| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq1 | ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 6609 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 2 | rneq 5900 | . . . 4 ⊢ (𝐹 = 𝐺 → ran 𝐹 = ran 𝐺) | |
| 3 | 2 | eqeq1d 2731 | . . 3 ⊢ (𝐹 = 𝐺 → (ran 𝐹 = 𝐵 ↔ ran 𝐺 = 𝐵)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐹 = 𝐺 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵))) |
| 5 | df-fo 6517 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 6 | df-fo 6517 | . 2 ⊢ (𝐺:𝐴–onto→𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5639 Fn wfn 6506 –onto→wfo 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-fo 6517 |
| This theorem is referenced by: fimadmfoALT 6783 f1oeq1 6788 foeq123d 6793 resdif 6821 exfo 7077 mapfoss 8825 fodomr 9092 dif1enlem 9120 dif1enlemOLD 9121 fodomfir 9279 fowdom 9524 brwdom2 9526 canthp1lem2 10606 mndfo 18685 sursubmefmnd 18823 znzrhfo 21457 pjhfo 31635 elunop 31801 elunop2 31942 symgcom 33040 nnfoctbdjlem 46453 fcoreslem3 47066 fcoresfo 47072 fcoresfob 47073 fundcmpsurbijinjpreimafv 47408 |
| Copyright terms: Public domain | W3C validator |