MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeq3 Structured version   Visualization version   GIF version

Theorem foeq3 6793
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))

Proof of Theorem foeq3
StepHypRef Expression
1 eqeq2 2748 . . 3 (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵))
21anbi2d 630 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)))
3 df-fo 6542 . 2 (𝐹:𝐶onto𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴))
4 df-fo 6542 . 2 (𝐹:𝐶onto𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  ran crn 5660   Fn wfn 6531  ontowfo 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2728  df-fo 6542
This theorem is referenced by:  fimadmfo  6804  f1oeq3  6813  foeq123d  6816  resdif  6844  ncanth  7365  ffoss  7949  rneqdmfinf1o  9350  fidomdm  9351  fifo  9449  brwdom  9586  brwdom2  9592  canthwdom  9598  ixpiunwdom  9609  fin1a2lem7  10425  dmct  10543  s7f1o  14990  znnen  16235  quslem  17562  znzrhfo  21513  rncmp  23339  connima  23368  conncn  23369  qtopcmplem  23650  qtoprest  23660  eupths  30186  pjhfo  31692  2ndresdjuf1o  32633  cycpmconjvlem  33157  algextdeglem8  33763  msrfo  35573  ivthALT  36358  bj-inftyexpitaufo  37225  poimirlem26  37675  poimirlem27  37676  opidon2OLD  37883  founiiun0  45181  focofob  47076  fundcmpsurinj  47390  fundcmpsurbijinj  47391  imasubc  49058  fullthinc  49303
  Copyright terms: Public domain W3C validator