| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2 6630 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶))) |
| 3 | df-fo 6537 | . 2 ⊢ (𝐹:𝐴–onto→𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶)) | |
| 4 | df-fo 6537 | . 2 ⊢ (𝐹:𝐵–onto→𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5655 Fn wfn 6526 –onto→wfo 6529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-fn 6534 df-fo 6537 |
| This theorem is referenced by: foco 6804 f1oeq2 6807 foeq123d 6811 tposfo 8252 brwdom 9581 brwdom2 9587 canthwdom 9593 cfslb2n 10282 0ramcl 17043 ghmcyg 19877 txcmpb 23582 qtoptopon 23642 fsupprnfi 32669 opidon2OLD 37878 fnfocofob 47108 fullthinc 49336 |
| Copyright terms: Public domain | W3C validator |