MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeq1 Structured version   Visualization version   GIF version

Theorem foeq1 6802
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq1 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵))

Proof of Theorem foeq1
StepHypRef Expression
1 fneq1 6641 . . 3 (𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
2 rneq 5936 . . . 4 (𝐹 = 𝐺 → ran 𝐹 = ran 𝐺)
32eqeq1d 2735 . . 3 (𝐹 = 𝐺 → (ran 𝐹 = 𝐵 ↔ ran 𝐺 = 𝐵))
41, 3anbi12d 632 . 2 (𝐹 = 𝐺 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵)))
5 df-fo 6550 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
6 df-fo 6550 . 2 (𝐺:𝐴onto𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵))
74, 5, 63bitr4g 314 1 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  ran crn 5678   Fn wfn 6539  ontowfo 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-fun 6546  df-fn 6547  df-fo 6550
This theorem is referenced by:  fimadmfoALT  6817  f1oeq1  6822  foeq123d  6827  resdif  6855  exfo  7107  mapfoss  8846  fodomr  9128  dif1enlem  9156  dif1enlemOLD  9157  fowdom  9566  brwdom2  9568  canthp1lem2  10648  mndfo  18649  sursubmefmnd  18777  znzrhfo  21103  pjhfo  30959  elunop  31125  elunop2  31266  symgcom  32244  nnfoctbdjlem  45171  fcoreslem3  45775  fcoresfo  45781  fcoresfob  45782  fundcmpsurbijinjpreimafv  46075
  Copyright terms: Public domain W3C validator