MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq2 Structured version   Visualization version   GIF version

Theorem f1oeq2 6753
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq2 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))

Proof of Theorem f1oeq2
StepHypRef Expression
1 f1eq2 6716 . . 3 (𝐴 = 𝐵 → (𝐹:𝐴1-1𝐶𝐹:𝐵1-1𝐶))
2 foeq2 6733 . . 3 (𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶) ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶)))
4 df-f1o 6489 . 2 (𝐹:𝐴1-1-onto𝐶 ↔ (𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶))
5 df-f1o 6489 . 2 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489
This theorem is referenced by:  f1oeq23  6755  f1oeq123d  6758  f1oeq2d  6760  resin  6786  isoeq4  7257  breng  8881  f1dmvrnfibi  9231  cnfcom  9596  infxpenc2  9916  fsumf1o  15630  sumsnf  15650  fprodf1o  15853  prodsn  15869  prodsnf  15871  znhash  21465  znunithash  21471  imasf1oxms  24375  wlksnwwlknvbij  29853  clwwlkvbij  30057  eupthp1  30160  derangval  35144  subfacp1lem2a  35157  subfacp1lem3  35159  subfacp1lem5  35161  sumsnd  45008  isuspgrim0lem  47881  isubgr3stgrlem1  47954  usgrexmpl1lem  48009  usgrexmpl2lem  48014  uspgrsprfo  48136  tposf1o  48872
  Copyright terms: Public domain W3C validator