| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2743 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))) |
| 3 | df-fo 6487 | . 2 ⊢ (𝐹:𝐶–onto→𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴)) | |
| 4 | df-fo 6487 | . 2 ⊢ (𝐹:𝐶–onto→𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ran crn 5615 Fn wfn 6476 –onto→wfo 6479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-fo 6487 |
| This theorem is referenced by: fimadmfo 6744 f1oeq3 6753 foeq123d 6756 resdif 6784 ncanth 7301 ffoss 7878 rneqdmfinf1o 9217 fidomdm 9218 fifo 9316 brwdom 9453 brwdom2 9459 canthwdom 9465 ixpiunwdom 9476 fin1a2lem7 10297 dmct 10415 s7f1o 14873 znnen 16121 quslem 17447 znzrhfo 21484 rncmp 23311 connima 23340 conncn 23341 qtopcmplem 23622 qtoprest 23632 eupths 30180 pjhfo 31686 2ndresdjuf1o 32632 cycpmconjvlem 33110 algextdeglem8 33737 msrfo 35590 ivthALT 36379 bj-inftyexpitaufo 37246 poimirlem26 37685 poimirlem27 37686 opidon2OLD 37893 founiiun0 45286 focofob 47179 fundcmpsurinj 47508 fundcmpsurbijinj 47509 imasubc 49251 fullthinc 49550 |
| Copyright terms: Public domain | W3C validator |