| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2741 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))) |
| 3 | df-fo 6488 | . 2 ⊢ (𝐹:𝐶–onto→𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴)) | |
| 4 | df-fo 6488 | . 2 ⊢ (𝐹:𝐶–onto→𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5620 Fn wfn 6477 –onto→wfo 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fo 6488 |
| This theorem is referenced by: fimadmfo 6745 f1oeq3 6754 foeq123d 6757 resdif 6785 ncanth 7304 ffoss 7881 rneqdmfinf1o 9223 fidomdm 9224 fifo 9322 brwdom 9459 brwdom2 9465 canthwdom 9471 ixpiunwdom 9482 fin1a2lem7 10300 dmct 10418 s7f1o 14873 znnen 16121 quslem 17447 znzrhfo 21454 rncmp 23281 connima 23310 conncn 23311 qtopcmplem 23592 qtoprest 23602 eupths 30148 pjhfo 31654 2ndresdjuf1o 32601 cycpmconjvlem 33092 algextdeglem8 33707 msrfo 35539 ivthALT 36329 bj-inftyexpitaufo 37196 poimirlem26 37646 poimirlem27 37647 opidon2OLD 37854 founiiun0 45188 focofob 47084 fundcmpsurinj 47413 fundcmpsurbijinj 47414 imasubc 49156 fullthinc 49455 |
| Copyright terms: Public domain | W3C validator |