![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opidon2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of mndpfo 18797 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
opidon2OLD.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
opidon2OLD | ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ dom dom 𝐺 = dom dom 𝐺 | |
2 | 1 | opidonOLD 37814 | . 2 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺) |
3 | opidon2OLD.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
4 | forn 6839 | . . . 4 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → ran 𝐺 = dom dom 𝐺) | |
5 | 3, 4 | eqtr2id 2793 | . . 3 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → dom dom 𝐺 = 𝑋) |
6 | xpeq12 5725 | . . . . . . 7 ⊢ ((dom dom 𝐺 = 𝑋 ∧ dom dom 𝐺 = 𝑋) → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋)) | |
7 | 6 | anidms 566 | . . . . . 6 ⊢ (dom dom 𝐺 = 𝑋 → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋)) |
8 | foeq2 6833 | . . . . . 6 ⊢ ((dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋) → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺)) |
10 | foeq3 6834 | . . . . 5 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→𝑋)) | |
11 | 9, 10 | bitrd 279 | . . . 4 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→𝑋)) |
12 | 11 | biimpd 229 | . . 3 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → 𝐺:(𝑋 × 𝑋)–onto→𝑋)) |
13 | 5, 12 | mpcom 38 | . 2 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
14 | 2, 13 | syl 17 | 1 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 × cxp 5698 dom cdm 5700 ran crn 5701 –onto→wfo 6573 ExId cexid 37806 Magmacmagm 37810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fo 6581 df-fv 6583 df-ov 7453 df-exid 37807 df-mgmOLD 37811 |
This theorem is referenced by: exidreslem 37839 |
Copyright terms: Public domain | W3C validator |