MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeq123d Structured version   Visualization version   GIF version

Theorem foeq123d 6709
Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1 (𝜑𝐹 = 𝐺)
f1eq123d.2 (𝜑𝐴 = 𝐵)
f1eq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
foeq123d (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐵onto𝐷))

Proof of Theorem foeq123d
StepHypRef Expression
1 f1eq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 foeq1 6684 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐶𝐺:𝐴onto𝐶))
31, 2syl 17 . 2 (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐴onto𝐶))
4 f1eq123d.2 . . 3 (𝜑𝐴 = 𝐵)
5 foeq2 6685 . . 3 (𝐴 = 𝐵 → (𝐺:𝐴onto𝐶𝐺:𝐵onto𝐶))
64, 5syl 17 . 2 (𝜑 → (𝐺:𝐴onto𝐶𝐺:𝐵onto𝐶))
7 f1eq123d.3 . . 3 (𝜑𝐶 = 𝐷)
8 foeq3 6686 . . 3 (𝐶 = 𝐷 → (𝐺:𝐵onto𝐶𝐺:𝐵onto𝐷))
97, 8syl 17 . 2 (𝜑 → (𝐺:𝐵onto𝐶𝐺:𝐵onto𝐷))
103, 6, 93bitrd 305 1 (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐵onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  ontowfo 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-fo 6439
This theorem is referenced by:  fullfo  17628  cofull  17650  resgrpplusfrn  18593  efabl  25706  iseupth  28565  funfocofob  44570  fundcmpsurinjimaid  44863  fundcmpsurinjALT  44864
  Copyright terms: Public domain W3C validator