Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tposfo | Structured version Visualization version GIF version |
Description: The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposfo | ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5606 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
2 | tposfo2 8049 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)–onto→𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)–onto→𝐶) |
4 | cnvxp 6057 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
5 | foeq2 6681 | . . 3 ⊢ (◡(𝐴 × 𝐵) = (𝐵 × 𝐴) → (tpos 𝐹:◡(𝐴 × 𝐵)–onto→𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (tpos 𝐹:◡(𝐴 × 𝐵)–onto→𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) |
7 | 3, 6 | sylib 217 | 1 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 × cxp 5586 ◡ccnv 5587 Rel wrel 5593 –onto→wfo 6428 tpos ctpos 8025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-fo 6436 df-fv 6438 df-tpos 8026 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |