Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullthinc Structured version   Visualization version   GIF version

Theorem fullthinc 49443
Description: A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
fullthinc.b 𝐵 = (Base‘𝐶)
fullthinc.j 𝐽 = (Hom ‘𝐷)
fullthinc.h 𝐻 = (Hom ‘𝐶)
fullthinc.d (𝜑𝐷 ∈ ThinCat)
fullthinc.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
fullthinc (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem fullthinc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fullthinc.d . 2 (𝜑𝐷 ∈ ThinCat)
2 fullthinc.f . 2 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 fullthinc.b . . . . . 6 𝐵 = (Base‘𝐶)
4 fullthinc.j . . . . . 6 𝐽 = (Hom ‘𝐷)
5 fullthinc.h . . . . . 6 𝐻 = (Hom ‘𝐶)
63, 4, 5isfull2 17882 . . . . 5 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
7 foeq2 6772 . . . . . . . 8 ((𝑥𝐻𝑦) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
8 fo00 6839 . . . . . . . . 9 ((𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
98simprbi 496 . . . . . . . 8 ((𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)
107, 9biimtrdi 253 . . . . . . 7 ((𝑥𝐻𝑦) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
1110com12 32 . . . . . 6 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
12112ralimi 3104 . . . . 5 (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
136, 12simplbiim 504 . . . 4 (𝐹(𝐶 Full 𝐷)𝐺 → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
1413adantl 481 . . 3 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ 𝐹(𝐶 Full 𝐷)𝐺) → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
15 simplr 768 . . . 4 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → 𝐹(𝐶 Func 𝐷)𝐺)
16 imor 853 . . . . . . . 8 (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ↔ (¬ (𝑥𝐻𝑦) = ∅ ∨ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
17 simplr 768 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐹(𝐶 Func 𝐷)𝐺)
18 simprl 770 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
19 simprr 772 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
203, 5, 4, 17, 18, 19funcf2 17837 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
2120adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
22 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ¬ (𝑥𝐻𝑦) = ∅)
2322neqned 2933 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐻𝑦) ≠ ∅)
24 fdomne0 48842 . . . . . . . . . . . . . 14 (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐻𝑦) ≠ ∅) → ((𝑥𝐺𝑦) ≠ ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅))
2521, 23, 24syl2anc 584 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ((𝑥𝐺𝑦) ≠ ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅))
2625simprd 495 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅)
27 simplll 774 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐷 ∈ ThinCat)
28 eqid 2730 . . . . . . . . . . . . . . 15 (Base‘𝐷) = (Base‘𝐷)
2917adantr 480 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐹(𝐶 Func 𝐷)𝐺)
303, 28, 29funcf1 17835 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐹:𝐵⟶(Base‘𝐷))
3118adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝑥𝐵)
3230, 31ffvelcdmd 7060 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝐹𝑥) ∈ (Base‘𝐷))
3319adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝑦𝐵)
3430, 33ffvelcdmd 7060 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝐹𝑦) ∈ (Base‘𝐷))
35 eqidd 2731 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (Base‘𝐷) = (Base‘𝐷))
364a1i 11 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐽 = (Hom ‘𝐷))
3727, 32, 34, 35, 36thincn0eu 49424 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦))))
3826, 37mpbid 232 . . . . . . . . . . 11 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦)))
39 eusn 4697 . . . . . . . . . . 11 (∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓})
4038, 39sylib 218 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓})
4125simpld 494 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦) ≠ ∅)
42 foconst 6790 . . . . . . . . . . . . 13 (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓})
43 feq3 6671 . . . . . . . . . . . . . . 15 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓}))
4443anbi1d 631 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) ↔ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅)))
45 foeq3 6773 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓}))
4644, 45imbi12d 344 . . . . . . . . . . . . 13 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓})))
4742, 46mpbiri 258 . . . . . . . . . . . 12 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
4847exlimiv 1930 . . . . . . . . . . 11 (∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
4948imp 406 . . . . . . . . . 10 ((∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} ∧ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
5040, 21, 41, 49syl12anc 836 . . . . . . . . 9 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
5120adantr 480 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
52 feq3 6671 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅))
5352adantl 481 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅))
5451, 53mpbid 232 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅)
55 f00 6745 . . . . . . . . . . . 12 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅ ↔ ((𝑥𝐺𝑦) = ∅ ∧ (𝑥𝐻𝑦) = ∅))
5654, 55sylib 218 . . . . . . . . . . 11 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑥𝐺𝑦) = ∅ ∧ (𝑥𝐻𝑦) = ∅))
5756simprd 495 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐻𝑦) = ∅)
5856simpld 494 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦) = ∅)
59 simpr 484 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)
608biimpri 228 . . . . . . . . . . . 12 (((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6160, 7imbitrrid 246 . . . . . . . . . . 11 ((𝑥𝐻𝑦) = ∅ → (((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6261imp 406 . . . . . . . . . 10 (((𝑥𝐻𝑦) = ∅ ∧ ((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6357, 58, 59, 62syl12anc 836 . . . . . . . . 9 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6450, 63jaodan 959 . . . . . . . 8 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ (¬ (𝑥𝐻𝑦) = ∅ ∨ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6516, 64sylan2b 594 . . . . . . 7 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6665ex 412 . . . . . 6 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6766ralimdvva 3185 . . . . 5 ((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6867imp 406 . . . 4 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6915, 68, 6sylanbrc 583 . . 3 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → 𝐹(𝐶 Full 𝐷)𝐺)
7014, 69impbida 800 . 2 ((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
711, 2, 70syl2anc 584 1 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2562  wne 2926  wral 3045  c0 4299  {csn 4592   class class class wbr 5110  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238   Func cfunc 17823   Full cful 17873  ThinCatcthinc 49410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ixp 8874  df-func 17827  df-full 17875  df-thinc 49411
This theorem is referenced by:  fullthinc2  49444  thincciso  49446  fulltermc  49504
  Copyright terms: Public domain W3C validator