Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opidon2OLD Structured version   Visualization version   GIF version

Theorem opidon2OLD 34279
Description: Obsolete version of mndpfo 17700 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
opidon2OLD.1 𝑋 = ran 𝐺
Assertion
Ref Expression
opidon2OLD (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)

Proof of Theorem opidon2OLD
StepHypRef Expression
1 eqid 2778 . . 3 dom dom 𝐺 = dom dom 𝐺
21opidonOLD 34277 . 2 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺)
3 opidon2OLD.1 . . . 4 𝑋 = ran 𝐺
4 forn 6369 . . . 4 (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → ran 𝐺 = dom dom 𝐺)
53, 4syl5req 2827 . . 3 (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → dom dom 𝐺 = 𝑋)
6 xpeq12 5380 . . . . . . 7 ((dom dom 𝐺 = 𝑋 ∧ dom dom 𝐺 = 𝑋) → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋))
76anidms 562 . . . . . 6 (dom dom 𝐺 = 𝑋 → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋))
8 foeq2 6363 . . . . . 6 ((dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋) → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺))
97, 8syl 17 . . . . 5 (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺))
10 foeq3 6364 . . . . 5 (dom dom 𝐺 = 𝑋 → (𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺𝐺:(𝑋 × 𝑋)–onto𝑋))
119, 10bitrd 271 . . . 4 (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺𝐺:(𝑋 × 𝑋)–onto𝑋))
1211biimpd 221 . . 3 (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺𝐺:(𝑋 × 𝑋)–onto𝑋))
135, 12mpcom 38 . 2 (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺𝐺:(𝑋 × 𝑋)–onto𝑋)
142, 13syl 17 1 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  wcel 2107  cin 3791   × cxp 5353  dom cdm 5355  ran crn 5356  ontowfo 6133   ExId cexid 34269  Magmacmagm 34273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fo 6141  df-fv 6143  df-ov 6925  df-exid 34270  df-mgmOLD 34274
This theorem is referenced by:  exidreslem  34302
  Copyright terms: Public domain W3C validator