| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cygctb.1 | . . . 4
⊢ 𝐵 = (Base‘𝐺) | 
| 2 |  | eqid 2737 | . . . 4
⊢
(.g‘𝐺) = (.g‘𝐺) | 
| 3 | 1, 2 | iscyg 19897 | . . 3
⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) | 
| 4 | 3 | simprbi 496 | . 2
⊢ (𝐺 ∈ CycGrp →
∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵) | 
| 5 |  | ghmcyg.1 | . . . 4
⊢ 𝐶 = (Base‘𝐻) | 
| 6 |  | eqid 2737 | . . . 4
⊢
(.g‘𝐻) = (.g‘𝐻) | 
| 7 |  | ghmgrp2 19237 | . . . . 5
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp) | 
| 8 | 7 | ad2antrr 726 | . . . 4
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ Grp) | 
| 9 |  | fof 6820 | . . . . . 6
⊢ (𝐹:𝐵–onto→𝐶 → 𝐹:𝐵⟶𝐶) | 
| 10 | 9 | ad2antlr 727 | . . . . 5
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵⟶𝐶) | 
| 11 |  | simprl 771 | . . . . 5
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝑥 ∈ 𝐵) | 
| 12 | 10, 11 | ffvelcdmd 7105 | . . . 4
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → (𝐹‘𝑥) ∈ 𝐶) | 
| 13 |  | simplr 769 | . . . . . . . 8
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵–onto→𝐶) | 
| 14 |  | foeq2 6817 | . . . . . . . . 9
⊢ (ran
(𝑛 ∈ ℤ ↦
(𝑛(.g‘𝐺)𝑥)) = 𝐵 → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) | 
| 15 | 14 | ad2antll 729 | . . . . . . . 8
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) | 
| 16 | 13, 15 | mpbird 257 | . . . . . . 7
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))–onto→𝐶) | 
| 17 |  | foelrn 7127 | . . . . . . 7
⊢ ((𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))𝑦 = (𝐹‘𝑧)) | 
| 18 | 16, 17 | sylan 580 | . . . . . 6
⊢ ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))𝑦 = (𝐹‘𝑧)) | 
| 19 |  | ovex 7464 | . . . . . . . 8
⊢ (𝑚(.g‘𝐺)𝑥) ∈ V | 
| 20 | 19 | rgenw 3065 | . . . . . . 7
⊢
∀𝑚 ∈
ℤ (𝑚(.g‘𝐺)𝑥) ∈ V | 
| 21 |  | oveq1 7438 | . . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑛(.g‘𝐺)𝑥) = (𝑚(.g‘𝐺)𝑥)) | 
| 22 | 21 | cbvmptv 5255 | . . . . . . . 8
⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = (𝑚 ∈ ℤ ↦ (𝑚(.g‘𝐺)𝑥)) | 
| 23 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑧 = (𝑚(.g‘𝐺)𝑥) → (𝐹‘𝑧) = (𝐹‘(𝑚(.g‘𝐺)𝑥))) | 
| 24 | 23 | eqeq2d 2748 | . . . . . . . 8
⊢ (𝑧 = (𝑚(.g‘𝐺)𝑥) → (𝑦 = (𝐹‘𝑧) ↔ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥)))) | 
| 25 | 22, 24 | rexrnmptw 7115 | . . . . . . 7
⊢
(∀𝑚 ∈
ℤ (𝑚(.g‘𝐺)𝑥) ∈ V → (∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))𝑦 = (𝐹‘𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥)))) | 
| 26 | 20, 25 | ax-mp 5 | . . . . . 6
⊢
(∃𝑧 ∈ ran
(𝑛 ∈ ℤ ↦
(𝑛(.g‘𝐺)𝑥))𝑦 = (𝐹‘𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥))) | 
| 27 | 18, 26 | sylib 218 | . . . . 5
⊢ ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥))) | 
| 28 |  | simp-4l 783 | . . . . . . . 8
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | 
| 29 |  | simpr 484 | . . . . . . . 8
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) | 
| 30 | 11 | ad2antrr 726 | . . . . . . . 8
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → 𝑥 ∈ 𝐵) | 
| 31 | 1, 2, 6 | ghmmulg 19246 | . . . . . . . 8
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑚 ∈ ℤ ∧ 𝑥 ∈ 𝐵) → (𝐹‘(𝑚(.g‘𝐺)𝑥)) = (𝑚(.g‘𝐻)(𝐹‘𝑥))) | 
| 32 | 28, 29, 30, 31 | syl3anc 1373 | . . . . . . 7
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → (𝐹‘(𝑚(.g‘𝐺)𝑥)) = (𝑚(.g‘𝐻)(𝐹‘𝑥))) | 
| 33 | 32 | eqeq2d 2748 | . . . . . 6
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥)) ↔ 𝑦 = (𝑚(.g‘𝐻)(𝐹‘𝑥)))) | 
| 34 | 33 | rexbidva 3177 | . . . . 5
⊢ ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) → (∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥)) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g‘𝐻)(𝐹‘𝑥)))) | 
| 35 | 27, 34 | mpbid 232 | . . . 4
⊢ ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g‘𝐻)(𝐹‘𝑥))) | 
| 36 | 5, 6, 8, 12, 35 | iscygd 19905 | . . 3
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ CycGrp) | 
| 37 | 36 | rexlimdvaa 3156 | . 2
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) → (∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵 → 𝐻 ∈ CycGrp)) | 
| 38 | 4, 37 | syl5 34 | 1
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp)) |