MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq2 Structured version   Visualization version   GIF version

Theorem f1oeq2 6851
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq2 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))

Proof of Theorem f1oeq2
StepHypRef Expression
1 f1eq2 6813 . . 3 (𝐴 = 𝐵 → (𝐹:𝐴1-1𝐶𝐹:𝐵1-1𝐶))
2 foeq2 6831 . . 3 (𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))
31, 2anbi12d 631 . 2 (𝐴 = 𝐵 → ((𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶) ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶)))
4 df-f1o 6580 . 2 (𝐹:𝐴1-1-onto𝐶 ↔ (𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶))
5 df-f1o 6580 . 2 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  f1oeq23  6853  f1oeq123d  6856  f1oeq2d  6858  resin  6884  isoeq4  7356  breng  9012  brenOLD  9014  f1dmvrnfibi  9409  cnfcom  9769  infxpenc2  10091  fsumf1o  15771  sumsnf  15791  fprodf1o  15994  prodsn  16010  prodsnf  16012  znhash  21600  znunithash  21606  imasf1oxms  24523  wlksnwwlknvbij  29941  clwwlkvbij  30145  eupthp1  30248  derangval  35135  subfacp1lem2a  35148  subfacp1lem3  35150  subfacp1lem5  35152  sumsnd  44926  isuspgrim0lem  47755  usgrexmpl1lem  47836  usgrexmpl2lem  47841  uspgrsprfo  47871
  Copyright terms: Public domain W3C validator