| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnfocofob | Structured version Visualization version GIF version | ||
| Description: If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| fnfocofob | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimarndm 6075 | . . . . 5 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
| 2 | fndm 6646 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 2 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → dom 𝐹 = 𝐴) |
| 4 | 1, 3 | eqtr2id 2784 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (◡𝐹 “ ran 𝐹)) |
| 5 | imaeq2 6048 | . . . . 5 ⊢ (ran 𝐹 = 𝐵 → (◡𝐹 “ ran 𝐹) = (◡𝐹 “ 𝐵)) | |
| 6 | 5 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → (◡𝐹 “ ran 𝐹) = (◡𝐹 “ 𝐵)) |
| 7 | 4, 6 | eqtrd 2771 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (◡𝐹 “ 𝐵)) |
| 8 | foeq2 6792 | . . 3 ⊢ (𝐴 = (◡𝐹 “ 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶)) |
| 10 | fnfun 6643 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 11 | id 22 | . . 3 ⊢ (𝐺:𝐵⟶𝐶 → 𝐺:𝐵⟶𝐶) | |
| 12 | eqimss2 4023 | . . 3 ⊢ (ran 𝐹 = 𝐵 → 𝐵 ⊆ ran 𝐹) | |
| 13 | funfocofob 47087 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐵⟶𝐶 ∧ 𝐵 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) | |
| 14 | 10, 11, 12, 13 | syl3an 1160 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
| 15 | 9, 14 | bitrd 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ⊆ wss 3931 ◡ccnv 5658 dom cdm 5659 ran crn 5660 “ cima 5662 ∘ ccom 5663 Fun wfun 6530 Fn wfn 6531 ⟶wf 6532 –onto→wfo 6534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 |
| This theorem is referenced by: focofob 47089 f1ocof1ob 47090 |
| Copyright terms: Public domain | W3C validator |