MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmcyg Structured version   Visualization version   GIF version

Theorem ghmcyg 19764
Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
ghmcyg.1 𝐶 = (Base‘𝐻)
Assertion
Ref Expression
ghmcyg ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))

Proof of Theorem ghmcyg
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2733 . . . 4 (.g𝐺) = (.g𝐺)
31, 2iscyg 19747 . . 3 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵))
43simprbi 498 . 2 (𝐺 ∈ CycGrp → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)
5 ghmcyg.1 . . . 4 𝐶 = (Base‘𝐻)
6 eqid 2733 . . . 4 (.g𝐻) = (.g𝐻)
7 ghmgrp2 19095 . . . . 5 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
87ad2antrr 725 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ Grp)
9 fof 6806 . . . . . 6 (𝐹:𝐵onto𝐶𝐹:𝐵𝐶)
109ad2antlr 726 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵𝐶)
11 simprl 770 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝑥𝐵)
1210, 11ffvelcdmd 7088 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → (𝐹𝑥) ∈ 𝐶)
13 simplr 768 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵onto𝐶)
14 foeq2 6803 . . . . . . . . 9 (ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵 → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝐹:𝐵onto𝐶))
1514ad2antll 728 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝐹:𝐵onto𝐶))
1613, 15mpbird 257 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶)
17 foelrn 7108 . . . . . . 7 ((𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝑦𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧))
1816, 17sylan 581 . . . . . 6 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧))
19 ovex 7442 . . . . . . . 8 (𝑚(.g𝐺)𝑥) ∈ V
2019rgenw 3066 . . . . . . 7 𝑚 ∈ ℤ (𝑚(.g𝐺)𝑥) ∈ V
21 oveq1 7416 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛(.g𝐺)𝑥) = (𝑚(.g𝐺)𝑥))
2221cbvmptv 5262 . . . . . . . 8 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = (𝑚 ∈ ℤ ↦ (𝑚(.g𝐺)𝑥))
23 fveq2 6892 . . . . . . . . 9 (𝑧 = (𝑚(.g𝐺)𝑥) → (𝐹𝑧) = (𝐹‘(𝑚(.g𝐺)𝑥)))
2423eqeq2d 2744 . . . . . . . 8 (𝑧 = (𝑚(.g𝐺)𝑥) → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥))))
2522, 24rexrnmptw 7097 . . . . . . 7 (∀𝑚 ∈ ℤ (𝑚(.g𝐺)𝑥) ∈ V → (∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥))))
2620, 25ax-mp 5 . . . . . 6 (∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)))
2718, 26sylib 217 . . . . 5 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)))
28 simp-4l 782 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
29 simpr 486 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
3011ad2antrr 725 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝑥𝐵)
311, 2, 6ghmmulg 19104 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑚 ∈ ℤ ∧ 𝑥𝐵) → (𝐹‘(𝑚(.g𝐺)𝑥)) = (𝑚(.g𝐻)(𝐹𝑥)))
3228, 29, 30, 31syl3anc 1372 . . . . . . 7 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → (𝐹‘(𝑚(.g𝐺)𝑥)) = (𝑚(.g𝐻)(𝐹𝑥)))
3332eqeq2d 2744 . . . . . 6 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)) ↔ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥))))
3433rexbidva 3177 . . . . 5 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → (∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥))))
3527, 34mpbid 231 . . . 4 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥)))
365, 6, 8, 12, 35iscygd 19755 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ CycGrp)
3736rexlimdvaa 3157 . 2 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵𝐻 ∈ CycGrp))
384, 37syl5 34 1 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  cmpt 5232  ran crn 5678  wf 6540  ontowfo 6542  cfv 6544  (class class class)co 7409  cz 12558  Basecbs 17144  Grpcgrp 18819  .gcmg 18950   GrpHom cghm 19089  CycGrpccyg 19745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-seq 13967  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-mhm 18671  df-grp 18822  df-minusg 18823  df-mulg 18951  df-ghm 19090  df-cyg 19746
This theorem is referenced by:  giccyg  19768
  Copyright terms: Public domain W3C validator