| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq2 | ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2741 | . . 3 ⊢ (𝐴 = 𝐵 → (dom 𝐹 = 𝐴 ↔ dom 𝐹 = 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))) |
| 3 | df-fn 6485 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 4 | df-fn 6485 | . 2 ⊢ (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5619 Fun wfun 6476 Fn wfn 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6485 |
| This theorem is referenced by: fneq2d 6576 fneq2i 6580 feq2 6631 foeq2 6733 f1o00 6799 eqfnfv2 6966 frrlem1 8219 frrlem13 8231 tfrlem12 8311 ixpeq1 8835 ac5 10371 0fz1 13447 fconst7v 32565 esumcvgsum 34055 bnj90 34689 bnj919 34734 bnj535 34857 bnj1463 35022 fnchoice 45007 |
| Copyright terms: Public domain | W3C validator |