Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > foeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
foeq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2750 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵)) | |
2 | 1 | anbi2d 629 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))) |
3 | df-fo 6439 | . 2 ⊢ (𝐹:𝐶–onto→𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴)) | |
4 | df-fo 6439 | . 2 ⊢ (𝐹:𝐶–onto→𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ran crn 5590 Fn wfn 6428 –onto→wfo 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-fo 6439 |
This theorem is referenced by: fimadmfo 6697 f1oeq3 6706 foeq123d 6709 resdif 6737 ncanth 7230 ffoss 7788 rneqdmfinf1o 9095 fidomdm 9096 fifo 9191 brwdom 9326 brwdom2 9332 canthwdom 9338 ixpiunwdom 9349 fin1a2lem7 10162 dmct 10280 znnen 15921 quslem 17254 znzrhfo 20755 rncmp 22547 connima 22576 conncn 22577 qtopcmplem 22858 qtoprest 22868 eupths 28564 pjhfo 30068 2ndresdjuf1o 30987 cycpmconjvlem 31408 msrfo 33508 ivthALT 34524 bj-inftyexpitaufo 35373 poimirlem26 35803 poimirlem27 35804 opidon2OLD 36012 founiiun0 42728 focofob 44572 fundcmpsurinj 44861 fundcmpsurbijinj 44862 fullthinc 46327 |
Copyright terms: Public domain | W3C validator |