MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneq2 Structured version   Visualization version   GIF version

Theorem fneq2 6568
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fneq2 (𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))

Proof of Theorem fneq2
StepHypRef Expression
1 eqeq2 2743 . . 3 (𝐴 = 𝐵 → (dom 𝐹 = 𝐴 ↔ dom 𝐹 = 𝐵))
21anbi2d 630 . 2 (𝐴 = 𝐵 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵)))
3 df-fn 6479 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
4 df-fn 6479 . 2 (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  dom cdm 5611  Fun wfun 6470   Fn wfn 6471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-fn 6479
This theorem is referenced by:  fneq2d  6570  fneq2i  6574  feq2  6625  foeq2  6727  f1o00  6793  eqfnfv2  6960  frrlem1  8211  frrlem13  8223  tfrlem12  8303  ixpeq1  8827  ac5  10363  0fz1  13439  fconst7v  32595  esumcvgsum  34093  bnj90  34726  bnj919  34771  bnj535  34894  bnj1463  35059  fnchoice  45066
  Copyright terms: Public domain W3C validator