Step | Hyp | Ref
| Expression |
1 | | cygctb.1 |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
2 | | eqid 2736 |
. . . 4
⊢
(.g‘𝐺) = (.g‘𝐺) |
3 | 1, 2 | iscyg 19524 |
. . 3
⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) |
4 | 3 | simprbi 498 |
. 2
⊢ (𝐺 ∈ CycGrp →
∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵) |
5 | | ghmcyg.1 |
. . . 4
⊢ 𝐶 = (Base‘𝐻) |
6 | | eqid 2736 |
. . . 4
⊢
(.g‘𝐻) = (.g‘𝐻) |
7 | | ghmgrp2 18882 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp) |
8 | 7 | ad2antrr 724 |
. . . 4
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ Grp) |
9 | | fof 6718 |
. . . . . 6
⊢ (𝐹:𝐵–onto→𝐶 → 𝐹:𝐵⟶𝐶) |
10 | 9 | ad2antlr 725 |
. . . . 5
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵⟶𝐶) |
11 | | simprl 769 |
. . . . 5
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝑥 ∈ 𝐵) |
12 | 10, 11 | ffvelcdmd 6994 |
. . . 4
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → (𝐹‘𝑥) ∈ 𝐶) |
13 | | simplr 767 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵–onto→𝐶) |
14 | | foeq2 6715 |
. . . . . . . . 9
⊢ (ran
(𝑛 ∈ ℤ ↦
(𝑛(.g‘𝐺)𝑥)) = 𝐵 → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) |
15 | 14 | ad2antll 727 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) |
16 | 13, 15 | mpbird 257 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))–onto→𝐶) |
17 | | foelrn 7014 |
. . . . . . 7
⊢ ((𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))𝑦 = (𝐹‘𝑧)) |
18 | 16, 17 | sylan 581 |
. . . . . 6
⊢ ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))𝑦 = (𝐹‘𝑧)) |
19 | | ovex 7340 |
. . . . . . . 8
⊢ (𝑚(.g‘𝐺)𝑥) ∈ V |
20 | 19 | rgenw 3066 |
. . . . . . 7
⊢
∀𝑚 ∈
ℤ (𝑚(.g‘𝐺)𝑥) ∈ V |
21 | | oveq1 7314 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑛(.g‘𝐺)𝑥) = (𝑚(.g‘𝐺)𝑥)) |
22 | 21 | cbvmptv 5194 |
. . . . . . . 8
⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = (𝑚 ∈ ℤ ↦ (𝑚(.g‘𝐺)𝑥)) |
23 | | fveq2 6804 |
. . . . . . . . 9
⊢ (𝑧 = (𝑚(.g‘𝐺)𝑥) → (𝐹‘𝑧) = (𝐹‘(𝑚(.g‘𝐺)𝑥))) |
24 | 23 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝑧 = (𝑚(.g‘𝐺)𝑥) → (𝑦 = (𝐹‘𝑧) ↔ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥)))) |
25 | 22, 24 | rexrnmptw 7003 |
. . . . . . 7
⊢
(∀𝑚 ∈
ℤ (𝑚(.g‘𝐺)𝑥) ∈ V → (∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))𝑦 = (𝐹‘𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥)))) |
26 | 20, 25 | ax-mp 5 |
. . . . . 6
⊢
(∃𝑧 ∈ ran
(𝑛 ∈ ℤ ↦
(𝑛(.g‘𝐺)𝑥))𝑦 = (𝐹‘𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥))) |
27 | 18, 26 | sylib 217 |
. . . . 5
⊢ ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥))) |
28 | | simp-4l 781 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
29 | | simpr 486 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) |
30 | 11 | ad2antrr 724 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → 𝑥 ∈ 𝐵) |
31 | 1, 2, 6 | ghmmulg 18891 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑚 ∈ ℤ ∧ 𝑥 ∈ 𝐵) → (𝐹‘(𝑚(.g‘𝐺)𝑥)) = (𝑚(.g‘𝐻)(𝐹‘𝑥))) |
32 | 28, 29, 30, 31 | syl3anc 1371 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → (𝐹‘(𝑚(.g‘𝐺)𝑥)) = (𝑚(.g‘𝐻)(𝐹‘𝑥))) |
33 | 32 | eqeq2d 2747 |
. . . . . 6
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥)) ↔ 𝑦 = (𝑚(.g‘𝐻)(𝐹‘𝑥)))) |
34 | 33 | rexbidva 3170 |
. . . . 5
⊢ ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) → (∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥)) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g‘𝐻)(𝐹‘𝑥)))) |
35 | 27, 34 | mpbid 231 |
. . . 4
⊢ ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g‘𝐻)(𝐹‘𝑥))) |
36 | 5, 6, 8, 12, 35 | iscygd 19532 |
. . 3
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ CycGrp) |
37 | 36 | rexlimdvaa 3150 |
. 2
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) → (∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵 → 𝐻 ∈ CycGrp)) |
38 | 4, 37 | syl5 34 |
1
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp)) |