MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeq3 Structured version   Visualization version   GIF version

Theorem foeq3 6734
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))

Proof of Theorem foeq3
StepHypRef Expression
1 eqeq2 2741 . . 3 (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵))
21anbi2d 630 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)))
3 df-fo 6488 . 2 (𝐹:𝐶onto𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴))
4 df-fo 6488 . 2 (𝐹:𝐶onto𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  ran crn 5620   Fn wfn 6477  ontowfo 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-fo 6488
This theorem is referenced by:  fimadmfo  6745  f1oeq3  6754  foeq123d  6757  resdif  6785  ncanth  7304  ffoss  7881  rneqdmfinf1o  9223  fidomdm  9224  fifo  9322  brwdom  9459  brwdom2  9465  canthwdom  9471  ixpiunwdom  9482  fin1a2lem7  10300  dmct  10418  s7f1o  14873  znnen  16121  quslem  17447  znzrhfo  21454  rncmp  23281  connima  23310  conncn  23311  qtopcmplem  23592  qtoprest  23602  eupths  30148  pjhfo  31654  2ndresdjuf1o  32601  cycpmconjvlem  33092  algextdeglem8  33707  msrfo  35539  ivthALT  36329  bj-inftyexpitaufo  37196  poimirlem26  37646  poimirlem27  37647  opidon2OLD  37854  founiiun0  45188  focofob  47084  fundcmpsurinj  47413  fundcmpsurbijinj  47414  imasubc  49156  fullthinc  49455
  Copyright terms: Public domain W3C validator