![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
foeq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2752 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵)) | |
2 | 1 | anbi2d 629 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))) |
3 | df-fo 6579 | . 2 ⊢ (𝐹:𝐶–onto→𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴)) | |
4 | df-fo 6579 | . 2 ⊢ (𝐹:𝐶–onto→𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ran crn 5701 Fn wfn 6568 –onto→wfo 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-fo 6579 |
This theorem is referenced by: fimadmfo 6843 f1oeq3 6852 foeq123d 6855 resdif 6883 ncanth 7402 ffoss 7986 rneqdmfinf1o 9401 fidomdm 9402 fifo 9501 brwdom 9636 brwdom2 9642 canthwdom 9648 ixpiunwdom 9659 fin1a2lem7 10475 dmct 10593 s7f1o 15015 znnen 16260 quslem 17603 znzrhfo 21589 rncmp 23425 connima 23454 conncn 23455 qtopcmplem 23736 qtoprest 23746 eupths 30232 pjhfo 31738 2ndresdjuf1o 32668 cycpmconjvlem 33134 algextdeglem8 33715 msrfo 35514 ivthALT 36301 bj-inftyexpitaufo 37168 poimirlem26 37606 poimirlem27 37607 opidon2OLD 37814 founiiun0 45097 focofob 46995 fundcmpsurinj 47283 fundcmpsurbijinj 47284 fullthinc 48713 |
Copyright terms: Public domain | W3C validator |