Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnfocofob Structured version   Visualization version   GIF version

Theorem fnfocofob 47096
Description: If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.)
Assertion
Ref Expression
fnfocofob ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺𝐹):𝐴onto𝐶𝐺:𝐵onto𝐶))

Proof of Theorem fnfocofob
StepHypRef Expression
1 cnvimarndm 6100 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
2 fndm 6670 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
323ad2ant1 1133 . . . . 5 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → dom 𝐹 = 𝐴)
41, 3eqtr2id 2789 . . . 4 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (𝐹 “ ran 𝐹))
5 imaeq2 6073 . . . . 5 (ran 𝐹 = 𝐵 → (𝐹 “ ran 𝐹) = (𝐹𝐵))
653ad2ant3 1135 . . . 4 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → (𝐹 “ ran 𝐹) = (𝐹𝐵))
74, 6eqtrd 2776 . . 3 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (𝐹𝐵))
8 foeq2 6816 . . 3 (𝐴 = (𝐹𝐵) → ((𝐺𝐹):𝐴onto𝐶 ↔ (𝐺𝐹):(𝐹𝐵)–onto𝐶))
97, 8syl 17 . 2 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺𝐹):𝐴onto𝐶 ↔ (𝐺𝐹):(𝐹𝐵)–onto𝐶))
10 fnfun 6667 . . 3 (𝐹 Fn 𝐴 → Fun 𝐹)
11 id 22 . . 3 (𝐺:𝐵𝐶𝐺:𝐵𝐶)
12 eqimss2 4042 . . 3 (ran 𝐹 = 𝐵𝐵 ⊆ ran 𝐹)
13 funfocofob 47095 . . 3 ((Fun 𝐹𝐺:𝐵𝐶𝐵 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐵)–onto𝐶𝐺:𝐵onto𝐶))
1410, 11, 12, 13syl3an 1160 . 2 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺𝐹):(𝐹𝐵)–onto𝐶𝐺:𝐵onto𝐶))
159, 14bitrd 279 1 ((𝐹 Fn 𝐴𝐺:𝐵𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺𝐹):𝐴onto𝐶𝐺:𝐵onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1539  wss 3950  ccnv 5683  dom cdm 5684  ran crn 5685  cima 5687  ccom 5688  Fun wfun 6554   Fn wfn 6555  wf 6556  ontowfo 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fo 6566  df-fv 6568
This theorem is referenced by:  focofob  47097  f1ocof1ob  47098
  Copyright terms: Public domain W3C validator