| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2741 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))) |
| 3 | df-fo 6505 | . 2 ⊢ (𝐹:𝐶–onto→𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴)) | |
| 4 | df-fo 6505 | . 2 ⊢ (𝐹:𝐶–onto→𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5632 Fn wfn 6494 –onto→wfo 6497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fo 6505 |
| This theorem is referenced by: fimadmfo 6763 f1oeq3 6772 foeq123d 6775 resdif 6803 ncanth 7324 ffoss 7904 rneqdmfinf1o 9260 fidomdm 9261 fifo 9359 brwdom 9496 brwdom2 9502 canthwdom 9508 ixpiunwdom 9519 fin1a2lem7 10335 dmct 10453 s7f1o 14908 znnen 16156 quslem 17482 znzrhfo 21489 rncmp 23316 connima 23345 conncn 23346 qtopcmplem 23627 qtoprest 23637 eupths 30179 pjhfo 31685 2ndresdjuf1o 32624 cycpmconjvlem 33113 algextdeglem8 33707 msrfo 35526 ivthALT 36316 bj-inftyexpitaufo 37183 poimirlem26 37633 poimirlem27 37634 opidon2OLD 37841 founiiun0 45177 focofob 47074 fundcmpsurinj 47403 fundcmpsurbijinj 47404 imasubc 49133 fullthinc 49432 |
| Copyright terms: Public domain | W3C validator |