| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opidon2OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of mndpfo 18660 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| opidon2OLD.1 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| opidon2OLD | ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ dom dom 𝐺 = dom dom 𝐺 | |
| 2 | 1 | opidonOLD 37819 | . 2 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺) |
| 3 | opidon2OLD.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 4 | forn 6757 | . . . 4 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → ran 𝐺 = dom dom 𝐺) | |
| 5 | 3, 4 | eqtr2id 2777 | . . 3 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → dom dom 𝐺 = 𝑋) |
| 6 | xpeq12 5656 | . . . . . . 7 ⊢ ((dom dom 𝐺 = 𝑋 ∧ dom dom 𝐺 = 𝑋) → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋)) | |
| 7 | 6 | anidms 566 | . . . . . 6 ⊢ (dom dom 𝐺 = 𝑋 → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋)) |
| 8 | foeq2 6751 | . . . . . 6 ⊢ ((dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋) → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺)) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺)) |
| 10 | foeq3 6752 | . . . . 5 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→𝑋)) | |
| 11 | 9, 10 | bitrd 279 | . . . 4 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→𝑋)) |
| 12 | 11 | biimpd 229 | . . 3 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → 𝐺:(𝑋 × 𝑋)–onto→𝑋)) |
| 13 | 5, 12 | mpcom 38 | . 2 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
| 14 | 2, 13 | syl 17 | 1 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 × cxp 5629 dom cdm 5631 ran crn 5632 –onto→wfo 6497 ExId cexid 37811 Magmacmagm 37815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-ov 7372 df-exid 37812 df-mgmOLD 37816 |
| This theorem is referenced by: exidreslem 37844 |
| Copyright terms: Public domain | W3C validator |