| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq2 6780 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) | |
| 2 | foeq2 6797 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶) ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶))) |
| 4 | df-f1o 6548 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐶 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶)) | |
| 5 | df-f1o 6548 | . 2 ⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 –1-1→wf1 6538 –onto→wfo 6539 –1-1-onto→wf1o 6540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 |
| This theorem is referenced by: f1oeq23 6819 f1oeq123d 6822 f1oeq2d 6824 resin 6850 isoeq4 7322 breng 8976 f1dmvrnfibi 9363 cnfcom 9722 infxpenc2 10044 fsumf1o 15742 sumsnf 15762 fprodf1o 15965 prodsn 15981 prodsnf 15983 znhash 21532 znunithash 21538 imasf1oxms 24447 wlksnwwlknvbij 29857 clwwlkvbij 30061 eupthp1 30164 derangval 35147 subfacp1lem2a 35160 subfacp1lem3 35162 subfacp1lem5 35164 sumsnd 45003 isuspgrim0lem 47844 isubgr3stgrlem1 47906 usgrexmpl1lem 47953 usgrexmpl2lem 47958 uspgrsprfo 48037 tposf1o 48767 |
| Copyright terms: Public domain | W3C validator |