![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
foeq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2 6225 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
2 | 1 | anbi1d 623 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶))) |
3 | df-fo 6141 | . 2 ⊢ (𝐹:𝐴–onto→𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶)) | |
4 | df-fo 6141 | . 2 ⊢ (𝐹:𝐵–onto→𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶)) | |
5 | 2, 3, 4 | 3bitr4g 306 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ran crn 5356 Fn wfn 6130 –onto→wfo 6133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-cleq 2770 df-fn 6138 df-fo 6141 |
This theorem is referenced by: f1oeq2 6381 foeq123d 6385 tposfo 7661 brwdom 8761 brwdom2 8767 canthwdom 8773 cfslb2n 9425 fodomg 9680 0ramcl 16131 ghmcyg 18683 txcmpb 21856 qtoptopon 21916 opidon2OLD 34279 |
Copyright terms: Public domain | W3C validator |