MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq2 Structured version   Visualization version   GIF version

Theorem f1oeq2 6789
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq2 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))

Proof of Theorem f1oeq2
StepHypRef Expression
1 f1eq2 6752 . . 3 (𝐴 = 𝐵 → (𝐹:𝐴1-1𝐶𝐹:𝐵1-1𝐶))
2 foeq2 6769 . . 3 (𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶) ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶)))
4 df-f1o 6518 . 2 (𝐹:𝐴1-1-onto𝐶 ↔ (𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶))
5 df-f1o 6518 . 2 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518
This theorem is referenced by:  f1oeq23  6791  f1oeq123d  6794  f1oeq2d  6796  resin  6822  isoeq4  7295  breng  8927  f1dmvrnfibi  9292  cnfcom  9653  infxpenc2  9975  fsumf1o  15689  sumsnf  15709  fprodf1o  15912  prodsn  15928  prodsnf  15930  znhash  21468  znunithash  21474  imasf1oxms  24377  wlksnwwlknvbij  29838  clwwlkvbij  30042  eupthp1  30145  derangval  35154  subfacp1lem2a  35167  subfacp1lem3  35169  subfacp1lem5  35171  sumsnd  45020  isuspgrim0lem  47890  isubgr3stgrlem1  47962  usgrexmpl1lem  48009  usgrexmpl2lem  48014  uspgrsprfo  48133  tposf1o  48869
  Copyright terms: Public domain W3C validator