![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
foeq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2744 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵)) | |
2 | 1 | anbi2d 629 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))) |
3 | df-fo 6549 | . 2 ⊢ (𝐹:𝐶–onto→𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴)) | |
4 | df-fo 6549 | . 2 ⊢ (𝐹:𝐶–onto→𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ran crn 5677 Fn wfn 6538 –onto→wfo 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-fo 6549 |
This theorem is referenced by: fimadmfo 6814 f1oeq3 6823 foeq123d 6826 resdif 6854 ncanth 7362 ffoss 7931 rneqdmfinf1o 9327 fidomdm 9328 fifo 9426 brwdom 9561 brwdom2 9567 canthwdom 9573 ixpiunwdom 9584 fin1a2lem7 10400 dmct 10518 znnen 16154 quslem 17488 znzrhfo 21102 rncmp 22899 connima 22928 conncn 22929 qtopcmplem 23210 qtoprest 23220 eupths 29450 pjhfo 30954 2ndresdjuf1o 31870 cycpmconjvlem 32295 msrfo 34532 ivthALT 35215 bj-inftyexpitaufo 36078 poimirlem26 36509 poimirlem27 36510 opidon2OLD 36717 founiiun0 43878 focofob 45778 fundcmpsurinj 46067 fundcmpsurbijinj 46068 fullthinc 47656 |
Copyright terms: Public domain | W3C validator |