MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmcyg Structured version   Visualization version   GIF version

Theorem ghmcyg 19803
Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
ghmcyg.1 𝐶 = (Base‘𝐻)
Assertion
Ref Expression
ghmcyg ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))

Proof of Theorem ghmcyg
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2731 . . . 4 (.g𝐺) = (.g𝐺)
31, 2iscyg 19786 . . 3 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵))
43simprbi 496 . 2 (𝐺 ∈ CycGrp → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)
5 ghmcyg.1 . . . 4 𝐶 = (Base‘𝐻)
6 eqid 2731 . . . 4 (.g𝐻) = (.g𝐻)
7 ghmgrp2 19126 . . . . 5 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
87ad2antrr 726 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ Grp)
9 fof 6730 . . . . . 6 (𝐹:𝐵onto𝐶𝐹:𝐵𝐶)
109ad2antlr 727 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵𝐶)
11 simprl 770 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝑥𝐵)
1210, 11ffvelcdmd 7013 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → (𝐹𝑥) ∈ 𝐶)
13 simplr 768 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵onto𝐶)
14 foeq2 6727 . . . . . . . . 9 (ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵 → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝐹:𝐵onto𝐶))
1514ad2antll 729 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝐹:𝐵onto𝐶))
1613, 15mpbird 257 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶)
17 foelrn 7035 . . . . . . 7 ((𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝑦𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧))
1816, 17sylan 580 . . . . . 6 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧))
19 ovex 7374 . . . . . . . 8 (𝑚(.g𝐺)𝑥) ∈ V
2019rgenw 3051 . . . . . . 7 𝑚 ∈ ℤ (𝑚(.g𝐺)𝑥) ∈ V
21 oveq1 7348 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛(.g𝐺)𝑥) = (𝑚(.g𝐺)𝑥))
2221cbvmptv 5190 . . . . . . . 8 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = (𝑚 ∈ ℤ ↦ (𝑚(.g𝐺)𝑥))
23 fveq2 6817 . . . . . . . . 9 (𝑧 = (𝑚(.g𝐺)𝑥) → (𝐹𝑧) = (𝐹‘(𝑚(.g𝐺)𝑥)))
2423eqeq2d 2742 . . . . . . . 8 (𝑧 = (𝑚(.g𝐺)𝑥) → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥))))
2522, 24rexrnmptw 7023 . . . . . . 7 (∀𝑚 ∈ ℤ (𝑚(.g𝐺)𝑥) ∈ V → (∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥))))
2620, 25ax-mp 5 . . . . . 6 (∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)))
2718, 26sylib 218 . . . . 5 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)))
28 simp-4l 782 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
29 simpr 484 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
3011ad2antrr 726 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝑥𝐵)
311, 2, 6ghmmulg 19135 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑚 ∈ ℤ ∧ 𝑥𝐵) → (𝐹‘(𝑚(.g𝐺)𝑥)) = (𝑚(.g𝐻)(𝐹𝑥)))
3228, 29, 30, 31syl3anc 1373 . . . . . . 7 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → (𝐹‘(𝑚(.g𝐺)𝑥)) = (𝑚(.g𝐻)(𝐹𝑥)))
3332eqeq2d 2742 . . . . . 6 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)) ↔ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥))))
3433rexbidva 3154 . . . . 5 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → (∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥))))
3527, 34mpbid 232 . . . 4 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥)))
365, 6, 8, 12, 35iscygd 19794 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ CycGrp)
3736rexlimdvaa 3134 . 2 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵𝐻 ∈ CycGrp))
384, 37syl5 34 1 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cmpt 5167  ran crn 5612  wf 6472  ontowfo 6474  cfv 6476  (class class class)co 7341  cz 12463  Basecbs 17115  Grpcgrp 18841  .gcmg 18975   GrpHom cghm 19119  CycGrpccyg 19784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-seq 13904  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-grp 18844  df-minusg 18845  df-mulg 18976  df-ghm 19120  df-cyg 19785
This theorem is referenced by:  giccyg  19807
  Copyright terms: Public domain W3C validator