| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2742 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))) |
| 3 | df-fo 6520 | . 2 ⊢ (𝐹:𝐶–onto→𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴)) | |
| 4 | df-fo 6520 | . 2 ⊢ (𝐹:𝐶–onto→𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5642 Fn wfn 6509 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-fo 6520 |
| This theorem is referenced by: fimadmfo 6784 f1oeq3 6793 foeq123d 6796 resdif 6824 ncanth 7345 ffoss 7927 rneqdmfinf1o 9291 fidomdm 9292 fifo 9390 brwdom 9527 brwdom2 9533 canthwdom 9539 ixpiunwdom 9550 fin1a2lem7 10366 dmct 10484 s7f1o 14939 znnen 16187 quslem 17513 znzrhfo 21464 rncmp 23290 connima 23319 conncn 23320 qtopcmplem 23601 qtoprest 23611 eupths 30136 pjhfo 31642 2ndresdjuf1o 32581 cycpmconjvlem 33105 algextdeglem8 33721 msrfo 35540 ivthALT 36330 bj-inftyexpitaufo 37197 poimirlem26 37647 poimirlem27 37648 opidon2OLD 37855 founiiun0 45191 focofob 47085 fundcmpsurinj 47414 fundcmpsurbijinj 47415 imasubc 49144 fullthinc 49443 |
| Copyright terms: Public domain | W3C validator |