π β π΅) |
61 | 12 | subrgmcl 20476 |
. . . . . . . . . . . 12
β’ ((π β (SubRingβπΈ) β§ π₯ β π β§ π¦ β π) β (π₯(.rβπΈ)π¦) β π) |
62 | 32, 61 | syl3an1 1160 |
. . . . . . . . . . 11
β’ ((π β (SubDRingβπΈ) β§ π₯ β π β§ π¦ β π) β (π₯(.rβπΈ)π¦) β π) |
63 | | eqid 2724 |
. . . . . . . . . . 11
β’
(0gβ(mulGrpβπΈ)) =
(0gβ(mulGrpβπΈ)) |
64 | | eqid 2724 |
. . . . . . . . . . . . . . 15
β’
(1rβπΈ) = (1rβπΈ) |
65 | 56, 64 | ringidval 20078 |
. . . . . . . . . . . . . 14
β’
(1rβπΈ) = (0gβ(mulGrpβπΈ)) |
66 | 65 | eqcomi 2733 |
. . . . . . . . . . . . 13
β’
(0gβ(mulGrpβπΈ)) = (1rβπΈ) |
67 | 66 | subrg1cl 20472 |
. . . . . . . . . . . 12
β’ (π β (SubRingβπΈ) β
(0gβ(mulGrpβπΈ)) β π) |
68 | 32, 67 | syl 17 |
. . . . . . . . . . 11
β’ (π β (SubDRingβπΈ) β
(0gβ(mulGrpβπΈ)) β π) |
69 | 57, 13, 58, 59, 60, 62, 63, 68 | mulgnn0subcl 19004 |
. . . . . . . . . 10
β’ ((π β (SubDRingβπΈ) β§ π β β0 β§ π΄ β π) β (π(.gβ(mulGrpβπΈ))π΄) β π) |
70 | 50, 39, 55, 69 | syl3anc 1368 |
. . . . . . . . 9
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β (π(.gβ(mulGrpβπΈ))π΄) β π) |
71 | 12 | subrgmcl 20476 |
. . . . . . . . 9
β’ ((π β (SubRingβπΈ) β§
((coe1βπΊ)βπ) β π β§ (π(.gβ(mulGrpβπΈ))π΄) β π) β (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄)) β π) |
72 | 35, 49, 70, 71 | syl3anc 1368 |
. . . . . . . 8
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β
(((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄)) β π) |
73 | 72 | fmpttd 7106 |
. . . . . . 7
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β (π β β0 β¦
(((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))):β0βΆπ) |
74 | 30 | mptexd 7217 |
. . . . . . . 8
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β (π β β0 β¦
(((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))) β V) |
75 | 73 | ffund 6711 |
. . . . . . . 8
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β Fun (π β β0 β¦
(((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄)))) |
76 | | fvexd 6896 |
. . . . . . . 8
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β (0gβπΈ) β V) |
77 | 4 | subrgring 20466 |
. . . . . . . . . . . . 13
β’ (πΉ β (SubRingβπΈ) β (πΈ βΎs πΉ) β Ring) |
78 | 10, 77 | syl 17 |
. . . . . . . . . . . 12
β’ (π β (πΈ βΎs πΉ) β Ring) |
79 | 78 | ad2antrr 723 |
. . . . . . . . . . 11
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β (πΈ βΎs πΉ) β Ring) |
80 | 11 | ad2antrr 723 |
. . . . . . . . . . 11
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β πΊ β π) |
81 | | eqid 2724 |
. . . . . . . . . . . 12
β’
(0gβ(πΈ βΎs πΉ)) = (0gβ(πΈ βΎs πΉ)) |
82 | 3, 5, 81 | mptcoe1fsupp 22057 |
. . . . . . . . . . 11
β’ (((πΈ βΎs πΉ) β Ring β§ πΊ β π) β (π β β0 β¦
((coe1βπΊ)βπ)) finSupp (0gβ(πΈ βΎs πΉ))) |
83 | 79, 80, 82 | syl2anc 583 |
. . . . . . . . . 10
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β (π β β0 β¦
((coe1βπΊ)βπ)) finSupp (0gβ(πΈ βΎs πΉ))) |
84 | | ringmnd 20138 |
. . . . . . . . . . . . 13
β’ (πΈ β Ring β πΈ β Mnd) |
85 | 26, 84 | syl 17 |
. . . . . . . . . . . 12
β’ (π β πΈ β Mnd) |
86 | | subrgsubg 20469 |
. . . . . . . . . . . . . 14
β’ (πΉ β (SubRingβπΈ) β πΉ β (SubGrpβπΈ)) |
87 | | subgsubm 19065 |
. . . . . . . . . . . . . 14
β’ (πΉ β (SubGrpβπΈ) β πΉ β (SubMndβπΈ)) |
88 | 10, 86, 87 | 3syl 18 |
. . . . . . . . . . . . 13
β’ (π β πΉ β (SubMndβπΈ)) |
