![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opidon2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of mndpfo 18682 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
opidon2OLD.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
opidon2OLD | ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 ⊢ dom dom 𝐺 = dom dom 𝐺 | |
2 | 1 | opidonOLD 37023 | . 2 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺) |
3 | opidon2OLD.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
4 | forn 6807 | . . . 4 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → ran 𝐺 = dom dom 𝐺) | |
5 | 3, 4 | eqtr2id 2783 | . . 3 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → dom dom 𝐺 = 𝑋) |
6 | xpeq12 5700 | . . . . . . 7 ⊢ ((dom dom 𝐺 = 𝑋 ∧ dom dom 𝐺 = 𝑋) → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋)) | |
7 | 6 | anidms 565 | . . . . . 6 ⊢ (dom dom 𝐺 = 𝑋 → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋)) |
8 | foeq2 6801 | . . . . . 6 ⊢ ((dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋) → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺)) |
10 | foeq3 6802 | . . . . 5 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→𝑋)) | |
11 | 9, 10 | bitrd 278 | . . . 4 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→𝑋)) |
12 | 11 | biimpd 228 | . . 3 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → 𝐺:(𝑋 × 𝑋)–onto→𝑋)) |
13 | 5, 12 | mpcom 38 | . 2 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
14 | 2, 13 | syl 17 | 1 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 ∩ cin 3946 × cxp 5673 dom cdm 5675 ran crn 5676 –onto→wfo 6540 ExId cexid 37015 Magmacmagm 37019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-ov 7414 df-exid 37016 df-mgmOLD 37020 |
This theorem is referenced by: exidreslem 37048 |
Copyright terms: Public domain | W3C validator |