MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeq123d Structured version   Visualization version   GIF version

Theorem foeq123d 6775
Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1 (𝜑𝐹 = 𝐺)
f1eq123d.2 (𝜑𝐴 = 𝐵)
f1eq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
foeq123d (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐵onto𝐷))

Proof of Theorem foeq123d
StepHypRef Expression
1 f1eq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 foeq1 6750 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐶𝐺:𝐴onto𝐶))
31, 2syl 17 . 2 (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐴onto𝐶))
4 f1eq123d.2 . . 3 (𝜑𝐴 = 𝐵)
5 foeq2 6751 . . 3 (𝐴 = 𝐵 → (𝐺:𝐴onto𝐶𝐺:𝐵onto𝐶))
64, 5syl 17 . 2 (𝜑 → (𝐺:𝐴onto𝐶𝐺:𝐵onto𝐶))
7 f1eq123d.3 . . 3 (𝜑𝐶 = 𝐷)
8 foeq3 6752 . . 3 (𝐶 = 𝐷 → (𝐺:𝐵onto𝐶𝐺:𝐵onto𝐷))
97, 8syl 17 . 2 (𝜑 → (𝐺:𝐵onto𝐶𝐺:𝐵onto𝐷))
103, 6, 93bitrd 305 1 (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐵onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  ontowfo 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-fo 6505
This theorem is referenced by:  fullfo  17852  cofull  17874  resgrpplusfrn  18858  efabl  26435  iseupth  30103  funfocofob  47052  fundcmpsurinjimaid  47385  fundcmpsurinjALT  47386  cofidf2  49082
  Copyright terms: Public domain W3C validator