Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opidon2OLD Structured version   Visualization version   GIF version

Theorem opidon2OLD 37853
Description: Obsolete version of mndpfo 18789 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
opidon2OLD.1 𝑋 = ran 𝐺
Assertion
Ref Expression
opidon2OLD (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)

Proof of Theorem opidon2OLD
StepHypRef Expression
1 eqid 2736 . . 3 dom dom 𝐺 = dom dom 𝐺
21opidonOLD 37851 . 2 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺)
3 opidon2OLD.1 . . . 4 𝑋 = ran 𝐺
4 forn 6828 . . . 4 (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → ran 𝐺 = dom dom 𝐺)
53, 4eqtr2id 2789 . . 3 (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → dom dom 𝐺 = 𝑋)
6 xpeq12 5715 . . . . . . 7 ((dom dom 𝐺 = 𝑋 ∧ dom dom 𝐺 = 𝑋) → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋))
76anidms 566 . . . . . 6 (dom dom 𝐺 = 𝑋 → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋))
8 foeq2 6822 . . . . . 6 ((dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋) → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺))
97, 8syl 17 . . . . 5 (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺))
10 foeq3 6823 . . . . 5 (dom dom 𝐺 = 𝑋 → (𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺𝐺:(𝑋 × 𝑋)–onto𝑋))
119, 10bitrd 279 . . . 4 (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺𝐺:(𝑋 × 𝑋)–onto𝑋))
1211biimpd 229 . . 3 (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺𝐺:(𝑋 × 𝑋)–onto𝑋))
135, 12mpcom 38 . 2 (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺𝐺:(𝑋 × 𝑋)–onto𝑋)
142, 13syl 17 1 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1538  wcel 2107  cin 3963   × cxp 5688  dom cdm 5690  ran crn 5691  ontowfo 6564   ExId cexid 37843  Magmacmagm 37847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-fo 6572  df-fv 6574  df-ov 7438  df-exid 37844  df-mgmOLD 37848
This theorem is referenced by:  exidreslem  37876
  Copyright terms: Public domain W3C validator