Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > foeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
foeq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2750 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵)) | |
2 | 1 | anbi2d 628 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))) |
3 | df-fo 6424 | . 2 ⊢ (𝐹:𝐶–onto→𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴)) | |
4 | df-fo 6424 | . 2 ⊢ (𝐹:𝐶–onto→𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ran crn 5581 Fn wfn 6413 –onto→wfo 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-fo 6424 |
This theorem is referenced by: fimadmfo 6681 f1oeq3 6690 foeq123d 6693 resdif 6720 ncanth 7210 ffoss 7762 rneqdmfinf1o 9025 fidomdm 9026 fifo 9121 brwdom 9256 brwdom2 9262 canthwdom 9268 ixpiunwdom 9279 fin1a2lem7 10093 dmct 10211 znnen 15849 quslem 17171 znzrhfo 20667 rncmp 22455 connima 22484 conncn 22485 qtopcmplem 22766 qtoprest 22776 eupths 28465 pjhfo 29969 2ndresdjuf1o 30888 cycpmconjvlem 31310 msrfo 33408 ivthALT 34451 bj-inftyexpitaufo 35300 poimirlem26 35730 poimirlem27 35731 opidon2OLD 35939 founiiun0 42617 focofob 44459 fundcmpsurinj 44749 fundcmpsurbijinj 44750 fullthinc 46215 |
Copyright terms: Public domain | W3C validator |