| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnfocofob | Structured version Visualization version GIF version | ||
| Description: If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| fnfocofob | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimarndm 6043 | . . . . 5 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
| 2 | fndm 6603 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 2 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → dom 𝐹 = 𝐴) |
| 4 | 1, 3 | eqtr2id 2777 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (◡𝐹 “ ran 𝐹)) |
| 5 | imaeq2 6016 | . . . . 5 ⊢ (ran 𝐹 = 𝐵 → (◡𝐹 “ ran 𝐹) = (◡𝐹 “ 𝐵)) | |
| 6 | 5 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → (◡𝐹 “ ran 𝐹) = (◡𝐹 “ 𝐵)) |
| 7 | 4, 6 | eqtrd 2764 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (◡𝐹 “ 𝐵)) |
| 8 | foeq2 6751 | . . 3 ⊢ (𝐴 = (◡𝐹 “ 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶)) |
| 10 | fnfun 6600 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 11 | id 22 | . . 3 ⊢ (𝐺:𝐵⟶𝐶 → 𝐺:𝐵⟶𝐶) | |
| 12 | eqimss2 4003 | . . 3 ⊢ (ran 𝐹 = 𝐵 → 𝐵 ⊆ ran 𝐹) | |
| 13 | funfocofob 47052 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐵⟶𝐶 ∧ 𝐵 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) | |
| 14 | 10, 11, 12, 13 | syl3an 1160 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
| 15 | 9, 14 | bitrd 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ⊆ wss 3911 ◡ccnv 5630 dom cdm 5631 ran crn 5632 “ cima 5634 ∘ ccom 5635 Fun wfun 6493 Fn wfn 6494 ⟶wf 6495 –onto→wfo 6497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 |
| This theorem is referenced by: focofob 47054 f1ocof1ob 47055 |
| Copyright terms: Public domain | W3C validator |