| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq2 6752 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) | |
| 2 | foeq2 6769 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶) ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶))) |
| 4 | df-f1o 6518 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐶 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶)) | |
| 5 | df-f1o 6518 | . 2 ⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 –1-1→wf1 6508 –onto→wfo 6509 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: f1oeq23 6791 f1oeq123d 6794 f1oeq2d 6796 resin 6822 isoeq4 7295 breng 8927 f1dmvrnfibi 9292 cnfcom 9653 infxpenc2 9975 fsumf1o 15689 sumsnf 15709 fprodf1o 15912 prodsn 15928 prodsnf 15930 znhash 21468 znunithash 21474 imasf1oxms 24377 wlksnwwlknvbij 29838 clwwlkvbij 30042 eupthp1 30145 derangval 35154 subfacp1lem2a 35167 subfacp1lem3 35169 subfacp1lem5 35171 sumsnd 45020 isuspgrim0lem 47890 isubgr3stgrlem1 47962 usgrexmpl1lem 48009 usgrexmpl2lem 48014 uspgrsprfo 48133 tposf1o 48869 |
| Copyright terms: Public domain | W3C validator |