![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1oeq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq2 6783 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) | |
2 | foeq2 6802 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) | |
3 | 1, 2 | anbi12d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶) ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶))) |
4 | df-f1o 6550 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐶 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶)) | |
5 | df-f1o 6550 | . 2 ⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶)) | |
6 | 3, 4, 5 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 –1-1→wf1 6540 –onto→wfo 6541 –1-1-onto→wf1o 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 |
This theorem is referenced by: f1oeq23 6824 f1oeq123d 6827 f1oeq2d 6829 resin 6855 isoeq4 7319 breng 8950 brenOLD 8952 f1dmvrnfibi 9338 cnfcom 9697 infxpenc2 10019 fsumf1o 15673 sumsnf 15693 fprodf1o 15894 prodsn 15910 prodsnf 15912 znhash 21333 znunithash 21339 imasf1oxms 24218 wlksnwwlknvbij 29417 clwwlkvbij 29621 eupthp1 29724 derangval 34444 subfacp1lem2a 34457 subfacp1lem3 34459 subfacp1lem5 34461 sumsnd 44012 uspgrsprfo 46825 |
Copyright terms: Public domain | W3C validator |