MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmcyg Structured version   Visualization version   GIF version

Theorem ghmcyg 19542
Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
ghmcyg.1 𝐶 = (Base‘𝐻)
Assertion
Ref Expression
ghmcyg ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))

Proof of Theorem ghmcyg
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2736 . . . 4 (.g𝐺) = (.g𝐺)
31, 2iscyg 19524 . . 3 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵))
43simprbi 498 . 2 (𝐺 ∈ CycGrp → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)
5 ghmcyg.1 . . . 4 𝐶 = (Base‘𝐻)
6 eqid 2736 . . . 4 (.g𝐻) = (.g𝐻)
7 ghmgrp2 18882 . . . . 5 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
87ad2antrr 724 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ Grp)
9 fof 6718 . . . . . 6 (𝐹:𝐵onto𝐶𝐹:𝐵𝐶)
109ad2antlr 725 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵𝐶)
11 simprl 769 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝑥𝐵)
1210, 11ffvelcdmd 6994 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → (𝐹𝑥) ∈ 𝐶)
13 simplr 767 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵onto𝐶)
14 foeq2 6715 . . . . . . . . 9 (ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵 → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝐹:𝐵onto𝐶))
1514ad2antll 727 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝐹:𝐵onto𝐶))
1613, 15mpbird 257 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶)
17 foelrn 7014 . . . . . . 7 ((𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝑦𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧))
1816, 17sylan 581 . . . . . 6 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧))
19 ovex 7340 . . . . . . . 8 (𝑚(.g𝐺)𝑥) ∈ V
2019rgenw 3066 . . . . . . 7 𝑚 ∈ ℤ (𝑚(.g𝐺)𝑥) ∈ V
21 oveq1 7314 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛(.g𝐺)𝑥) = (𝑚(.g𝐺)𝑥))
2221cbvmptv 5194 . . . . . . . 8 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = (𝑚 ∈ ℤ ↦ (𝑚(.g𝐺)𝑥))
23 fveq2 6804 . . . . . . . . 9 (𝑧 = (𝑚(.g𝐺)𝑥) → (𝐹𝑧) = (𝐹‘(𝑚(.g𝐺)𝑥)))
2423eqeq2d 2747 . . . . . . . 8 (𝑧 = (𝑚(.g𝐺)𝑥) → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥))))
2522, 24rexrnmptw 7003 . . . . . . 7 (∀𝑚 ∈ ℤ (𝑚(.g𝐺)𝑥) ∈ V → (∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥))))
2620, 25ax-mp 5 . . . . . 6 (∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)))
2718, 26sylib 217 . . . . 5 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)))
28 simp-4l 781 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
29 simpr 486 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
3011ad2antrr 724 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝑥𝐵)
311, 2, 6ghmmulg 18891 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑚 ∈ ℤ ∧ 𝑥𝐵) → (𝐹‘(𝑚(.g𝐺)𝑥)) = (𝑚(.g𝐻)(𝐹𝑥)))
3228, 29, 30, 31syl3anc 1371 . . . . . . 7 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → (𝐹‘(𝑚(.g𝐺)𝑥)) = (𝑚(.g𝐻)(𝐹𝑥)))
3332eqeq2d 2747 . . . . . 6 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)) ↔ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥))))
3433rexbidva 3170 . . . . 5 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → (∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥))))
3527, 34mpbid 231 . . . 4 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥)))
365, 6, 8, 12, 35iscygd 19532 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ CycGrp)
3736rexlimdvaa 3150 . 2 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵𝐻 ∈ CycGrp))
384, 37syl5 34 1 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wral 3062  wrex 3071  Vcvv 3437  cmpt 5164  ran crn 5601  wf 6454  ontowfo 6456  cfv 6458  (class class class)co 7307  cz 12365  Basecbs 16957  Grpcgrp 18622  .gcmg 18745   GrpHom cghm 18876  CycGrpccyg 19522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-n0 12280  df-z 12366  df-uz 12629  df-fz 13286  df-seq 13768  df-0g 17197  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-mhm 18475  df-grp 18625  df-minusg 18626  df-mulg 18746  df-ghm 18877  df-cyg 19523
This theorem is referenced by:  giccyg  19546
  Copyright terms: Public domain W3C validator