MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmcyg Structured version   Visualization version   GIF version

Theorem ghmcyg 19816
Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
ghmcyg.1 𝐶 = (Base‘𝐻)
Assertion
Ref Expression
ghmcyg ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))

Proof of Theorem ghmcyg
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2733 . . . 4 (.g𝐺) = (.g𝐺)
31, 2iscyg 19799 . . 3 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵))
43simprbi 496 . 2 (𝐺 ∈ CycGrp → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)
5 ghmcyg.1 . . . 4 𝐶 = (Base‘𝐻)
6 eqid 2733 . . . 4 (.g𝐻) = (.g𝐻)
7 ghmgrp2 19139 . . . . 5 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
87ad2antrr 726 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ Grp)
9 fof 6743 . . . . . 6 (𝐹:𝐵onto𝐶𝐹:𝐵𝐶)
109ad2antlr 727 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵𝐶)
11 simprl 770 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝑥𝐵)
1210, 11ffvelcdmd 7027 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → (𝐹𝑥) ∈ 𝐶)
13 simplr 768 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵onto𝐶)
14 foeq2 6740 . . . . . . . . 9 (ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵 → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝐹:𝐵onto𝐶))
1514ad2antll 729 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝐹:𝐵onto𝐶))
1613, 15mpbird 257 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶)
17 foelrn 7049 . . . . . . 7 ((𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝑦𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧))
1816, 17sylan 580 . . . . . 6 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧))
19 ovex 7388 . . . . . . . 8 (𝑚(.g𝐺)𝑥) ∈ V
2019rgenw 3052 . . . . . . 7 𝑚 ∈ ℤ (𝑚(.g𝐺)𝑥) ∈ V
21 oveq1 7362 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛(.g𝐺)𝑥) = (𝑚(.g𝐺)𝑥))
2221cbvmptv 5199 . . . . . . . 8 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = (𝑚 ∈ ℤ ↦ (𝑚(.g𝐺)𝑥))
23 fveq2 6831 . . . . . . . . 9 (𝑧 = (𝑚(.g𝐺)𝑥) → (𝐹𝑧) = (𝐹‘(𝑚(.g𝐺)𝑥)))
2423eqeq2d 2744 . . . . . . . 8 (𝑧 = (𝑚(.g𝐺)𝑥) → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥))))
2522, 24rexrnmptw 7037 . . . . . . 7 (∀𝑚 ∈ ℤ (𝑚(.g𝐺)𝑥) ∈ V → (∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥))))
2620, 25ax-mp 5 . . . . . 6 (∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)))
2718, 26sylib 218 . . . . 5 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)))
28 simp-4l 782 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
29 simpr 484 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
3011ad2antrr 726 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝑥𝐵)
311, 2, 6ghmmulg 19148 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑚 ∈ ℤ ∧ 𝑥𝐵) → (𝐹‘(𝑚(.g𝐺)𝑥)) = (𝑚(.g𝐻)(𝐹𝑥)))
3228, 29, 30, 31syl3anc 1373 . . . . . . 7 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → (𝐹‘(𝑚(.g𝐺)𝑥)) = (𝑚(.g𝐻)(𝐹𝑥)))
3332eqeq2d 2744 . . . . . 6 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)) ↔ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥))))
3433rexbidva 3155 . . . . 5 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → (∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥))))
3527, 34mpbid 232 . . . 4 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥)))
365, 6, 8, 12, 35iscygd 19807 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ CycGrp)
3736rexlimdvaa 3135 . 2 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵𝐻 ∈ CycGrp))
384, 37syl5 34 1 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  cmpt 5176  ran crn 5622  wf 6485  ontowfo 6487  cfv 6489  (class class class)co 7355  cz 12479  Basecbs 17127  Grpcgrp 18854  .gcmg 18988   GrpHom cghm 19132  CycGrpccyg 19797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-seq 13916  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-grp 18857  df-minusg 18858  df-mulg 18989  df-ghm 19133  df-cyg 19798
This theorem is referenced by:  giccyg  19820
  Copyright terms: Public domain W3C validator