![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnfocofob | Structured version Visualization version GIF version |
Description: If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
fnfocofob | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimarndm 6078 | . . . . 5 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
2 | fndm 6649 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 2 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → dom 𝐹 = 𝐴) |
4 | 1, 3 | eqtr2id 2785 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (◡𝐹 “ ran 𝐹)) |
5 | imaeq2 6053 | . . . . 5 ⊢ (ran 𝐹 = 𝐵 → (◡𝐹 “ ran 𝐹) = (◡𝐹 “ 𝐵)) | |
6 | 5 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → (◡𝐹 “ ran 𝐹) = (◡𝐹 “ 𝐵)) |
7 | 4, 6 | eqtrd 2772 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (◡𝐹 “ 𝐵)) |
8 | foeq2 6799 | . . 3 ⊢ (𝐴 = (◡𝐹 “ 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶)) |
10 | fnfun 6646 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
11 | id 22 | . . 3 ⊢ (𝐺:𝐵⟶𝐶 → 𝐺:𝐵⟶𝐶) | |
12 | eqimss2 4040 | . . 3 ⊢ (ran 𝐹 = 𝐵 → 𝐵 ⊆ ran 𝐹) | |
13 | funfocofob 45772 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐵⟶𝐶 ∧ 𝐵 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) | |
14 | 10, 11, 12, 13 | syl3an 1160 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
15 | 9, 14 | bitrd 278 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ⊆ wss 3947 ◡ccnv 5674 dom cdm 5675 ran crn 5676 “ cima 5678 ∘ ccom 5679 Fun wfun 6534 Fn wfn 6535 ⟶wf 6536 –onto→wfo 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 |
This theorem is referenced by: focofob 45774 f1ocof1ob 45775 |
Copyright terms: Public domain | W3C validator |