Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnfocofob Structured version   Visualization version   GIF version

Theorem fnfocofob 44458
Description: If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.)
Assertion
Ref Expression
fnfocofob ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺𝐹):𝐴onto𝐶𝐺:𝐵onto𝐶))

Proof of Theorem fnfocofob
StepHypRef Expression
1 cnvimarndm 5979 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
2 fndm 6520 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
323ad2ant1 1131 . . . . 5 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → dom 𝐹 = 𝐴)
41, 3eqtr2id 2792 . . . 4 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (𝐹 “ ran 𝐹))
5 imaeq2 5954 . . . . 5 (ran 𝐹 = 𝐵 → (𝐹 “ ran 𝐹) = (𝐹𝐵))
653ad2ant3 1133 . . . 4 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → (𝐹 “ ran 𝐹) = (𝐹𝐵))
74, 6eqtrd 2778 . . 3 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (𝐹𝐵))
8 foeq2 6669 . . 3 (𝐴 = (𝐹𝐵) → ((𝐺𝐹):𝐴onto𝐶 ↔ (𝐺𝐹):(𝐹𝐵)–onto𝐶))
97, 8syl 17 . 2 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺𝐹):𝐴onto𝐶 ↔ (𝐺𝐹):(𝐹𝐵)–onto𝐶))
10 fnfun 6517 . . 3 (𝐹 Fn 𝐴 → Fun 𝐹)
11 id 22 . . 3 (𝐺:𝐵𝐶𝐺:𝐵𝐶)
12 eqimss2 3974 . . 3 (ran 𝐹 = 𝐵𝐵 ⊆ ran 𝐹)
13 funfocofob 44457 . . 3 ((Fun 𝐹𝐺:𝐵𝐶𝐵 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐵)–onto𝐶𝐺:𝐵onto𝐶))
1410, 11, 12, 13syl3an 1158 . 2 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺𝐹):(𝐹𝐵)–onto𝐶𝐺:𝐵onto𝐶))
159, 14bitrd 278 1 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺𝐹):𝐴onto𝐶𝐺:𝐵onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wss 3883  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  ccom 5584  Fun wfun 6412   Fn wfn 6413  wf 6414  ontowfo 6416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426
This theorem is referenced by:  focofob  44459  f1ocof1ob  44460
  Copyright terms: Public domain W3C validator