MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposfo Structured version   Visualization version   GIF version

Theorem tposfo 8053
Description: The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfo (𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto𝐶)

Proof of Theorem tposfo
StepHypRef Expression
1 relxp 5606 . . 3 Rel (𝐴 × 𝐵)
2 tposfo2 8049 . . 3 (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐴 × 𝐵)–onto𝐶))
31, 2ax-mp 5 . 2 (𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐴 × 𝐵)–onto𝐶)
4 cnvxp 6057 . . 3 (𝐴 × 𝐵) = (𝐵 × 𝐴)
5 foeq2 6681 . . 3 ((𝐴 × 𝐵) = (𝐵 × 𝐴) → (tpos 𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–onto𝐶))
64, 5ax-mp 5 . 2 (tpos 𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–onto𝐶)
73, 6sylib 217 1 (𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541   × cxp 5586  ccnv 5587  Rel wrel 5593  ontowfo 6428  tpos ctpos 8025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-fo 6436  df-fv 6438  df-tpos 8026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator