MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom2 Structured version   Visualization version   GIF version

Theorem brwdom2 8769
Description: Alternate characterization of the weak dominance predicate which does not require special treatment of the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
brwdom2 (𝑌𝑉 → (𝑋* 𝑌 ↔ ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋))
Distinct variable groups:   𝑦,𝑋,𝑧   𝑦,𝑌,𝑧
Allowed substitution hints:   𝑉(𝑦,𝑧)

Proof of Theorem brwdom2
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3414 . 2 (𝑌𝑉𝑌 ∈ V)
2 0wdom 8766 . . . . . 6 (𝑌 ∈ V → ∅ ≼* 𝑌)
3 breq1 4891 . . . . . 6 (𝑋 = ∅ → (𝑋* 𝑌 ↔ ∅ ≼* 𝑌))
42, 3syl5ibrcom 239 . . . . 5 (𝑌 ∈ V → (𝑋 = ∅ → 𝑋* 𝑌))
54imp 397 . . . 4 ((𝑌 ∈ V ∧ 𝑋 = ∅) → 𝑋* 𝑌)
6 0elpw 5070 . . . . . . 7 ∅ ∈ 𝒫 𝑌
7 f1o0 6429 . . . . . . . 8 ∅:∅–1-1-onto→∅
8 f1ofo 6400 . . . . . . . 8 (∅:∅–1-1-onto→∅ → ∅:∅–onto→∅)
9 0ex 5028 . . . . . . . . 9 ∅ ∈ V
10 foeq1 6364 . . . . . . . . 9 (𝑧 = ∅ → (𝑧:∅–onto→∅ ↔ ∅:∅–onto→∅))
119, 10spcev 3502 . . . . . . . 8 (∅:∅–onto→∅ → ∃𝑧 𝑧:∅–onto→∅)
127, 8, 11mp2b 10 . . . . . . 7 𝑧 𝑧:∅–onto→∅
13 foeq2 6365 . . . . . . . . 9 (𝑦 = ∅ → (𝑧:𝑦onto→∅ ↔ 𝑧:∅–onto→∅))
1413exbidv 1964 . . . . . . . 8 (𝑦 = ∅ → (∃𝑧 𝑧:𝑦onto→∅ ↔ ∃𝑧 𝑧:∅–onto→∅))
1514rspcev 3511 . . . . . . 7 ((∅ ∈ 𝒫 𝑌 ∧ ∃𝑧 𝑧:∅–onto→∅) → ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto→∅)
166, 12, 15mp2an 682 . . . . . 6 𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto→∅
17 foeq3 6366 . . . . . . . 8 (𝑋 = ∅ → (𝑧:𝑦onto𝑋𝑧:𝑦onto→∅))
1817exbidv 1964 . . . . . . 7 (𝑋 = ∅ → (∃𝑧 𝑧:𝑦onto𝑋 ↔ ∃𝑧 𝑧:𝑦onto→∅))
1918rexbidv 3237 . . . . . 6 (𝑋 = ∅ → (∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋 ↔ ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto→∅))
2016, 19mpbiri 250 . . . . 5 (𝑋 = ∅ → ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋)
2120adantl 475 . . . 4 ((𝑌 ∈ V ∧ 𝑋 = ∅) → ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋)
225, 212thd 257 . . 3 ((𝑌 ∈ V ∧ 𝑋 = ∅) → (𝑋* 𝑌 ↔ ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋))
23 brwdomn0 8765 . . . . 5 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑥 𝑥:𝑌onto𝑋))
2423adantl 475 . . . 4 ((𝑌 ∈ V ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌 ↔ ∃𝑥 𝑥:𝑌onto𝑋))
25 foeq1 6364 . . . . . . 7 (𝑥 = 𝑧 → (𝑥:𝑌onto𝑋𝑧:𝑌onto𝑋))
2625cbvexvw 2087 . . . . . 6 (∃𝑥 𝑥:𝑌onto𝑋 ↔ ∃𝑧 𝑧:𝑌onto𝑋)
27 pwidg 4394 . . . . . . . . 9 (𝑌 ∈ V → 𝑌 ∈ 𝒫 𝑌)
2827ad2antrr 716 . . . . . . . 8 (((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ ∃𝑧 𝑧:𝑌onto𝑋) → 𝑌 ∈ 𝒫 𝑌)
29 foeq2 6365 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑧:𝑦onto𝑋𝑧:𝑌onto𝑋))
3029exbidv 1964 . . . . . . . . 9 (𝑦 = 𝑌 → (∃𝑧 𝑧:𝑦onto𝑋 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
3130rspcev 3511 . . . . . . . 8 ((𝑌 ∈ 𝒫 𝑌 ∧ ∃𝑧 𝑧:𝑌onto𝑋) → ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋)
3228, 31sylancom 582 . . . . . . 7 (((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ ∃𝑧 𝑧:𝑌onto𝑋) → ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋)
