MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeq3 Structured version   Visualization version   GIF version

Theorem foeq3 6752
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))

Proof of Theorem foeq3
StepHypRef Expression
1 eqeq2 2741 . . 3 (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵))
21anbi2d 630 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)))
3 df-fo 6505 . 2 (𝐹:𝐶onto𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴))
4 df-fo 6505 . 2 (𝐹:𝐶onto𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  ran crn 5632   Fn wfn 6494  ontowfo 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-fo 6505
This theorem is referenced by:  fimadmfo  6763  f1oeq3  6772  foeq123d  6775  resdif  6803  ncanth  7324  ffoss  7904  rneqdmfinf1o  9260  fidomdm  9261  fifo  9359  brwdom  9496  brwdom2  9502  canthwdom  9508  ixpiunwdom  9519  fin1a2lem7  10335  dmct  10453  s7f1o  14908  znnen  16156  quslem  17482  znzrhfo  21489  rncmp  23316  connima  23345  conncn  23346  qtopcmplem  23627  qtoprest  23637  eupths  30179  pjhfo  31685  2ndresdjuf1o  32624  cycpmconjvlem  33113  algextdeglem8  33707  msrfo  35526  ivthALT  36316  bj-inftyexpitaufo  37183  poimirlem26  37633  poimirlem27  37634  opidon2OLD  37841  founiiun0  45177  focofob  47074  fundcmpsurinj  47403  fundcmpsurbijinj  47404  imasubc  49133  fullthinc  49432
  Copyright terms: Public domain W3C validator