Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullthinc Structured version   Visualization version   GIF version

Theorem fullthinc 49099
Description: A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
fullthinc.b 𝐵 = (Base‘𝐶)
fullthinc.j 𝐽 = (Hom ‘𝐷)
fullthinc.h 𝐻 = (Hom ‘𝐶)
fullthinc.d (𝜑𝐷 ∈ ThinCat)
fullthinc.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
fullthinc (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem fullthinc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fullthinc.d . 2 (𝜑𝐷 ∈ ThinCat)
2 fullthinc.f . 2 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 fullthinc.b . . . . . 6 𝐵 = (Base‘𝐶)
4 fullthinc.j . . . . . 6 𝐽 = (Hom ‘𝐷)
5 fullthinc.h . . . . . 6 𝐻 = (Hom ‘𝐶)
63, 4, 5isfull2 17958 . . . . 5 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
7 foeq2 6817 . . . . . . . 8 ((𝑥𝐻𝑦) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
8 fo00 6884 . . . . . . . . 9 ((𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
98simprbi 496 . . . . . . . 8 ((𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)
107, 9biimtrdi 253 . . . . . . 7 ((𝑥𝐻𝑦) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
1110com12 32 . . . . . 6 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
12112ralimi 3123 . . . . 5 (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
136, 12simplbiim 504 . . . 4 (𝐹(𝐶 Full 𝐷)𝐺 → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
1413adantl 481 . . 3 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ 𝐹(𝐶 Full 𝐷)𝐺) → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
15 simplr 769 . . . 4 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → 𝐹(𝐶 Func 𝐷)𝐺)
16 imor 854 . . . . . . . 8 (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ↔ (¬ (𝑥𝐻𝑦) = ∅ ∨ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
17 simplr 769 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐹(𝐶 Func 𝐷)𝐺)
18 simprl 771 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
19 simprr 773 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
203, 5, 4, 17, 18, 19funcf2 17913 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
2120adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
22 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ¬ (𝑥𝐻𝑦) = ∅)
2322neqned 2947 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐻𝑦) ≠ ∅)
24 fdomne0 48759 . . . . . . . . . . . . . 14 (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐻𝑦) ≠ ∅) → ((𝑥𝐺𝑦) ≠ ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅))
2521, 23, 24syl2anc 584 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ((𝑥𝐺𝑦) ≠ ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅))
2625simprd 495 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅)
27 simplll 775 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐷 ∈ ThinCat)
28 eqid 2737 . . . . . . . . . . . . . . 15 (Base‘𝐷) = (Base‘𝐷)
2917adantr 480 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐹(𝐶 Func 𝐷)𝐺)
303, 28, 29funcf1 17911 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐹:𝐵⟶(Base‘𝐷))
3118adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝑥𝐵)
3230, 31ffvelcdmd 7105 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝐹𝑥) ∈ (Base‘𝐷))
3319adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝑦𝐵)
3430, 33ffvelcdmd 7105 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝐹𝑦) ∈ (Base‘𝐷))
35 eqidd 2738 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (Base‘𝐷) = (Base‘𝐷))
364a1i 11 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐽 = (Hom ‘𝐷))
3727, 32, 34, 35, 36thincn0eu 49080 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦))))
3826, 37mpbid 232 . . . . . . . . . . 11 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦)))
39 eusn 4730 . . . . . . . . . . 11 (∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓})
4038, 39sylib 218 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓})
4125simpld 494 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦) ≠ ∅)
42 foconst 6835 . . . . . . . . . . . . 13 (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓})
43 feq3 6718 . . . . . . . . . . . . . . 15 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓}))
4443anbi1d 631 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) ↔ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅)))
45 foeq3 6818 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓}))
4644, 45imbi12d 344 . . . . . . . . . . . . 13 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓})))
4742, 46mpbiri 258 . . . . . . . . . . . 12 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
4847exlimiv 1930 . . . . . . . . . . 11 (∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
4948imp 406 . . . . . . . . . 10 ((∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} ∧ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
5040, 21, 41, 49syl12anc 837 . . . . . . . . 9 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
5120adantr 480 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
52 feq3 6718 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅))
5352adantl 481 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅))
5451, 53mpbid 232 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅)
55 f00 6790 . . . . . . . . . . . 12 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅ ↔ ((𝑥𝐺𝑦) = ∅ ∧ (𝑥𝐻𝑦) = ∅))
5654, 55sylib 218 . . . . . . . . . . 11 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑥𝐺𝑦) = ∅ ∧ (𝑥𝐻𝑦) = ∅))
5756simprd 495 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐻𝑦) = ∅)
5856simpld 494 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦) = ∅)
59 simpr 484 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)
608biimpri 228 . . . . . . . . . . . 12 (((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6160, 7imbitrrid 246 . . . . . . . . . . 11 ((𝑥𝐻𝑦) = ∅ → (((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6261imp 406 . . . . . . . . . 10 (((𝑥𝐻𝑦) = ∅ ∧ ((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6357, 58, 59, 62syl12anc 837 . . . . . . . . 9 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6450, 63jaodan 960 . . . . . . . 8 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ (¬ (𝑥𝐻𝑦) = ∅ ∨ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6516, 64sylan2b 594 . . . . . . 7 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6665ex 412 . . . . . 6 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6766ralimdvva 3206 . . . . 5 ((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6867imp 406 . . . 4 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6915, 68, 6sylanbrc 583 . . 3 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → 𝐹(𝐶 Full 𝐷)𝐺)
7014, 69impbida 801 . 2 ((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
711, 2, 70syl2anc 584 1 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wex 1779  wcel 2108  ∃!weu 2568  wne 2940  wral 3061  c0 4333  {csn 4626   class class class wbr 5143  wf 6557  ontowfo 6559  cfv 6561  (class class class)co 7431  Basecbs 17247  Hom chom 17308   Func cfunc 17899   Full cful 17949  ThinCatcthinc 49067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-ixp 8938  df-func 17903  df-full 17951  df-thinc 49068
This theorem is referenced by:  fullthinc2  49100  thincciso  49102  fulltermc  49143
  Copyright terms: Public domain W3C validator