MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmcyg Structured version   Visualization version   GIF version

Theorem ghmcyg 19794
Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
ghmcyg.1 𝐶 = (Base‘𝐻)
Assertion
Ref Expression
ghmcyg ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))

Proof of Theorem ghmcyg
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2729 . . . 4 (.g𝐺) = (.g𝐺)
31, 2iscyg 19777 . . 3 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵))
43simprbi 496 . 2 (𝐺 ∈ CycGrp → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)
5 ghmcyg.1 . . . 4 𝐶 = (Base‘𝐻)
6 eqid 2729 . . . 4 (.g𝐻) = (.g𝐻)
7 ghmgrp2 19117 . . . . 5 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
87ad2antrr 726 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ Grp)
9 fof 6740 . . . . . 6 (𝐹:𝐵onto𝐶𝐹:𝐵𝐶)
109ad2antlr 727 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵𝐶)
11 simprl 770 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝑥𝐵)
1210, 11ffvelcdmd 7023 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → (𝐹𝑥) ∈ 𝐶)
13 simplr 768 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:𝐵onto𝐶)
14 foeq2 6737 . . . . . . . . 9 (ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵 → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝐹:𝐵onto𝐶))
1514ad2antll 729 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → (𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝐹:𝐵onto𝐶))
1613, 15mpbird 257 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶)
17 foelrn 7045 . . . . . . 7 ((𝐹:ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))–onto𝐶𝑦𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧))
1816, 17sylan 580 . . . . . 6 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧))
19 ovex 7386 . . . . . . . 8 (𝑚(.g𝐺)𝑥) ∈ V
2019rgenw 3048 . . . . . . 7 𝑚 ∈ ℤ (𝑚(.g𝐺)𝑥) ∈ V
21 oveq1 7360 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛(.g𝐺)𝑥) = (𝑚(.g𝐺)𝑥))
2221cbvmptv 5199 . . . . . . . 8 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = (𝑚 ∈ ℤ ↦ (𝑚(.g𝐺)𝑥))
23 fveq2 6826 . . . . . . . . 9 (𝑧 = (𝑚(.g𝐺)𝑥) → (𝐹𝑧) = (𝐹‘(𝑚(.g𝐺)𝑥)))
2423eqeq2d 2740 . . . . . . . 8 (𝑧 = (𝑚(.g𝐺)𝑥) → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥))))
2522, 24rexrnmptw 7033 . . . . . . 7 (∀𝑚 ∈ ℤ (𝑚(.g𝐺)𝑥) ∈ V → (∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥))))
2620, 25ax-mp 5 . . . . . 6 (∃𝑧 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))𝑦 = (𝐹𝑧) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)))
2718, 26sylib 218 . . . . 5 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)))
28 simp-4l 782 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
29 simpr 484 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
3011ad2antrr 726 . . . . . . . 8 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → 𝑥𝐵)
311, 2, 6ghmmulg 19126 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑚 ∈ ℤ ∧ 𝑥𝐵) → (𝐹‘(𝑚(.g𝐺)𝑥)) = (𝑚(.g𝐻)(𝐹𝑥)))
3228, 29, 30, 31syl3anc 1373 . . . . . . 7 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → (𝐹‘(𝑚(.g𝐺)𝑥)) = (𝑚(.g𝐻)(𝐹𝑥)))
3332eqeq2d 2740 . . . . . 6 (((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)) ↔ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥))))
3433rexbidva 3151 . . . . 5 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → (∃𝑚 ∈ ℤ 𝑦 = (𝐹‘(𝑚(.g𝐺)𝑥)) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥))))
3527, 34mpbid 232 . . . 4 ((((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) ∧ 𝑦𝐶) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚(.g𝐻)(𝐹𝑥)))
365, 6, 8, 12, 35iscygd 19785 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) ∧ (𝑥𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)) → 𝐻 ∈ CycGrp)
3736rexlimdvaa 3131 . 2 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵𝐻 ∈ CycGrp))
384, 37syl5 34 1 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵onto𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  cmpt 5176  ran crn 5624  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7353  cz 12490  Basecbs 17139  Grpcgrp 18831  .gcmg 18965   GrpHom cghm 19110  CycGrpccyg 19775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-fz 13430  df-seq 13928  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-grp 18834  df-minusg 18835  df-mulg 18966  df-ghm 19111  df-cyg 19776
This theorem is referenced by:  giccyg  19798
  Copyright terms: Public domain W3C validator