3332ex 403 . . . . . 6 ((𝑌 ∈ V ∧ 𝑋 ≠ ∅) → (∃𝑧 𝑧:𝑌onto𝑋 → ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋))
3426, 33syl5bi 234 . . . . 5 ((𝑌 ∈ V ∧ 𝑋 ≠ ∅) → (∃𝑥 𝑥:𝑌onto𝑋 → ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋))
35 n0 4159 . . . . . . . . . . 11 (𝑋 ≠ ∅ ↔ ∃𝑤 𝑤𝑋)
3635biimpi 208 . . . . . . . . . 10 (𝑋 ≠ ∅ → ∃𝑤 𝑤𝑋)
3736ad2antlr 717 . . . . . . . . 9 (((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) → ∃𝑤 𝑤𝑋)
38 vex 3401 . . . . . . . . . . . . 13 𝑧 ∈ V
39 difexg 5047 . . . . . . . . . . . . . 14 (𝑌 ∈ V → (𝑌𝑦) ∈ V)
40 snex 5142 . . . . . . . . . . . . . 14 {𝑤} ∈ V
41 xpexg 7239 . . . . . . . . . . . . . 14 (((𝑌𝑦) ∈ V ∧ {𝑤} ∈ V) → ((𝑌𝑦) × {𝑤}) ∈ V)
4239, 40, 41sylancl 580 . . . . . . . . . . . . 13 (𝑌 ∈ V → ((𝑌𝑦) × {𝑤}) ∈ V)
43 unexg 7238 . . . . . . . . . . . . 13 ((𝑧 ∈ V ∧ ((𝑌𝑦) × {𝑤}) ∈ V) → (𝑧 ∪ ((𝑌𝑦) × {𝑤})) ∈ V)
4438, 42, 43sylancr 581 . . . . . . . . . . . 12 (𝑌 ∈ V → (𝑧 ∪ ((𝑌𝑦) × {𝑤})) ∈ V)
4544adantr 474 . . . . . . . . . . 11 ((𝑌 ∈ V ∧ 𝑋 ≠ ∅) → (𝑧 ∪ ((𝑌𝑦) × {𝑤})) ∈ V)
4645ad2antrr 716 . . . . . . . . . 10 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → (𝑧 ∪ ((𝑌𝑦) × {𝑤})) ∈ V)
47 fofn 6370 . . . . . . . . . . . . . . 15 (𝑧:𝑦onto𝑋𝑧 Fn 𝑦)
4847adantl 475 . . . . . . . . . . . . . 14 ((𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋) → 𝑧 Fn 𝑦)
4948ad2antlr 717 . . . . . . . . . . . . 13 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → 𝑧 Fn 𝑦)
50 vex 3401 . . . . . . . . . . . . . 14 𝑤 ∈ V
51 fnconstg 6345 . . . . . . . . . . . . . 14 (𝑤 ∈ V → ((𝑌𝑦) × {𝑤}) Fn (𝑌𝑦))
5250, 51mp1i 13 . . . . . . . . . . . . 13 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → ((𝑌𝑦) × {𝑤}) Fn (𝑌𝑦))
53 disjdif 4264 . . . . . . . . . . . . . 14 (𝑦 ∩ (𝑌𝑦)) = ∅
5453a1i 11 . . . . . . . . . . . . 13 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → (𝑦 ∩ (𝑌𝑦)) = ∅)
55 fnun 6245 . . . . . . . . . . . . 13 (((𝑧 Fn 𝑦 ∧ ((𝑌𝑦) × {𝑤}) Fn (𝑌𝑦)) ∧ (𝑦 ∩ (𝑌𝑦)) = ∅) → (𝑧 ∪ ((𝑌𝑦) × {𝑤})) Fn (𝑦 ∪ (𝑌𝑦)))
5649, 52, 54, 55syl21anc 828 . . . . . . . . . . . 12 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → (𝑧 ∪ ((𝑌𝑦) × {𝑤})) Fn (𝑦 ∪ (𝑌𝑦)))
57 elpwi 4389 . . . . . . . . . . . . . . . 16 (𝑦 ∈ 𝒫 𝑌𝑦𝑌)
58 undif 4273 . . . . . . . . . . . . . . . 16 (𝑦𝑌 ↔ (𝑦 ∪ (𝑌𝑦)) = 𝑌)
5957, 58sylib 210 . . . . . . . . . . . . . . 15 (𝑦 ∈ 𝒫 𝑌 → (𝑦 ∪ (𝑌𝑦)) = 𝑌)
6059ad2antrl 718 . . . . . . . . . . . . . 14 (((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) → (𝑦 ∪ (𝑌𝑦)) = 𝑌)
6160adantr 474 . . . . . . . . . . . . 13 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → (𝑦 ∪ (𝑌𝑦)) = 𝑌)
6261fneq2d 6229 . . . . . . . . . . . 12 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → ((𝑧 ∪ ((𝑌𝑦) × {𝑤})) Fn (𝑦 ∪ (𝑌𝑦)) ↔ (𝑧 ∪ ((𝑌𝑦) × {𝑤})) Fn 𝑌))
6356, 62mpbid 224 . . . . . . . . . . 11 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → (𝑧 ∪ ((𝑌𝑦) × {𝑤})) Fn 𝑌)
64 rnun 5797 . . . . . . . . . . . 12 ran (𝑧 ∪ ((𝑌𝑦) × {𝑤})) = (ran 𝑧 ∪ ran ((𝑌𝑦) × {𝑤}))
