Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > foeq123d | Structured version Visualization version GIF version |
Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
foeq123d | ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | foeq1 6668 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐴–onto→𝐶)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐴–onto→𝐶)) |
4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | foeq2 6669 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
8 | foeq3 6670 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
10 | 3, 6, 9 | 3bitrd 304 | 1 ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 –onto→wfo 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-fo 6424 |
This theorem is referenced by: fullfo 17544 cofull 17566 resgrpplusfrn 18508 efabl 25611 iseupth 28466 funfocofob 44457 fundcmpsurinjimaid 44751 fundcmpsurinjALT 44752 |
Copyright terms: Public domain | W3C validator |