![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foeq123d | Structured version Visualization version GIF version |
Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
foeq123d | ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | foeq1 6794 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐴–onto→𝐶)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐴–onto→𝐶)) |
4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | foeq2 6795 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
8 | foeq3 6796 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
10 | 3, 6, 9 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 –onto→wfo 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-fun 6538 df-fn 6539 df-fo 6542 |
This theorem is referenced by: fullfo 17871 cofull 17893 resgrpplusfrn 18877 efabl 26434 iseupth 29958 funfocofob 46340 fundcmpsurinjimaid 46633 fundcmpsurinjALT 46634 |
Copyright terms: Public domain | W3C validator |