| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2748 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))) |
| 3 | df-fo 6542 | . 2 ⊢ (𝐹:𝐶–onto→𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴)) | |
| 4 | df-fo 6542 | . 2 ⊢ (𝐹:𝐶–onto→𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5660 Fn wfn 6531 –onto→wfo 6534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-fo 6542 |
| This theorem is referenced by: fimadmfo 6804 f1oeq3 6813 foeq123d 6816 resdif 6844 ncanth 7365 ffoss 7949 rneqdmfinf1o 9350 fidomdm 9351 fifo 9449 brwdom 9586 brwdom2 9592 canthwdom 9598 ixpiunwdom 9609 fin1a2lem7 10425 dmct 10543 s7f1o 14990 znnen 16235 quslem 17562 znzrhfo 21513 rncmp 23339 connima 23368 conncn 23369 qtopcmplem 23650 qtoprest 23660 eupths 30186 pjhfo 31692 2ndresdjuf1o 32633 cycpmconjvlem 33157 algextdeglem8 33763 msrfo 35573 ivthALT 36358 bj-inftyexpitaufo 37225 poimirlem26 37675 poimirlem27 37676 opidon2OLD 37883 founiiun0 45181 focofob 47076 fundcmpsurinj 47390 fundcmpsurbijinj 47391 imasubc 49058 fullthinc 49303 |
| Copyright terms: Public domain | W3C validator |