MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeq2 Structured version   Visualization version   GIF version

Theorem foeq2 6769
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq2 (𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))

Proof of Theorem foeq2
StepHypRef Expression
1 fneq2 6610 . . 3 (𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
21anbi1d 631 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶)))
3 df-fo 6517 . 2 (𝐹:𝐴onto𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶))
4 df-fo 6517 . 2 (𝐹:𝐵onto𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  ran crn 5639   Fn wfn 6506  ontowfo 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-fn 6514  df-fo 6517
This theorem is referenced by:  foco  6786  f1oeq2  6789  foeq123d  6793  tposfo  8232  brwdom  9520  brwdom2  9526  canthwdom  9532  cfslb2n  10221  0ramcl  16994  ghmcyg  19826  txcmpb  23531  qtoptopon  23591  fsupprnfi  32615  opidon2OLD  37848  fnfocofob  47080  fullthinc  49439
  Copyright terms: Public domain W3C validator