Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullthinc Structured version   Visualization version   GIF version

Theorem fullthinc 49575
Description: A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
fullthinc.b 𝐵 = (Base‘𝐶)
fullthinc.j 𝐽 = (Hom ‘𝐷)
fullthinc.h 𝐻 = (Hom ‘𝐶)
fullthinc.d (𝜑𝐷 ∈ ThinCat)
fullthinc.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
fullthinc (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem fullthinc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fullthinc.d . 2 (𝜑𝐷 ∈ ThinCat)
2 fullthinc.f . 2 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 fullthinc.b . . . . . 6 𝐵 = (Base‘𝐶)
4 fullthinc.j . . . . . 6 𝐽 = (Hom ‘𝐷)
5 fullthinc.h . . . . . 6 𝐻 = (Hom ‘𝐶)
63, 4, 5isfull2 17822 . . . . 5 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
7 foeq2 6737 . . . . . . . 8 ((𝑥𝐻𝑦) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
8 fo00 6804 . . . . . . . . 9 ((𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
98simprbi 496 . . . . . . . 8 ((𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)
107, 9biimtrdi 253 . . . . . . 7 ((𝑥𝐻𝑦) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
1110com12 32 . . . . . 6 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
12112ralimi 3103 . . . . 5 (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
136, 12simplbiim 504 . . . 4 (𝐹(𝐶 Full 𝐷)𝐺 → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
1413adantl 481 . . 3 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ 𝐹(𝐶 Full 𝐷)𝐺) → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
15 simplr 768 . . . 4 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → 𝐹(𝐶 Func 𝐷)𝐺)
16 imor 853 . . . . . . . 8 (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ↔ (¬ (𝑥𝐻𝑦) = ∅ ∨ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
17 simplr 768 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐹(𝐶 Func 𝐷)𝐺)
18 simprl 770 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
19 simprr 772 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
203, 5, 4, 17, 18, 19funcf2 17777 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
2120adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
22 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ¬ (𝑥𝐻𝑦) = ∅)
2322neqned 2936 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐻𝑦) ≠ ∅)
24 fdomne0 48974 . . . . . . . . . . . . . 14 (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐻𝑦) ≠ ∅) → ((𝑥𝐺𝑦) ≠ ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅))
2521, 23, 24syl2anc 584 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ((𝑥𝐺𝑦) ≠ ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅))
2625simprd 495 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅)
27 simplll 774 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐷 ∈ ThinCat)
28 eqid 2733 . . . . . . . . . . . . . . 15 (Base‘𝐷) = (Base‘𝐷)
2917adantr 480 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐹(𝐶 Func 𝐷)𝐺)
303, 28, 29funcf1 17775 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐹:𝐵⟶(Base‘𝐷))
3118adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝑥𝐵)
3230, 31ffvelcdmd 7024 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝐹𝑥) ∈ (Base‘𝐷))
3319adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝑦𝐵)
3430, 33ffvelcdmd 7024 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝐹𝑦) ∈ (Base‘𝐷))
35 eqidd 2734 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (Base‘𝐷) = (Base‘𝐷))
364a1i 11 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → 𝐽 = (Hom ‘𝐷))
3727, 32, 34, 35, 36thincn0eu 49556 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (((𝐹𝑥)𝐽(𝐹𝑦)) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦))))
3826, 37mpbid 232 . . . . . . . . . . 11 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦)))
39 eusn 4682 . . . . . . . . . . 11 (∃!𝑓 𝑓 ∈ ((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓})
4038, 39sylib 218 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → ∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓})
4125simpld 494 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦) ≠ ∅)
42 foconst 6755 . . . . . . . . . . . . 13 (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓})
43 feq3 6636 . . . . . . . . . . . . . . 15 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓}))
4443anbi1d 631 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) ↔ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅)))
45 foeq3 6738 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓}))
4644, 45imbi12d 344 . . . . . . . . . . . . 13 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → ((((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶{𝑓} ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→{𝑓})))
4742, 46mpbiri 258 . . . . . . . . . . . 12 (((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
4847exlimiv 1931 . . . . . . . . . . 11 (∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} → (((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
4948imp 406 . . . . . . . . . 10 ((∃𝑓((𝐹𝑥)𝐽(𝐹𝑦)) = {𝑓} ∧ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦) ≠ ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
5040, 21, 41, 49syl12anc 836 . . . . . . . . 9 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝐻𝑦) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
5120adantr 480 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
52 feq3 6636 . . . . . . . . . . . . . 14 (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅))
5352adantl 481 . . . . . . . . . . . . 13 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅))
5451, 53mpbid 232 . . . . . . . . . . . 12 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅)
55 f00 6710 . . . . . . . . . . . 12 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶∅ ↔ ((𝑥𝐺𝑦) = ∅ ∧ (𝑥𝐻𝑦) = ∅))
5654, 55sylib 218 . . . . . . . . . . 11 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑥𝐺𝑦) = ∅ ∧ (𝑥𝐻𝑦) = ∅))
5756simprd 495 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐻𝑦) = ∅)
5856simpld 494 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦) = ∅)
59 simpr 484 . . . . . . . . . 10 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)
608biimpri 228 . . . . . . . . . . . 12 (((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):∅–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6160, 7imbitrrid 246 . . . . . . . . . . 11 ((𝑥𝐻𝑦) = ∅ → (((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6261imp 406 . . . . . . . . . 10 (((𝑥𝐻𝑦) = ∅ ∧ ((𝑥𝐺𝑦) = ∅ ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6357, 58, 59, 62syl12anc 836 . . . . . . . . 9 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6450, 63jaodan 959 . . . . . . . 8 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ (¬ (𝑥𝐻𝑦) = ∅ ∨ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6516, 64sylan2b 594 . . . . . . 7 ((((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) ∧ ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6665ex 412 . . . . . 6 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6766ralimdvva 3180 . . . . 5 ((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
6867imp 406 . . . 4 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)))
6915, 68, 6sylanbrc 583 . . 3 (((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → 𝐹(𝐶 Full 𝐷)𝐺)
7014, 69impbida 800 . 2 ((𝐷 ∈ ThinCat ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
711, 2, 70syl2anc 584 1 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2113  ∃!weu 2565  wne 2929  wral 3048  c0 4282  {csn 4575   class class class wbr 5093  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7352  Basecbs 17122  Hom chom 17174   Func cfunc 17763   Full cful 17813  ThinCatcthinc 49542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ixp 8828  df-func 17767  df-full 17815  df-thinc 49543
This theorem is referenced by:  fullthinc2  49576  thincciso  49578  fulltermc  49636
  Copyright terms: Public domain W3C validator