| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2741 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))) |
| 3 | df-fo 6517 | . 2 ⊢ (𝐹:𝐶–onto→𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴)) | |
| 4 | df-fo 6517 | . 2 ⊢ (𝐹:𝐶–onto→𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5639 Fn wfn 6506 –onto→wfo 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fo 6517 |
| This theorem is referenced by: fimadmfo 6781 f1oeq3 6790 foeq123d 6793 resdif 6821 ncanth 7342 ffoss 7924 rneqdmfinf1o 9284 fidomdm 9285 fifo 9383 brwdom 9520 brwdom2 9526 canthwdom 9532 ixpiunwdom 9543 fin1a2lem7 10359 dmct 10477 s7f1o 14932 znnen 16180 quslem 17506 znzrhfo 21457 rncmp 23283 connima 23312 conncn 23313 qtopcmplem 23594 qtoprest 23604 eupths 30129 pjhfo 31635 2ndresdjuf1o 32574 cycpmconjvlem 33098 algextdeglem8 33714 msrfo 35533 ivthALT 36323 bj-inftyexpitaufo 37190 poimirlem26 37640 poimirlem27 37641 opidon2OLD 37848 founiiun0 45184 focofob 47081 fundcmpsurinj 47410 fundcmpsurbijinj 47411 imasubc 49140 fullthinc 49439 |
| Copyright terms: Public domain | W3C validator |