Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullthinc Structured version   Visualization version   GIF version

Theorem fullthinc 49481
Description: A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
fullthinc.b 𝐵 = (Base‘𝐶)
fullthinc.j 𝐽 = (Hom ‘𝐷)
fullthinc.h 𝐻 = (Hom ‘𝐶)
fullthinc.d (𝜑𝐷 ∈ ThinCat)
fullthinc.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
fullthinc (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem fullthinc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fullthinc.d . 2 (𝜑𝐷 ∈ ThinCat)
2 fullthinc.f . 2 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 fullthinc.b . . . . . 6 𝐵 = (Base‘𝐶)
4 fullthinc.j . . . . . 6 𝐽 = (Hom ‘𝐷)
5 fullthinc.h . . . . . 6 𝐻 = (Hom ‘𝐶)
63, 4, 5isfull2 17817 . . . . 5 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
7 foeq2 6732 . . . . . . . 8 ((𝑥𝐻𝑦) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
8 fo00 6799 . . . . . . . . 9 ((𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
98simprbi 496 . . . . . . . 8 ((𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)
107, 9biimtrdi 253 . . . . . . 7 ((𝑥𝐻𝑦) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
1110com12 32 . . . . . 6 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
12112ralimi 3102 . . . . 5 (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
136, 12simplbiim 504 . . . 4 (𝐹(𝐶 Full 𝐷)𝐺 → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
1413adantl 481 . . 3 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ 𝐹(𝐶 Full 𝐷)𝐺) → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
15 simplr 768 . . . 4 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → 𝐹(𝐶 Func 𝐷)𝐺)
16 imor 853 . . . . . . . 8 (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ↔ (¬ (𝑥𝐻𝑦) = ∅ ∨ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
17 simplr 768 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐹(𝐶 Func 𝐷)𝐺)
18 simprl 770 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
19 simprr 772 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
203, 5, 4, 17, 18, 19funcf2 17772 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
2120adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
22 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ¬ (𝑥𝐻𝑦) = ∅)
2322neqned 2935 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐻𝑦) ≠ ∅)
24 fdomne0 48880 . . . . . . . . . . . . . 14 (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐻𝑦) ≠ ∅) → ((𝑥𝐺𝑦) ≠ ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅))
2521, 23, 24syl2anc 584 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ((𝑥𝐺𝑦) ≠ ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅))
2625simprd 495 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅)
27 simplll 774 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐷 ∈ ThinCat)
28 eqid 2731 . . . . . . . . . . . . . . 15 (Base‘𝐷) = (Base‘𝐷)
2917adantr 480 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐹(𝐶 Func 𝐷)𝐺)
303, 28, 29funcf1 17770 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐹:𝐵⟶(Base‘𝐷))
3118adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝑥𝐵)
3230, 31ffvelcdmd 7018 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝐹𝑥) ∈ (Base‘𝐷))
3319adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝑦𝐵)
3430, 33ffvelcdmd 7018 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝐹𝑦) ∈ (Base‘𝐷))
35 eqidd 2732 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (Base‘𝐷) = (Base‘𝐷))
364a1i 11 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐽 = (Hom ‘𝐷))
3727, 32, 34, 35, 36thincn0eu 49462 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦))))
3826, 37mpbid 232 . . . . . . . . . . 11 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦)))
39 eusn 4683 . . . . . . . . . . 11 (∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓})
4038, 39sylib 218 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓})
4125simpld 494 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦) ≠ ∅)
42 foconst 6750 . . . . . . . . . . . . 13 (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓})
43 feq3 6631 . . . . . . . . . . . . . . 15 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓}))
4443anbi1d 631 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) ↔ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅)))
45 foeq3 6733 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓}))
4644, 45imbi12d 344 . . . . . . . . . . . . 13 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓})))
4742, 46mpbiri 258 . . . . . . . . . . . 12 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
4847exlimiv 1931 . . . . . . . . . . 11 (∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
4948imp 406 . . . . . . . . . 10 ((∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} ∧ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
5040, 21, 41, 49syl12anc 836 . . . . . . . . 9 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
5120adantr 480 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
52 feq3 6631 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅))
5352adantl 481 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅))
5451, 53mpbid 232 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅)
55 f00 6705 . . . . . . . . . . . 12 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅ ↔ ((𝑥𝐺𝑦) = ∅ ∧ (𝑥𝐻𝑦) = ∅))
5654, 55sylib 218 . . . . . . . . . . 11 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑥𝐺𝑦) = ∅ ∧ (𝑥𝐻𝑦) = ∅))
5756simprd 495 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐻𝑦) = ∅)
5856simpld 494 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦) = ∅)
59 simpr 484 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)
608biimpri 228 . . . . . . . . . . . 12 (((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6160, 7imbitrrid 246 . . . . . . . . . . 11 ((𝑥𝐻𝑦) = ∅ → (((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6261imp 406 . . . . . . . . . 10 (((𝑥𝐻𝑦) = ∅ ∧ ((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6357, 58, 59, 62syl12anc 836 . . . . . . . . 9 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6450, 63jaodan 959 . . . . . . . 8 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ (¬ (𝑥𝐻𝑦) = ∅ ∨ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6516, 64sylan2b 594 . . . . . . 7 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6665ex 412 . . . . . 6 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6766ralimdvva 3179 . . . . 5 ((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6867imp 406 . . . 4 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6915, 68, 6sylanbrc 583 . . 3 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → 𝐹(𝐶 Full 𝐷)𝐺)
7014, 69impbida 800 . 2 ((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
711, 2, 70syl2anc 584 1 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  wne 2928  wral 3047  c0 4283  {csn 4576   class class class wbr 5091  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  Basecbs 17117  Hom chom 17169   Func cfunc 17758   Full cful 17808  ThinCatcthinc 49448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-func 17762  df-full 17810  df-thinc 49449
This theorem is referenced by:  fullthinc2  49482  thincciso  49484  fulltermc  49542
  Copyright terms: Public domain W3C validator