![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnfocofob | Structured version Visualization version GIF version |
Description: If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
fnfocofob | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimarndm 6087 | . . . . 5 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
2 | fndm 6658 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 2 | 3ad2ant1 1130 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → dom 𝐹 = 𝐴) |
4 | 1, 3 | eqtr2id 2778 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (◡𝐹 “ ran 𝐹)) |
5 | imaeq2 6060 | . . . . 5 ⊢ (ran 𝐹 = 𝐵 → (◡𝐹 “ ran 𝐹) = (◡𝐹 “ 𝐵)) | |
6 | 5 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → (◡𝐹 “ ran 𝐹) = (◡𝐹 “ 𝐵)) |
7 | 4, 6 | eqtrd 2765 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → 𝐴 = (◡𝐹 “ 𝐵)) |
8 | foeq2 6807 | . . 3 ⊢ (𝐴 = (◡𝐹 “ 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶)) |
10 | fnfun 6655 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
11 | id 22 | . . 3 ⊢ (𝐺:𝐵⟶𝐶 → 𝐺:𝐵⟶𝐶) | |
12 | eqimss2 4036 | . . 3 ⊢ (ran 𝐹 = 𝐵 → 𝐵 ⊆ ran 𝐹) | |
13 | funfocofob 46593 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐵⟶𝐶 ∧ 𝐵 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) | |
14 | 10, 11, 12, 13 | syl3an 1157 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐵)–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
15 | 9, 14 | bitrd 278 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ⊆ wss 3944 ◡ccnv 5677 dom cdm 5678 ran crn 5679 “ cima 5681 ∘ ccom 5682 Fun wfun 6543 Fn wfn 6544 ⟶wf 6545 –onto→wfo 6547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fo 6555 df-fv 6557 |
This theorem is referenced by: focofob 46595 f1ocof1ob 46596 |
Copyright terms: Public domain | W3C validator |