![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1asclunit | Structured version Visualization version GIF version |
Description: A non-zero scalar polynomial over a field πΉ is a unit. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
Ref | Expression |
---|---|
ply1asclunit.1 | β’ π = (Poly1βπΉ) |
ply1asclunit.2 | β’ π΄ = (algScβπ) |
ply1asclunit.3 | β’ π΅ = (BaseβπΉ) |
ply1asclunit.4 | β’ 0 = (0gβπΉ) |
ply1asclunit.5 | β’ (π β πΉ β Field) |
ply1asclunit.6 | β’ (π β π β π΅) |
ply1asclunit.7 | β’ (π β π β 0 ) |
Ref | Expression |
---|---|
ply1asclunit | β’ (π β (π΄βπ) β (Unitβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1asclunit.5 | . . . . 5 β’ (π β πΉ β Field) | |
2 | 1 | fldcrngd 20636 | . . . 4 β’ (π β πΉ β CRing) |
3 | ply1asclunit.1 | . . . . 5 β’ π = (Poly1βπΉ) | |
4 | 3 | ply1assa 22122 | . . . 4 β’ (πΉ β CRing β π β AssAlg) |
5 | ply1asclunit.2 | . . . . 5 β’ π΄ = (algScβπ) | |
6 | eqid 2725 | . . . . 5 β’ (Scalarβπ) = (Scalarβπ) | |
7 | 5, 6 | asclrhm 21822 | . . . 4 β’ (π β AssAlg β π΄ β ((Scalarβπ) RingHom π)) |
8 | 2, 4, 7 | 3syl 18 | . . 3 β’ (π β π΄ β ((Scalarβπ) RingHom π)) |
9 | 3 | ply1sca 22175 | . . . . 5 β’ (πΉ β Field β πΉ = (Scalarβπ)) |
10 | 1, 9 | syl 17 | . . . 4 β’ (π β πΉ = (Scalarβπ)) |
11 | 10 | oveq1d 7428 | . . 3 β’ (π β (πΉ RingHom π) = ((Scalarβπ) RingHom π)) |
12 | 8, 11 | eleqtrrd 2828 | . 2 β’ (π β π΄ β (πΉ RingHom π)) |
13 | 1 | flddrngd 20635 | . . 3 β’ (π β πΉ β DivRing) |
14 | ply1asclunit.6 | . . 3 β’ (π β π β π΅) | |
15 | ply1asclunit.7 | . . 3 β’ (π β π β 0 ) | |
16 | ply1asclunit.3 | . . . . 5 β’ π΅ = (BaseβπΉ) | |
17 | eqid 2725 | . . . . 5 β’ (UnitβπΉ) = (UnitβπΉ) | |
18 | ply1asclunit.4 | . . . . 5 β’ 0 = (0gβπΉ) | |
19 | 16, 17, 18 | drngunit 20628 | . . . 4 β’ (πΉ β DivRing β (π β (UnitβπΉ) β (π β π΅ β§ π β 0 ))) |
20 | 19 | biimpar 476 | . . 3 β’ ((πΉ β DivRing β§ (π β π΅ β§ π β 0 )) β π β (UnitβπΉ)) |
21 | 13, 14, 15, 20 | syl12anc 835 | . 2 β’ (π β π β (UnitβπΉ)) |
22 | elrhmunit 20448 | . 2 β’ ((π΄ β (πΉ RingHom π) β§ π β (UnitβπΉ)) β (π΄βπ) β (Unitβπ)) | |
23 | 12, 21, 22 | syl2anc 582 | 1 β’ (π β (π΄βπ) β (Unitβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 βcfv 6543 (class class class)co 7413 Basecbs 17174 Scalarcsca 17230 0gc0g 17415 CRingccrg 20173 Unitcui 20293 RingHom crh 20407 DivRingcdr 20623 Fieldcfield 20624 AssAlgcasa 21783 algSccascl 21785 Poly1cpl1 22099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7866 df-1st 7987 df-2nd 7988 df-supp 8159 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9381 df-sup 9460 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-fzo 13655 df-seq 13994 df-hash 14317 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17417 df-gsum 17418 df-prds 17423 df-pws 17425 df-mre 17560 df-mrc 17561 df-acs 17563 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-submnd 18735 df-grp 18892 df-minusg 18893 df-sbg 18894 df-mulg 19023 df-subg 19077 df-ghm 19167 df-cntz 19267 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-cring 20175 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-rhm 20410 df-subrng 20482 df-subrg 20507 df-drng 20625 df-field 20626 df-lmod 20744 df-lss 20815 df-assa 21786 df-ascl 21788 df-psr 21841 df-mpl 21843 df-opsr 21845 df-psr1 22102 df-ply1 22104 |
This theorem is referenced by: ply1unit 33313 minplyirredlem 33433 |
Copyright terms: Public domain | W3C validator |