![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1oeq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq2 6347 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) | |
2 | foeq2 6363 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) | |
3 | 1, 2 | anbi12d 624 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶) ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶))) |
4 | df-f1o 6142 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐶 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶)) | |
5 | df-f1o 6142 | . 2 ⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶)) | |
6 | 3, 4, 5 | 3bitr4g 306 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 –1-1→wf1 6132 –onto→wfo 6133 –1-1-onto→wf1o 6134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-cleq 2770 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 |
This theorem is referenced by: f1oeq23 6383 f1oeq123d 6386 f1oeq2d 6387 resin 6412 isoeq4 6842 bren 8250 f1dmvrnfibi 8538 cnfcom 8894 infxpenc2 9178 fsumf1o 14861 sumsnf 14880 fprodf1o 15079 prodsn 15095 prodsnf 15097 znhash 20302 znunithash 20308 imasf1oxms 22702 wlksnwwlknvbij 27281 wlksnwwlknvbijOLD 27282 clwwlkvbij 27515 clwwlkvbijOLD 27516 eupthp1 27620 derangval 31748 subfacp1lem2a 31761 subfacp1lem3 31763 subfacp1lem5 31765 sumsnd 40118 uspgrsprfo 42771 |
Copyright terms: Public domain | W3C validator |