| Step | Hyp | Ref
| Expression |
| 1 | | cygctb.1 |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
| 2 | | eqid 2736 |
. . . 4
⊢
(.g‘𝐺) = (.g‘𝐺) |
| 3 | 1, 2 | iscyg 19865 |
. . 3
⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) |
| 4 | 3 | simprbi 496 |
. 2
⊢ (𝐺 ∈ CycGrp →
∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵) |
| 5 | | ghmcyg.1 |
. . . 4
⊢ 𝐶 = (Base‘𝐻) |
| 6 | | eqid 2736 |
. . . 4
⊢
(.g‘𝐻) = (.g‘𝐻) |
| 7 | | ghmgrp2 19207 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp) |
| 8 | 7 | ad2antrr 726 |
. . . 4
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ Grp) |
| 9 | | fof 6795 |
. . . . . 6
⊢ (𝐹:𝐵–onto→𝐶 → 𝐹:𝐵⟶𝐶) |
| 10 | 9 | ad2antlr 727 |
. . . . 5
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵⟶𝐶) |
| 11 | | simprl 770 |
. . . . 5
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝑥 ∈ 𝐵) |
| 12 | 10, 11 | ffvelcdmd 7080 |
. . . 4
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → (𝐹‘𝑥) ∈ 𝐶) |
| 13 | | simplr 768 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵–onto→𝐶) |
| 14 | | foeq2 6792 |
. . . . . . . . 9
⊢ (ran
(𝑛 ∈ ℤ ↦
(𝑛(.g‘𝐺)𝑥)) = 𝐵 → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) |
| 15 | 14 | ad2antll 729 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) |
| 16 | 13, 15 | mpbird 257 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))–onto→𝐶) |
| 17 | | foelrn 7102 |
. . . . . . 7
⊢ ((𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))𝑦 = (𝐹‘𝑧)) |
| 18 | 16, 17 | sylan 580 |
. . . . . 6
⊢ ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))𝑦 = (𝐹‘𝑧)) |
| 19 | | ovex 7443 |
. . . . . . . 8
⊢ (𝑚(.g‘𝐺)𝑥) ∈ V |
| 20 | 19 | rgenw 3056 |
. . . . . . 7
⊢
∀𝑚 ∈
ℤ (𝑚(.g‘𝐺)𝑥) ∈ V |
| 21 | | oveq1 7417 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑛(.g‘𝐺)𝑥) = (𝑚(.g‘𝐺)𝑥)) |
| 22 | 21 | cbvmptv 5230 |
. . . . . . . 8
⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = (𝑚 ∈ ℤ ↦ (𝑚(.g‘𝐺)𝑥)) |
| 23 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑧 = (𝑚(.g‘𝐺)𝑥) → (𝐹‘𝑧) = (𝐹‘(𝑚(.g‘𝐺)𝑥))) |
| 24 | 23 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝑧 = (𝑚(.g‘𝐺)𝑥) → (𝑦 = (𝐹‘𝑧) ↔ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥)))) |
| 25 | 22, 24 | rexrnmptw 7090 |
. . . . . . 7
⊢
(∀𝑚 ∈
ℤ (𝑚(.g‘𝐺)𝑥) ∈ V → (∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥))𝑦 = (𝐹‘𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥)))) |
| 26 | 20, 25 | ax-mp 5 |
. . . . . 6
⊢
(∃𝑧 ∈ ran
(𝑛 ∈ ℤ ↦
(𝑛(.g‘𝐺)𝑥))𝑦 = (𝐹‘𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥))) |
| 27 | 18, 26 | sylib 218 |
. . . . 5
⊢ ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥))) |
| 28 | | simp-4l 782 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 29 | | simpr 484 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) |
| 30 | 11 | ad2antrr 726 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → 𝑥 ∈ 𝐵) |
| 31 | 1, 2, 6 | ghmmulg 19216 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑚 ∈ ℤ ∧ 𝑥 ∈ 𝐵) → (𝐹‘(𝑚(.g‘𝐺)𝑥)) = (𝑚(.g‘𝐻)(𝐹‘𝑥))) |
| 32 | 28, 29, 30, 31 | syl3anc 1373 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → (𝐹‘(𝑚(.g‘𝐺)𝑥)) = (𝑚(.g‘𝐻)(𝐹‘𝑥))) |
| 33 | 32 | eqeq2d 2747 |
. . . . . 6
⊢
(((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥)) ↔ 𝑦 = (𝑚(.g‘𝐻)(𝐹‘𝑥)))) |
| 34 | 33 | rexbidva 3163 |
. . . . 5
⊢ ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) → (∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g‘𝐺)𝑥)) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g‘𝐻)(𝐹‘𝑥)))) |
| 35 | 27, 34 | mpbid 232 |
. . . 4
⊢ ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) ∧ 𝑦 ∈ 𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g‘𝐻)(𝐹‘𝑥))) |
| 36 | 5, 6, 8, 12, 35 | iscygd 19873 |
. . 3
⊢ (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝑥 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ CycGrp) |
| 37 | 36 | rexlimdvaa 3143 |
. 2
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) → (∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵 → 𝐻 ∈ CycGrp)) |
| 38 | 4, 37 | syl5 34 |
1
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp)) |