MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeq123d Structured version   Visualization version   GIF version

Theorem foeq123d 6693
Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1 (𝜑𝐹 = 𝐺)
f1eq123d.2 (𝜑𝐴 = 𝐵)
f1eq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
foeq123d (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐵onto𝐷))

Proof of Theorem foeq123d
StepHypRef Expression
1 f1eq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 foeq1 6668 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐶𝐺:𝐴onto𝐶))
31, 2syl 17 . 2 (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐴onto𝐶))
4 f1eq123d.2 . . 3 (𝜑𝐴 = 𝐵)
5 foeq2 6669 . . 3 (𝐴 = 𝐵 → (𝐺:𝐴onto𝐶𝐺:𝐵onto𝐶))
64, 5syl 17 . 2 (𝜑 → (𝐺:𝐴onto𝐶𝐺:𝐵onto𝐶))
7 f1eq123d.3 . . 3 (𝜑𝐶 = 𝐷)
8 foeq3 6670 . . 3 (𝐶 = 𝐷 → (𝐺:𝐵onto𝐶𝐺:𝐵onto𝐷))
97, 8syl 17 . 2 (𝜑 → (𝐺:𝐵onto𝐶𝐺:𝐵onto𝐷))
103, 6, 93bitrd 304 1 (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐵onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  ontowfo 6416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-fo 6424
This theorem is referenced by:  fullfo  17544  cofull  17566  resgrpplusfrn  18508  efabl  25611  iseupth  28466  funfocofob  44457  fundcmpsurinjimaid  44751  fundcmpsurinjALT  44752
  Copyright terms: Public domain W3C validator