89 | 25 | subm0cl 18726 |
. . . . . . . . . . . . 13
β’ (πΉ β (SubMndβπΈ) β
(0gβπΈ)
β πΉ) |
90 | 88, 89 | syl 17 |
. . . . . . . . . . . 12
β’ (π β (0gβπΈ) β πΉ) |
91 | 4, 2, 25 | ress0g 18685 |
. . . . . . . . . . . 12
β’ ((πΈ β Mnd β§
(0gβπΈ)
β πΉ β§ πΉ β π΅) β (0gβπΈ) = (0gβ(πΈ βΎs πΉ))) |
92 | 85, 90, 44, 91 | syl3anc 1368 |
. . . . . . . . . . 11
β’ (π β (0gβπΈ) = (0gβ(πΈ βΎs πΉ))) |
93 | 92 | ad2antrr 723 |
. . . . . . . . . 10
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β (0gβπΈ) = (0gβ(πΈ βΎs πΉ))) |
94 | 83, 93 | breqtrrd 5166 |
. . . . . . . . 9
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β (π β β0 β¦
((coe1βπΊ)βπ)) finSupp (0gβπΈ)) |
95 | 94 | fsuppimpd 9365 |
. . . . . . . 8
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β ((π β β0 β¦
((coe1βπΊ)βπ)) supp (0gβπΈ)) β Fin) |
96 | | fveq2 6881 |
. . . . . . . . . . 11
β’ (π = π β ((coe1βπΊ)βπ) = ((coe1βπΊ)βπ)) |
97 | | oveq1 7408 |
. . . . . . . . . . 11
β’ (π = π β (π(.gβ(mulGrpβπΈ))π΄) = (π(.gβ(mulGrpβπΈ))π΄)) |
98 | 96, 97 | oveq12d 7419 |
. . . . . . . . . 10
β’ (π = π β (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄)) = (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))) |
99 | 98 | cbvmptv 5251 |
. . . . . . . . 9
β’ (π β β0
β¦ (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))) = (π β β0 β¦
(((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))) |
100 | | nfv 1909 |
. . . . . . . . . 10
β’
β²π((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) |
101 | | eqid 2724 |
. . . . . . . . . 10
β’ (π β β0
β¦ ((coe1βπΊ)βπ)) = (π β β0 β¦
((coe1βπΊ)βπ)) |
102 | 100, 42, 101 | fnmptd 6681 |
. . . . . . . . 9
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β (π β β0 β¦
((coe1βπΊ)βπ)) Fn β0) |
103 | | simplr 766 |
. . . . . . . . . . . . . 14
β’
(((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β§ ((π β β0
β¦ ((coe1βπΊ)βπ))βπ) = (0gβπΈ)) β π β β0) |
104 | | fvexd 6896 |
. . . . . . . . . . . . . 14
β’
(((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β§ ((π β β0
β¦ ((coe1βπΊ)βπ))βπ) = (0gβπΈ)) β ((coe1βπΊ)βπ) β V) |
105 | 101, 96, 103, 104 | fvmptd3 7011 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β§ ((π β β0
β¦ ((coe1βπΊ)βπ))βπ) = (0gβπΈ)) β ((π β β0 β¦
((coe1βπΊ)βπ))βπ) = ((coe1βπΊ)βπ)) |
106 | | simpr 484 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β§ ((π β β0
β¦ ((coe1βπΊ)βπ))βπ) = (0gβπΈ)) β ((π β β0 β¦
((coe1βπΊ)βπ))βπ) = (0gβπΈ)) |
107 | 105, 106 | eqtr3d 2766 |
. . . . . . . . . . . 12
β’
(((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β§ ((π β β0
β¦ ((coe1βπΊ)βπ))βπ) = (0gβπΈ)) β ((coe1βπΊ)βπ) = (0gβπΈ)) |
108 | 107 | oveq1d 7416 |
. . . . . . . . . . 11
β’
(((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β§ ((π β β0
β¦ ((coe1βπΊ)βπ))βπ) = (0gβπΈ)) β (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄)) = ((0gβπΈ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))) |
109 | 26 | ad4antr 729 |
. . . . . . . . . . . 12
β’
(((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β§ ((π β β0
β¦ ((coe1βπΊ)βπ))βπ) = (0gβπΈ)) β πΈ β Ring) |
110 | 56 | ringmgp 20134 |
. . . . . . . . . . . . . . 15
β’ (πΈ β Ring β
(mulGrpβπΈ) β
Mnd) |
111 | 26, 110 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (mulGrpβπΈ) β Mnd) |
112 | 111 | ad4antr 729 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β§ ((π β β0
