MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq2 Structured version   Visualization version   GIF version

Theorem f1oeq2 6608
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq2 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))

Proof of Theorem f1oeq2
StepHypRef Expression
1 f1eq2 6574 . . 3 (𝐴 = 𝐵 → (𝐹:𝐴1-1𝐶𝐹:𝐵1-1𝐶))
2 foeq2 6590 . . 3 (𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶) ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶)))
4 df-f1o 6365 . 2 (𝐹:𝐴1-1-onto𝐶 ↔ (𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶))
5 df-f1o 6365 . 2 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶))
63, 4, 53bitr4g 316 1 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  1-1wf1 6355  ontowfo 6356  1-1-ontowf1o 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-9 2123  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1780  df-cleq 2817  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365
This theorem is referenced by:  f1oeq23  6610  f1oeq123d  6613  f1oeq2d  6614  resin  6639  isoeq4  7076  bren  8521  f1dmvrnfibi  8811  cnfcom  9166  infxpenc2  9451  fsumf1o  15083  sumsnf  15102  fprodf1o  15303  prodsn  15319  prodsnf  15321  znhash  20708  znunithash  20714  imasf1oxms  23102  wlksnwwlknvbij  27690  clwwlkvbij  27895  eupthp1  27998  derangval  32418  subfacp1lem2a  32431  subfacp1lem3  32433  subfacp1lem5  32435  sumsnd  41289  uspgrsprfo  44030
  Copyright terms: Public domain W3C validator