| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq2 | ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2742 | . . 3 ⊢ (𝐴 = 𝐵 → (dom 𝐹 = 𝐴 ↔ dom 𝐹 = 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))) |
| 3 | df-fn 6517 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 4 | df-fn 6517 | . 2 ⊢ (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5641 Fun wfun 6508 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-fn 6517 |
| This theorem is referenced by: fneq2d 6615 fneq2i 6619 feq2 6670 foeq2 6772 f1o00 6838 eqfnfv2 7007 frrlem1 8268 frrlem13 8280 tfrlem12 8360 ixpeq1 8884 ac5 10437 0fz1 13512 esumcvgsum 34085 bnj90 34719 bnj919 34764 bnj535 34887 bnj1463 35052 fnchoice 45030 |
| Copyright terms: Public domain | W3C validator |