β¦ ((coe1βπΊ)βπ))βπ) = (0gβπΈ)) β (mulGrpβπΈ) β Mnd) |
113 | 21 | ad4antr 729 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β§ ((π β β0
β¦ ((coe1βπΊ)βπ))βπ) = (0gβπΈ)) β π΄ β π΅) |
114 | 57, 13, 112, 103, 113 | mulgnn0cld 19012 |
. . . . . . . . . . . 12
β’
(((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β§ ((π β β0
β¦ ((coe1βπΊ)βπ))βπ) = (0gβπΈ)) β (π(.gβ(mulGrpβπΈ))π΄) β π΅) |
115 | 2, 12, 25, 109, 114 | ringlzd 20184 |
. . . . . . . . . . 11
β’
(((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β§ ((π β β0
β¦ ((coe1βπΊ)βπ))βπ) = (0gβπΈ)) β ((0gβπΈ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄)) = (0gβπΈ)) |
116 | 108, 115 | eqtrd 2764 |
. . . . . . . . . 10
β’
(((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0) β§ ((π β β0
β¦ ((coe1βπΊ)βπ))βπ) = (0gβπΈ)) β (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄)) = (0gβπΈ)) |
117 | 116 | 3impa 1107 |
. . . . . . . . 9
β’ ((((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β§ π β β0 β§ ((π β β0
β¦ ((coe1βπΊ)βπ))βπ) = (0gβπΈ)) β (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄)) = (0gβπΈ)) |
118 | 99, 30, 76, 102, 117 | suppss3 32418 |
. . . . . . . 8
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β ((π β β0 β¦
(((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))) supp (0gβπΈ)) β ((π β β0 β¦
((coe1βπΊ)βπ)) supp (0gβπΈ))) |
119 | | suppssfifsupp 9374 |
. . . . . . . 8
β’ ((((π β β0
β¦ (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))) β V β§ Fun (π β β0 β¦
(((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))) β§ (0gβπΈ) β V) β§ (((π β β0
β¦ ((coe1βπΊ)βπ)) supp (0gβπΈ)) β Fin β§ ((π β β0
β¦ (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))) supp (0gβπΈ)) β ((π β β0 β¦
((coe1βπΊ)βπ)) supp (0gβπΈ)))) β (π β β0 β¦
(((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))) finSupp (0gβπΈ)) |
120 | 74, 75, 76, 95, 118, 119 | syl32anc 1375 |
. . . . . . 7
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β (π β β0 β¦
(((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄))) finSupp (0gβπΈ)) |
121 | 25, 28, 30, 34, 73, 120 | gsumsubgcl 19830 |
. . . . . 6
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β (πΈ Ξ£g (π β β0
β¦ (((coe1βπΊ)βπ)(.rβπΈ)(π(.gβ(mulGrpβπΈ))π΄)))) β π) |
122 | 24, 121 | eqeltrd 2825 |
. . . . 5
β’ (((π β§ π β (SubDRingβπΈ)) β§ (πΉ βͺ {π΄}) β π) β ((πβπΊ)βπ΄) β π) |
123 | 122 | ex 412 |
. . . 4
β’ ((π β§ π β (SubDRingβπΈ)) β ((πΉ βͺ {π΄}) β π β ((πβπΊ)βπ΄) β π)) |
124 | 123 | ralrimiva 3138 |
. . 3
β’ (π β βπ β (SubDRingβπΈ)((πΉ βͺ {π΄}) β π β ((πβπΊ)βπ΄) β π)) |
125 | | fvex 6894 |
. . . 4
β’ ((πβπΊ)βπ΄) β V |
126 | 125 | elintrab 4954 |
. . 3
β’ (((πβπΊ)βπ΄) β β© {π β (SubDRingβπΈ) β£ (πΉ βͺ {π΄}) β π} β βπ β (SubDRingβπΈ)((πΉ βͺ {π΄}) β π β ((πβπΊ)βπ΄) β π)) |
127 | 124, 126 | sylibr 233 |
. 2
β’ (π β ((πβπΊ)βπ΄) β β© {π β (SubDRingβπΈ) β£ (πΉ βͺ {π΄}) β π}) |
128 | 6 | flddrngd 20589 |
. . 3
β’ (π β πΈ β DivRing) |
129 | 21 | snssd 4804 |
. . . 4
β’ (π β {π΄} β π΅) |
130 | 44, 129 | unssd 4178 |
. . 3
β’ (π β (πΉ βͺ {π΄}) β π΅) |
131 | 2, 128, 130 | fldgenval 32868 |
. 2
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) = β© {π β (SubDRingβπΈ) β£ (πΉ βͺ {π΄}) β π}) |
132 | 127, 131 | eleqtrrd 2828 |
1
β’ (π β ((πβπΊ)βπ΄) β (πΈ fldGen (πΉ βͺ {π΄}))) |