| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2 6574 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶))) |
| 3 | df-fo 6488 | . 2 ⊢ (𝐹:𝐴–onto→𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶)) | |
| 4 | df-fo 6488 | . 2 ⊢ (𝐹:𝐵–onto→𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5620 Fn wfn 6477 –onto→wfo 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6485 df-fo 6488 |
| This theorem is referenced by: foco 6750 f1oeq2 6753 foeq123d 6757 tposfo 8186 brwdom 9459 brwdom2 9465 canthwdom 9471 cfslb2n 10162 0ramcl 16935 ghmcyg 19775 txcmpb 23529 qtoptopon 23589 fsupprnfi 32635 opidon2OLD 37844 fnfocofob 47073 fullthinc 49445 |
| Copyright terms: Public domain | W3C validator |