![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foeq123d | Structured version Visualization version GIF version |
Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
foeq123d | ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | foeq1 6753 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐴–onto→𝐶)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐴–onto→𝐶)) |
4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | foeq2 6754 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
8 | foeq3 6755 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
10 | 3, 6, 9 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 –onto→wfo 6495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-fun 6499 df-fn 6500 df-fo 6503 |
This theorem is referenced by: fullfo 17800 cofull 17822 resgrpplusfrn 18765 efabl 25909 iseupth 29148 funfocofob 45317 fundcmpsurinjimaid 45610 fundcmpsurinjALT 45611 |
Copyright terms: Public domain | W3C validator |