![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
foeq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2742 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵)) | |
2 | 1 | anbi2d 627 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))) |
3 | df-fo 6550 | . 2 ⊢ (𝐹:𝐶–onto→𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴)) | |
4 | df-fo 6550 | . 2 ⊢ (𝐹:𝐶–onto→𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ran crn 5678 Fn wfn 6539 –onto→wfo 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-fo 6550 |
This theorem is referenced by: fimadmfo 6815 f1oeq3 6824 foeq123d 6827 resdif 6855 ncanth 7367 ffoss 7936 rneqdmfinf1o 9332 fidomdm 9333 fifo 9431 brwdom 9566 brwdom2 9572 canthwdom 9578 ixpiunwdom 9589 fin1a2lem7 10405 dmct 10523 znnen 16161 quslem 17495 znzrhfo 21324 rncmp 23122 connima 23151 conncn 23152 qtopcmplem 23433 qtoprest 23443 eupths 29718 pjhfo 31224 2ndresdjuf1o 32140 cycpmconjvlem 32568 algextdeglem8 33067 msrfo 34833 ivthALT 35525 bj-inftyexpitaufo 36388 poimirlem26 36819 poimirlem27 36820 opidon2OLD 37027 founiiun0 44189 focofob 46088 fundcmpsurinj 46377 fundcmpsurbijinj 46378 fullthinc 47755 |
Copyright terms: Public domain | W3C validator |