Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullthinc Structured version   Visualization version   GIF version

Theorem fullthinc 49336
Description: A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
fullthinc.b 𝐵 = (Base‘𝐶)
fullthinc.j 𝐽 = (Hom ‘𝐷)
fullthinc.h 𝐻 = (Hom ‘𝐶)
fullthinc.d (𝜑𝐷 ∈ ThinCat)
fullthinc.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
fullthinc (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem fullthinc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fullthinc.d . 2 (𝜑𝐷 ∈ ThinCat)
2 fullthinc.f . 2 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 fullthinc.b . . . . . 6 𝐵 = (Base‘𝐶)
4 fullthinc.j . . . . . 6 𝐽 = (Hom ‘𝐷)
5 fullthinc.h . . . . . 6 𝐻 = (Hom ‘𝐶)
63, 4, 5isfull2 17926 . . . . 5 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
7 foeq2 6787 . . . . . . . 8 ((𝑥𝐻𝑦) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
8 fo00 6854 . . . . . . . . 9 ((𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
98simprbi 496 . . . . . . . 8 ((𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)
107, 9biimtrdi 253 . . . . . . 7 ((𝑥𝐻𝑦) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
1110com12 32 . . . . . 6 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
12112ralimi 3110 . . . . 5 (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
136, 12simplbiim 504 . . . 4 (𝐹(𝐶 Full 𝐷)𝐺 → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
1413adantl 481 . . 3 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ 𝐹(𝐶 Full 𝐷)𝐺) → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
15 simplr 768 . . . 4 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → 𝐹(𝐶 Func 𝐷)𝐺)
16 imor 853 . . . . . . . 8 (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ↔ (¬ (𝑥𝐻𝑦) = ∅ ∨ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
17 simplr 768 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐹(𝐶 Func 𝐷)𝐺)
18 simprl 770 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
19 simprr 772 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
203, 5, 4, 17, 18, 19funcf2 17881 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
2120adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
22 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ¬ (𝑥𝐻𝑦) = ∅)
2322neqned 2939 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐻𝑦) ≠ ∅)
24 fdomne0 48828 . . . . . . . . . . . . . 14 (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐻𝑦) ≠ ∅) → ((𝑥𝐺𝑦) ≠ ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅))
2521, 23, 24syl2anc 584 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ((𝑥𝐺𝑦) ≠ ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅))
2625simprd 495 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅)
27 simplll 774 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐷 ∈ ThinCat)
28 eqid 2735 . . . . . . . . . . . . . . 15 (Base‘𝐷) = (Base‘𝐷)
2917adantr 480 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐹(𝐶 Func 𝐷)𝐺)
303, 28, 29funcf1 17879 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐹:𝐵⟶(Base‘𝐷))
3118adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝑥𝐵)
3230, 31ffvelcdmd 7075 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝐹𝑥) ∈ (Base‘𝐷))
3319adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝑦𝐵)
3430, 33ffvelcdmd 7075 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝐹𝑦) ∈ (Base‘𝐷))
35 eqidd 2736 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (Base‘𝐷) = (Base‘𝐷))
364a1i 11 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐽 = (Hom ‘𝐷))
3727, 32, 34, 35, 36thincn0eu 49317 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦))))
3826, 37mpbid 232 . . . . . . . . . . 11 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦)))
39 eusn 4706 . . . . . . . . . . 11 (∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓})
4038, 39sylib 218 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓})
4125simpld 494 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦) ≠ ∅)
42 foconst 6805 . . . . . . . . . . . . 13 (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓})
43 feq3 6688 . . . . . . . . . . . . . . 15 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓}))
4443anbi1d 631 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) ↔ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅)))
45 foeq3 6788 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓}))
4644, 45imbi12d 344 . . . . . . . . . . . . 13 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓})))
4742, 46mpbiri 258 . . . . . . . . . . . 12 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
4847exlimiv 1930 . . . . . . . . . . 11 (∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
4948imp 406 . . . . . . . . . 10 ((∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} ∧ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
5040, 21, 41, 49syl12anc 836 . . . . . . . . 9 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
5120adantr 480 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
52 feq3 6688 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅))
5352adantl 481 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅))
5451, 53mpbid 232 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅)
55 f00 6760 . . . . . . . . . . . 12 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅ ↔ ((𝑥𝐺𝑦) = ∅ ∧ (𝑥𝐻𝑦) = ∅))
5654, 55sylib 218 . . . . . . . . . . 11 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑥𝐺𝑦) = ∅ ∧ (𝑥𝐻𝑦) = ∅))
5756simprd 495 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐻𝑦) = ∅)
5856simpld 494 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦) = ∅)
59 simpr 484 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)
608biimpri 228 . . . . . . . . . . . 12 (((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6160, 7imbitrrid 246 . . . . . . . . . . 11 ((𝑥𝐻𝑦) = ∅ → (((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6261imp 406 . . . . . . . . . 10 (((𝑥𝐻𝑦) = ∅ ∧ ((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6357, 58, 59, 62syl12anc 836 . . . . . . . . 9 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6450, 63jaodan 959 . . . . . . . 8 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ (¬ (𝑥𝐻𝑦) = ∅ ∨ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6516, 64sylan2b 594 . . . . . . 7 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6665ex 412 . . . . . 6 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6766ralimdvva 3191 . . . . 5 ((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6867imp 406 . . . 4 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6915, 68, 6sylanbrc 583 . . 3 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → 𝐹(𝐶 Full 𝐷)𝐺)
7014, 69impbida 800 . 2 ((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
711, 2, 70syl2anc 584 1 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2108  ∃!weu 2567  wne 2932  wral 3051  c0 4308  {csn 4601   class class class wbr 5119  wf 6527  ontowfo 6529  cfv 6531  (class class class)co 7405  Basecbs 17228  Hom chom 17282   Func cfunc 17867   Full cful 17917  ThinCatcthinc 49303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-map 8842  df-ixp 8912  df-func 17871  df-full 17919  df-thinc 49304
This theorem is referenced by:  fullthinc2  49337  thincciso  49339  fulltermc  49396
  Copyright terms: Public domain W3C validator