Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > foeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
foeq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2750 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵)) | |
2 | 1 | anbi2d 629 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))) |
3 | df-fo 6432 | . 2 ⊢ (𝐹:𝐶–onto→𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴)) | |
4 | df-fo 6432 | . 2 ⊢ (𝐹:𝐶–onto→𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ran crn 5585 Fn wfn 6421 –onto→wfo 6424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-fo 6432 |
This theorem is referenced by: fimadmfo 6689 f1oeq3 6698 foeq123d 6701 resdif 6729 ncanth 7222 ffoss 7778 rneqdmfinf1o 9082 fidomdm 9083 fifo 9178 brwdom 9313 brwdom2 9319 canthwdom 9325 ixpiunwdom 9336 fin1a2lem7 10172 dmct 10290 znnen 15931 quslem 17264 znzrhfo 20765 rncmp 22557 connima 22586 conncn 22587 qtopcmplem 22868 qtoprest 22878 eupths 28572 pjhfo 30076 2ndresdjuf1o 30995 cycpmconjvlem 31416 msrfo 33516 ivthALT 34532 bj-inftyexpitaufo 35381 poimirlem26 35811 poimirlem27 35812 opidon2OLD 36020 founiiun0 42709 focofob 44550 fundcmpsurinj 44839 fundcmpsurbijinj 44840 fullthinc 46305 |
Copyright terms: Public domain | W3C validator |