MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeq3 Structured version   Visualization version   GIF version

Theorem foeq3 6686
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))

Proof of Theorem foeq3
StepHypRef Expression
1 eqeq2 2750 . . 3 (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵))
21anbi2d 629 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)))
3 df-fo 6439 . 2 (𝐹:𝐶onto𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴))
4 df-fo 6439 . 2 (𝐹:𝐶onto𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  ran crn 5590   Fn wfn 6428  ontowfo 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-fo 6439
This theorem is referenced by:  fimadmfo  6697  f1oeq3  6706  foeq123d  6709  resdif  6737  ncanth  7230  ffoss  7788  rneqdmfinf1o  9095  fidomdm  9096  fifo  9191  brwdom  9326  brwdom2  9332  canthwdom  9338  ixpiunwdom  9349  fin1a2lem7  10162  dmct  10280  znnen  15921  quslem  17254  znzrhfo  20755  rncmp  22547  connima  22576  conncn  22577  qtopcmplem  22858  qtoprest  22868  eupths  28564  pjhfo  30068  2ndresdjuf1o  30987  cycpmconjvlem  31408  msrfo  33508  ivthALT  34524  bj-inftyexpitaufo  35373  poimirlem26  35803  poimirlem27  35804  opidon2OLD  36012  founiiun0  42728  focofob  44572  fundcmpsurinj  44861  fundcmpsurbijinj  44862  fullthinc  46327
  Copyright terms: Public domain W3C validator