MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeq1 Structured version   Visualization version   GIF version

Theorem foeq1 6750
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq1 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵))

Proof of Theorem foeq1
StepHypRef Expression
1 fneq1 6591 . . 3 (𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
2 rneq 5889 . . . 4 (𝐹 = 𝐺 → ran 𝐹 = ran 𝐺)
32eqeq1d 2731 . . 3 (𝐹 = 𝐺 → (ran 𝐹 = 𝐵 ↔ ran 𝐺 = 𝐵))
41, 3anbi12d 632 . 2 (𝐹 = 𝐺 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵)))
5 df-fo 6505 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
6 df-fo 6505 . 2 (𝐺:𝐴onto𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵))
74, 5, 63bitr4g 314 1 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  ran crn 5632   Fn wfn 6494  ontowfo 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-fo 6505
This theorem is referenced by:  fimadmfoALT  6765  f1oeq1  6770  foeq123d  6775  resdif  6803  exfo  7059  mapfoss  8802  fodomr  9069  dif1enlem  9097  dif1enlemOLD  9098  fodomfir  9255  fowdom  9500  brwdom2  9502  canthp1lem2  10582  mndfo  18667  sursubmefmnd  18805  znzrhfo  21489  pjhfo  31685  elunop  31851  elunop2  31992  symgcom  33055  nnfoctbdjlem  46446  fcoreslem3  47059  fcoresfo  47065  fcoresfob  47066  fundcmpsurbijinjpreimafv  47401
  Copyright terms: Public domain W3C validator