Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnfocofob Structured version   Visualization version   GIF version

Theorem fnfocofob 46594
Description: If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.)
Assertion
Ref Expression
fnfocofob ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺𝐹):𝐴onto𝐶𝐺:𝐵onto𝐶))

Proof of Theorem fnfocofob
StepHypRef Expression
1 cnvimarndm 6087 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
2 fndm 6658 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
323ad2ant1 1130 . . . . 5 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → dom 𝐹 = 𝐴)
41, 3eqtr2id 2778 . . . 4 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (𝐹 “ ran 𝐹))
5 imaeq2 6060 . . . . 5 (ran 𝐹 = 𝐵 → (𝐹 “ ran 𝐹) = (𝐹𝐵))
653ad2ant3 1132 . . . 4 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → (𝐹 “ ran 𝐹) = (𝐹𝐵))
74, 6eqtrd 2765 . . 3 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (𝐹𝐵))
8 foeq2 6807 . . 3 (𝐴 = (𝐹𝐵) → ((𝐺𝐹):𝐴onto𝐶 ↔ (𝐺𝐹):(𝐹𝐵)–onto𝐶))
97, 8syl 17 . 2 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺𝐹):𝐴onto𝐶 ↔ (𝐺𝐹):(𝐹𝐵)–onto𝐶))
10 fnfun 6655 . . 3 (𝐹 Fn 𝐴 → Fun 𝐹)
11 id 22 . . 3 (𝐺:𝐵𝐶𝐺:𝐵𝐶)
12 eqimss2 4036 . . 3 (ran 𝐹 = 𝐵𝐵 ⊆ ran 𝐹)
13 funfocofob 46593 . . 3 ((Fun 𝐹𝐺:𝐵𝐶𝐵 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐵)–onto𝐶𝐺:𝐵onto𝐶))
1410, 11, 12, 13syl3an 1157 . 2 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺𝐹):(𝐹𝐵)–onto𝐶𝐺:𝐵onto𝐶))
159, 14bitrd 278 1 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺𝐹):𝐴onto𝐶𝐺:𝐵onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wss 3944  ccnv 5677  dom cdm 5678  ran crn 5679  cima 5681  ccom 5682  Fun wfun 6543   Fn wfn 6544  wf 6545  ontowfo 6547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fo 6555  df-fv 6557
This theorem is referenced by:  focofob  46595  f1ocof1ob  46596
  Copyright terms: Public domain W3C validator