65 forn 6371 . . . . . . . . . . . . . . . 16 (𝑧:𝑦onto𝑋 → ran 𝑧 = 𝑋)
6665ad2antll 719 . . . . . . . . . . . . . . 15 (((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) → ran 𝑧 = 𝑋)
6766adantr 474 . . . . . . . . . . . . . 14 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → ran 𝑧 = 𝑋)
6867uneq1d 3989 . . . . . . . . . . . . 13 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → (ran 𝑧 ∪ ran ((𝑌𝑦) × {𝑤})) = (𝑋 ∪ ran ((𝑌𝑦) × {𝑤})))
69 fconst6g 6346 . . . . . . . . . . . . . . . 16 (𝑤𝑋 → ((𝑌𝑦) × {𝑤}):(𝑌𝑦)⟶𝑋)
7069frnd 6300 . . . . . . . . . . . . . . 15 (𝑤𝑋 → ran ((𝑌𝑦) × {𝑤}) ⊆ 𝑋)
7170adantl 475 . . . . . . . . . . . . . 14 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → ran ((𝑌𝑦) × {𝑤}) ⊆ 𝑋)
72 ssequn2 4009 . . . . . . . . . . . . . 14 (ran ((𝑌𝑦) × {𝑤}) ⊆ 𝑋 ↔ (𝑋 ∪ ran ((𝑌𝑦) × {𝑤})) = 𝑋)
7371, 72sylib 210 . . . . . . . . . . . . 13 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → (𝑋 ∪ ran ((𝑌𝑦) × {𝑤})) = 𝑋)
7468, 73eqtrd 2814 . . . . . . . . . . . 12 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → (ran 𝑧 ∪ ran ((𝑌𝑦) × {𝑤})) = 𝑋)
7564, 74syl5eq 2826 . . . . . . . . . . 11 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → ran (𝑧 ∪ ((𝑌𝑦) × {𝑤})) = 𝑋)
76 df-fo 6143 . . . . . . . . . . 11 ((𝑧 ∪ ((𝑌𝑦) × {𝑤})):𝑌onto𝑋 ↔ ((𝑧 ∪ ((𝑌𝑦) × {𝑤})) Fn 𝑌 ∧ ran (𝑧 ∪ ((𝑌𝑦) × {𝑤})) = 𝑋))
7763, 75, 76sylanbrc 578 . . . . . . . . . 10 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → (𝑧 ∪ ((𝑌𝑦) × {𝑤})):𝑌onto𝑋)
78 foeq1 6364 . . . . . . . . . 10 (𝑥 = (𝑧 ∪ ((𝑌𝑦) × {𝑤})) → (𝑥:𝑌onto𝑋 ↔ (𝑧 ∪ ((𝑌𝑦) × {𝑤})):𝑌onto𝑋))
7946, 77, 78elabd 3560 . . . . . . . . 9 ((((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) ∧ 𝑤𝑋) → ∃𝑥 𝑥:𝑌onto𝑋)
8037, 79exlimddv 1978 . . . . . . . 8 (((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ (𝑦 ∈ 𝒫 𝑌𝑧:𝑦onto𝑋)) → ∃𝑥 𝑥:𝑌onto𝑋)
8180expr 450 . . . . . . 7 (((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝑧:𝑦onto𝑋 → ∃𝑥 𝑥:𝑌onto𝑋))
8281exlimdv 1976 . . . . . 6 (((𝑌 ∈ V ∧ 𝑋 ≠ ∅) ∧ 𝑦 ∈ 𝒫 𝑌) → (∃𝑧 𝑧:𝑦onto𝑋 → ∃𝑥 𝑥:𝑌onto𝑋))
8382rexlimdva 3213 . . . . 5 ((𝑌 ∈ V ∧ 𝑋 ≠ ∅) → (∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋 → ∃𝑥 𝑥:𝑌onto𝑋))
8434, 83impbid 204 . . . 4 ((𝑌 ∈ V ∧ 𝑋 ≠ ∅) → (∃𝑥 𝑥:𝑌onto𝑋 ↔ ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋))
8524, 84bitrd 271 . . 3 ((𝑌 ∈ V ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌 ↔ ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋))
8622, 85pm2.61dane 3057 . 2 (𝑌 ∈ V → (𝑋* 𝑌 ↔ ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋))
871, 86syl 17 1 (𝑌𝑉 → (𝑋* 𝑌 ↔ ∃𝑦 ∈ 𝒫 𝑌𝑧 𝑧:𝑦onto𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wex 1823  wcel 2107  wne 2969  wrex 3091  Vcvv 3398  cdif 3789  cun 3790  cin 3791  wss 3792  c0 4141  𝒫 cpw 4379  {csn 4398   class class class wbr 4888   × cxp 5355  ran crn 5358   Fn wfn 6132  ontowfo 6135  1-1-ontowf1o 6136  * cwdom 8753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-wdom 8755
This theorem is referenced by:  brwdom3  8778
  Copyright terms: Public domain W3C validator