![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq2 | Structured version Visualization version GIF version |
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fneq2 | ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2789 | . . 3 ⊢ (𝐴 = 𝐵 → (dom 𝐹 = 𝐴 ↔ dom 𝐹 = 𝐵)) | |
2 | 1 | anbi2d 619 | . 2 ⊢ (𝐴 = 𝐵 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))) |
3 | df-fn 6193 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
4 | df-fn 6193 | . 2 ⊢ (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 306 | 1 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 dom cdm 5408 Fun wfun 6184 Fn wfn 6185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-9 2059 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1743 df-cleq 2771 df-fn 6193 |
This theorem is referenced by: fneq2d 6282 fneq2i 6286 feq2 6328 foeq2 6418 f1o00 6480 eqfnfv2 6630 wfrlem1 7759 wfrlem15 7775 tfrlem12 7831 ixpeq1 8272 ac5 9699 0fz1 12746 esumcvgsum 30991 bnj90 31640 bnj919 31686 bnj535 31809 bnj1463 31972 frrlem1 32644 frrlem13 32656 fnchoice 40705 |
Copyright terms: Public domain | W3C validator |