MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq2 Structured version   Visualization version   GIF version

Theorem f1oeq2 6752
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq2 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))

Proof of Theorem f1oeq2
StepHypRef Expression
1 f1eq2 6715 . . 3 (𝐴 = 𝐵 → (𝐹:𝐴1-1𝐶𝐹:𝐵1-1𝐶))
2 foeq2 6732 . . 3 (𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶) ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶)))
4 df-f1o 6488 . 2 (𝐹:𝐴1-1-onto𝐶 ↔ (𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶))
5 df-f1o 6488 . 2 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488
This theorem is referenced by:  f1oeq23  6754  f1oeq123d  6757  f1oeq2d  6759  resin  6785  isoeq4  7254  breng  8878  f1dmvrnfibi  9225  cnfcom  9590  infxpenc2  9913  fsumf1o  15630  sumsnf  15650  fprodf1o  15853  prodsn  15869  prodsnf  15871  znhash  21495  znunithash  21501  imasf1oxms  24404  wlksnwwlknvbij  29886  clwwlkvbij  30093  eupthp1  30196  derangval  35211  subfacp1lem2a  35224  subfacp1lem3  35226  subfacp1lem5  35228  sumsnd  45133  isuspgrim0lem  48003  isubgr3stgrlem1  48076  usgrexmpl1lem  48131  usgrexmpl2lem  48136  uspgrsprfo  48258  tposf1o  48994
  Copyright terms: Public domain W3C validator